
Pattern-Guided Genetic Programming

Krzysztof Krawiec
Institute of Computing Science

Poznan University of Technology
Piotrowo 2, 60965 Poznań, Poland
kkrawiec@cs.put.poznan.pl

Jerry Swan
Computing Science and Mathematics

University of Stirling
Stirling FK9 4LA, Scotland

jsw@cs.stir.ac.uk

ABSTRACT

Online progress in search and optimization is often hindered
by neutrality in the fitness landscape, when many genotypes
map to the same fitness value. We propose a method for
imposing a gradient on the fitness function of a metaheuris-
tic (in this case, Genetic Programming) via a metric (Min-
imum Description Length) induced from patterns detected
in the trajectory of program execution. These patterns are
induced via a decision tree classifier. We apply this method
to a range of integer and boolean-valued problems, signifi-
cantly outperforming the standard approach. The method
is conceptually straightforward and applicable to virtually
any metaheuristic that can be appropriately instrumented.

Categories and Subject Descriptors

I.2.2 [Artificial Intelligence]: Automatic Programming;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms

Algorithms, Design, Experimentation

Keywords

genetic programming, neutrality, program trace, MDL, Push

1. INTRODUCTION AND MOTIVATIONS

A Genetic Programming (GP) task is defined by a set of
input data (fitness cases) and the desired program output
for each of them. A GP algorithm is expected to infer the
program only from these training examples. This can be
very hard. When the task is challenging, it may be difficult
for the search process to ‘lift off’, i.e. to make any progress.
For instance, if exhibiting any nontrivial (non-constant) be-
havior leads to fitness deterioration, then it will locally pay
off for a program in a population to return a constant output
regardless of the input data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

This problem is not as severe in domains in which program
performance on each test is assessed quantitatively. An ex-
ample of such a domain is symbolic regression, where the er-
ror committed by a program on each fitness case is a contin-
uous value, and thus can change gradually. Unfortunately,
for more typical programing tasks, tests are qualitative: a
program either passes a test or not. Synthesizing Boolean
functions, sorting programs etc., belong to this category.

The key observation that motivates this study is that even
programs which yield a completely useless output (meaning:
output that does not match in any way the desired output)
may produce some intermediate outcomes that can be rele-
vant for solving the task. Take for instance the n-bit parity
task. An initial part of program that correctly calculates the
number of ones in half of the inputs (bits) provides a poten-
tially useful capability. However, this partial outcome may
be lost in the course of subsequent calculations carried out
by the program, so that the ultimate output of the program
is (for instance) the constant true. As a result, the program
receives low fitness, and may not pass the selection process,
so that its useful partial capability will be lost.

In standard GP, such intermediate results are not taken
into account, because there is no singular means for assessing
the quality of partial (intermediate) results produced by a
program, given only the specification of the entire task. This
is similar to a reinforcement learning setting, in which the
agents are usually rewarded only after the entire task has
been solved (i.e. once the goal state has been reached). For
instance, an agent learning to play a game receives rewards
only for complete games — there is no direct feedback about
the quality of individual moves.

We postulate here that evaluation of partial program out-
comes may yield better insight and is technically feasible.
Since these partial results have ultimately been calculated
from input data that came with the task and using an in-
struction set that also belongs to task formulation, they can
represent useful pieces of knowledge of potential value in as-
sembling a complete solution. In particular, the outcomes
calculated for multiple inputs (fitness cases) can form some
patterns that can be exploited to solve the task.

A skilled human programmer or mathematician is capable
of discovering such patters and exploiting them to reach the
goal, i.e. to design an algorithm that meets a prescribed
specification. Moreover, humans are capable of defining
what patterns are desired as an intermediate result. Con-
sider designing an algorithm that calculates the median of
a vector of numbers. A reasonable first stage of solving this
task is sorting the elements of the input vector. Therefore,

949

an intermediate memory state (pattern) containing sorted
elements of the input vector is desired for this task (and
anticipated by a human programmer).

Given that the distribution of problems considered in prac-
tice (including the problems approached with GP) is highly
nonuniform, one might anticipate that some such patterns
occur more frequently than others. In theory, it should be
then possible to build an algorithm (system) which mimics
the human programmer in that respect, i.e. in being capa-
ble of detecting the potentially useful patterns and reward-
ing the programs that produce them at intermediate execu-
tion stages. Hereafter, we use the term PANGEA (PAtterN
Guided Evolutionary Algorithms) to describe this concep-
tual framework (as will be seen, there are no specific re-
quirements that this approach be restricted to GP).

The specific approach proposed in this paper belongs to
this framework and is based on the observation that, as a
matter of fact, computational intelligence already provides
automated pattern discovery tools that can capture the reg-
ularities in data. What we mean by this are the various ma-
chine learning and knowledge discovery algorithms. Thus,
the key idea of the approach is to use a machine learning
algorithm to search for such patterns by training it on the
partial outcomes of program execution. Information on the
resulting trained classifier (in particular its complexity and
accuracy) is then used to augment the fitness function. If
this approach is able to reveal meaningful dependencies be-
tween partial outcomes and the desired output, we may hope
to thereby promote programs with the potential to produce
good results in future, even if at the moment of evaluation
the output they produce is incorrect.

2. THE BACKGROUND
We define a GP task as a set of n fitness cases (tests). A

test is a pair (xi, yi), i = 1, . . . , n, where xi is the input to be
fed into program, and yi is the desired output. In general,
xis and yis can be arbitrary objects.

Evaluation of an individual-program p assesses the quality
of its mapping from inputs to desired outputs by applying
it to all tests in turn. For each test, p is provided with
input xi and executed, returning output which we denote as
p(xi). We say that p solves test (xi, yi) if it terminates and
p(xi) = yi. The fitness of a program is simply the fraction
of tests it does not solve, i.e.:

f(p) =
1

n
[n− |{(xi, yi) : p(xi) = yi}|] . (1)

Note that for the sake of simplicity, in this study we as-
sume that only perfect matches between the desired output
and the actual output are of interest. Therefore, only the
equality relation in the space of program outputs needs to be
defined (rather than more sophisticated relations like sim-
ilarity). The fitness defined in this way is obviously mini-
mized fitness, and a program p solves a task if f(p) = 0.

3. THE METHOD
The method proposed in this paper differs from standard

GP only in the manner in which fitness is assigned to individ-
uals. Therefore, given the formalization of the conventional
fitness assessment in the previous section, we show here how
we diverge from it. This process, illustrated in Fig. 1, can
be split into four stages detailed in the following subsections.

Figure 1: The outline of the proposed method. The
top part illustrates the conventional GP evaluation
procedure that results with fitness f(p). The bottom
part shows the components added by PANGEA.

3.1 Program trace acquisition
Our method works by gathering and exploiting informa-

tion resulting from the intermediate stages of program exe-
cution. For this to be possible, we have to assume that (i)
program execution is a stepwise process that can be paused,
and that (ii) at such pauses, some information can be ob-
tained from the execution environment. In virtually all gen-
res of GP, these requirements are met by default. Concern-
ing for instance the former, program is a discrete structure
composed of symbols interpreted in certain order. These as-
sumptions allow us to formalize certain notions, which we
do below, abstracting from any specific form of GP.

Formally, let sj(p, xi) denote the state of the execution en-
vironment when applying program p to test xi after j steps
have been executed. In side-effect free programming, rela-
tively typical of tree-based GP, this would embrace a partial
program (a subtree) and its outcome (the value returned by
this subtree). For stateful execution environments, typical
of programming languages with side-effects, this would be
the state of the interpreter (its memory, instruction pointer,
etc.). In other words, state is a ‘snapshot’ of the concrete
process of program execution (i.e. pertaining to specific xi).
The sequence of states (sj(p, xi) : j = 1, . . . , l) resulting
from entire program run forms its trace, where l is the num-
ber of steps, e.g., the number of instructions executed by
a program, whether it terminated on its own or was forced
to do so. The last state in a trace is the state of execution
environment after program completion. We used a similar
definition in our previous work on semantic analysis of pro-
gram behavior [5].

In the proposed approach, the fitness assessment presented
in Section 2 is accompanied by trace registration. As a re-

950

sult, we obtain a list of traces (sj(p, xi) : j = 1, . . . , li) for
our n fitness cases (xi, yi). Let us note that, because in gen-
eral program termination depends on its input, traces can
vary in length, hence the index i in li.

3.2 Extracting trace features
The trace can be considered as a way of capturing program

behavior. The key idea of PANGEA consists in analyzing
the traces in search for patterns/regularities that reveal hid-
den qualities in the program and its partial outcomes. Vari-
ous tools can be potentially used for this purpose, which we
elaborate on in Section 7. In this paper, for the sake of sim-
plicity, we aim at employing conventional machine learning
algorithms that implement the paradigm of learning from
examples and attribute-value representation [8].

To match the requirements of conventional machine learn-
ing algorithms with respect to input data, we transform the
list of traces into a conventional machine learning dataset,
where each row (example) corresponds to GP test, and every
column is a feature derived in certain way from the traces.
Each feature reflects certain syntactic or semantic informa-
tion of all program traces at certain stage of program ex-
ecution. Because the way the features are calculated from
the states depends on state internals, this (and only this)
stage of our approach varies depending on GP genre. In the
subsequent section and experimental part, we detail it for
Push [12], but in our pursuit of generality, we abstract from
this technical detail in this section.

Crucially, we make this dataset define a supervised learn-
ing task. To this aim, we equip it with an extra column
that defines a decision attribute. The value of this attribute
is based on the desired output yi of the corresponding test
(xi, yi). In this paper we focus on GP tasks in which yi is
a single discrete value, in which case the decision attribute
simply is yi. This attribute will allow us to detect and cap-
ture patterns that are relevant for solving the task at hand.

3.3 Capturing patterns in features
The outcome of the above stage is a dataset of n exam-

ples, each described by the same number of features and
labeled with a decision attribute that identifies the desired
output. The purpose of the next step is to assess how use-
ful these features are in predicting the desired output of the
program. We achieve this by training a standard machine
learning classifier, using the entire dataset as the training
set. Specifically, we employ C4.5, a popular decision tree
induction algorithm [9]. We anticipate that this choice is
not critical; any inductive learning method could be applied
here, as long as its outcomes can be analyzed with respect
to the properties required in the next step.

We are interested in two characteristics of the induced
classifier. Firstly, it has certain inherent complexity, which
in the case of decision trees can be conveniently expressed
as the number of tree nodes. Secondly, it commits a certain
classification error on the training set, i.e. it erroneously
classifies some of the examples. According to the Minimum

Description Length principle (MDL [10]), the complexity of
the mapping from the space of features onto the decision
attribute may be expressed by summing the encoding length
of the classifier (the ‘rule’) and the number of erroneously
classified examples (the exceptions from the rule). In our
context, this quantity tells us how easy it is to come up
with the correct output of the program given the partial

results gathered from its traces. This is the core element of
the approach we propose here.

From another perspective, the role of the classifier is to
complement the program’s capability of solving the problem
(i.e. producing the desired output value). If the features col-
lected from the program trace form meaningful patterns, i.e.
capture regularities in input data that are relevant to pro-
gram output (decision class), then the induction algorithm
should be able to build a compact tree that commits few
classification errors (and thus has short description length).

To illustrate this, let us consider an extreme case of an
ideal program p that solves the task, i.e. produces the de-
sired output yi for all tests (yi ≡ p(xi)). Since the final
(post-execution) state is the last element of each trace, and
the features are collected from trace elements, then one or
more of the features in the training set will highly correlate
with it. Assume for simplicity that the feature is perfectly
correlated with yi. In such a case, the induction algorithm
will produce a decision tree composed of a single decision
node (using that particular feature), and d leaves that corre-
spond to the d decision classes. This is the smallest decision
tree that can be built for such problem. This tree commits
no classification errors, so the total length of the classifier
encoding and the ‘exceptions’ will be minimal. In this sce-
nario, the classifier does not augment the capabilities of the
program.

If the program does not produce the desired output, the
tree induction algorithm will be forced to make use of other
features collected from the traces. The resulting tree will
usually be larger than the minimal tree and/or commit some
classification errors. In general, the less useful the features
collected from the trace, the longer will be the total de-
scription length of the mapping. This shows that the total
length of encoding expresses the usefulness of the interme-
diate results produced by the program (not only explicit
results, reflecting, e.g. memory states, but also side-effects
such as total number of execution steps). Most importantly,
this length provides a meaningful way of assessing a pro-
gram’s ‘prospective’ capabilities, even if the actual output of

the program is completely useless from the point of view of

the task being solved (i.e. has nothing in common with the
desired output).

3.4 Fitness calculation
Based on the above rationale, we define program fitness as

follows. Let l(p) denote the total number of tree nodes, and
e(p) the number of examples that are erroneously classified
by the tree induced from the traces of individual-program
p, e(p) ∈ [0, n]. In PANGEA, the fitness of p is the product
of the standard fitness f(p) (0 ≤ f(p) ≤ 1, Formula 1) and
two terms that penalize the individual for, respectively, the
complexity of mapping implemented by the induced classi-
fier, and for the number of classification errors (exceptions
from that mapping):

fP (p) = f(p)× log
2
(l(p) + 1)×

e(p) + 1

n+ 1
. (2)

The particular form of this equation results from prelimi-
nary experiments. The logarithm of the tree size is used so
that model complexity is proportional to tree depth rather
than to tree size. The +1 term in the second component
(responsible for model complexity) prevents it from sinking
to zero (the tree always has at least one node). The +1

951

term in the nominator of the third component (encoding
length of exceptions) plays an analogous role. Therefore,
the MDL-related components of fitness have an impact on
program’s fitness, but will never render it perfect. This can
be achieved only by bringing the actual error committed by
p on the tests, i.e., f(p), to zero. Thus, a solution is optimal
in PANGEA if and only if it is optimal w.r.t. the standard
fitness definition (Formula 1).

4. RELATED WORK
There are numerous occasions in which the MDL principle

has been used in GP. In most such cases, it has played a
similar role to other machine learning techniques, i.e. as a
means of controlling the trade-off between model complexity
(sometimes referred to as parsimony in a ML context) and
accuracy. In this spirit, Iba et al. [3] used it to prevent bloat
in GP by designing an MDL-based fitness function that took
into account the error committed by an individual as well
as the size of the program. A few later studies followed this
research direction (see, e.g. [14]).

By focusing mostly on the effects of program execution
(the partial outcomes reflected in trace features) rather than
on syntax, PANGEA can be seen as following the recent
trend of semantic GP, initiated in [7]. Interestingly, it also
resembles evolutionary synthesis of features for machine learn-
ing and pattern/image analysis tasks [6]. However, here the
ML part serves only as a scaffolding for evolution; it is sup-
posed to provide ‘gradient’ for evolution when the sole pro-
gram output is not able to do so. The classifier is not the
part of a solution.

5. IMPLEMENTING PANGEA WITH PUSH
In this section we explain how the process of feature ex-

traction can be implemented for the programming language
Push [12], which is also used in the experimental part of
this paper. However, this choice is rather incidental, since
program traces and their features can be easily acquired for
other programming environments common in GP.

5.1 The fundamentals of Push
Push is a stack-based language, and its interpreter is equip-

ped with a stack that holds the program to be executed,
and a separate stack for each data type. For simplicity, we
assume here that computation takes place in the Boolean
and integer domains only, so only these three stacks (called
EXEC, BOOLEAN and INTEGER in the following) will be
of interest to us.

Push programs are lists of instructions that can be nested.
To run a program, it is pushed onto the EXEC stack. In-
structions are then popped from this stack and executed
in turn. Every Push instruction manipulates one or more
stacks. For instance, integer.= instruction pops two ele-
ments from the integer stack and pushes the result of their
comparison atop the boolean stack. An instruction has no
effect if the stack is too shallow. For details on this and
other features of this programming framework, see [12].

When matching the notation introduced in Section 2 against
Push, a task is a list of tests (xi, yi), where xi determines
the state of the execution environment (the stacks) before
program execution, and yi determines the analogous desired
state after program completion. For inputs, ‘determines’
means in practice placing the elements of xi onto the stacks

of appropriate types. For outputs, yi, usually a scalar value,
specifies the desired value on the top of the stack of appro-
priate type.

For simplicity, we consider here only tasks with desired
outputs yi specified as scalars (atoms) of either integer or
boolean type (depending on task type). We also assume
that xi is an arbitrary-length vector of integers that deter-
mines the initial state the INTEGER stack, and the output
is the contents it leaves on the top the stack (INTEGER or
BOOLEAN, depending on the type of desired output) after
completion. We assume that a test has not been solved if
the output stack is empty.

By way of example consider the task of verifying whether
the input is a list of integers sorted ascedingly. In such task,
each xi would be a list of integers that would be placed
on the INTEGER stack prior to program execution, while
each yi would be a Boolean value to be expected on the
BOOLEAN stack.

5.2 Trace acquisition and feature extraction
in Push

For Push, we implement the trace acquisition and fea-
ture extraction process introduced in general in Sections 3.2
and 3.1 as follows. We track program execution by pausing
it after each instruction and storing the state of the inter-
preter. We do so until the program terminates or reaches
a prescribed maximum number of steps. A state comprises
all stacks that are relevant for the tasks considered in this
paper, i.e., BOOLEAN, INTEGER, and EXEC. The list of
states collected in this way for a specific test (xi, yi) forms
the trace. Let us reiterate that, depending on input xi, the
number of executed instructions may vary, and hence the
length of the resulting trace (see Fig. 1).

After tracing execution of the program on all n tests, we
build a machine learning dataset by extracting features from
selected elements of the history of program execution gath-
ered in traces. Each trace gives rise to one example in the
set. Starting from the last state of the trace, we iterate
backwards over k last states, and from each of these states
sj we extract the following features:

• The sizes of all three stacks under consideration.

• The top elements of these stacks (if a stack is empty,
we assume default values: zero for INTEGER stack,
and a special value Null for the BOOLEAN and EXEC
stacks).

In this process, we maintain the types of data: the integer-
valued components of interpreter state (the sizes of all stacks
and the top element of the INTEGER stack) translate into
ordinal features, and the remaining components (the top ele-
ments of BOOLEAN and EXEC stacks) give rise to nominal
(categorical) features.

Let us illustrate this process with a simple example, in
which we focus exclusively on the INTEGER stack (feature
extraction for the other stacks proceeds analogously). As-
sume we have three fitness cases and k = 2. A program was
applied to these cases, and the top elements on the INTE-
GER in the corresponding traces were as follows:

• For test #1: 1 2 3 4

• For test #2: 5 6 7

• For test #3: 8 9

952

The lengths of traces range from four to two, which tells us
that the program terminated after executing different num-
ber of instructions for each fitness case. This is quite com-
mon for Push programs and may result from, e.g., the pres-
ence of loops. Because k = 2, two features (apart from the
features reflecting the sizes of stacks) will be extracted from
these traces: a1 = [3, 6, 8] and a2 = [4, 7, 9]. As shown, they
are ‘aligned’ with the ends of traces, because, in the end, a
program may be expected to produce meaningful output in
the final steps of its execution.

Nevertheless, it may be the case that meaningful patterns
emerge also when stack contents are traced and converted
into features by aligning them with respect to beginning of
traces. This leads us to introduce also other features, which
we build by merging into the feature vectors the top stack
elements from the states that have the same index when
counted from the beginning of programs. In our example,
where k = 2, such forward-aligned features are: a3 = [3, 7, 0]
and a4 = [4, 0, 0], where the zeroes are the default values.

In general, three stacks (each giving rise to two features,
the top element and the size), and two methods of feature
building total to 12 × k features for horizon of length k.
This set is supplemented with another feature: the number
of execution steps ti carried out by the interpreter for the
ith test. Thus, the complete dataset forms a table of n rows
(examples) and 12k + 1 columns (features), 8k of which are
ordinal and 4k+1 nominal. Finally, we provide each example
with a class label, which is simply the actual output of the
program, i.e., zi. Therefore, the number of distinct output
values in the set of fitness cases is also the number of decision
classes in the extracted dataset.

The dataset constructed in this way forms the result of
feature extraction process, and is subject to further process-
ing presented in Sections 3.3 and 3.4.

6. EXPERIMENT
The main objective of the experiment is to determine if

pattern-based evaluation of individuals can be beneficial for
evolutionary search. To this end, we compare the PANGEA
approach to the control method of standard PushGP. More
specifically, we compare GP running two fitness definitions,
given by Formula (1) and Formula (2).

In all the test problems we consider, listed in Table 1, the
input data is a table (one or more elements placed on the
integer stack prior to program execution), and the desired
output is a scalar value. In most problems (AEQ, CNF, ISO,
MAJ), the task is to verify certain properties of the input
(the output type is boolean). Two problems (COZ, MAX)
are of a more arithmetic nature (the output type is integer).

The choice of this particular suite of tasks deserves justifi-
cation. The tool we use for capturing patterns in traces and
assessing their relevance is a decision tree inducer. As any
machine learning algorithm, it brings with it certain biases,
which in practice means that it prefers discovering certain
types of patterns to others. Decision tree inducers like C4.5
are particularly good at discovering nontrivial patterns that
engage multiple features. Therefore, it is suitable mostly
for problems for which the traces are likely to give rise to
multiple noncorrelated features, which, when used in com-
bination, allow the tree to capture valuable input-output
dependencies (patterns).

To illustrate this characteristic, let us shortly mention that
in a preliminary experiment, we tested this approach on the

problem of evolving a factorial function. In this problem,
the tests (xi, yi) take the form (m,m!), m = 1, . . . , n. Be-
cause the input includes only one scalar datum m, many
features collected from traces will be highly correlated with
it (not mentioning the fact that most likely m itself will
become one of the features). Secondly, because factorial is
an injective function, there is one-to-one correspondence be-
tween the inputs xi and the desired outputs yi. As a result,
each input (m) corresponds to a unique output (m!), and
in such a case building a tree that perfectly maps inputs to
outputs becomes trivial. The classification error e(p) is zero
for most individuals in the run, and the MDL-related com-
ponents of the fitness function cease to drive evolution in a
useful direction.

For all tasks, the training set of cases contains all possible
tables of lengths 2 . . .m, filled with all possible combinations
of integers from the interval [0, m − 1]. Thus, for the two
values of n considered in this experiment, i.e., m = 3 and
m = 4, the numbers of tests are 22 + 33 = 31 and 22 + 33 +
44 = 286, respectively. The only exception is the MAJ task,
in which the input tables can contain only zeroes and ones;
for this problem, there are 22+23 = 12 and 22+23+24 = 28
tests, respectively. We denote problem size by suffixing its
name, e.g., MAX3.

Let us note two facts for which these tasks should be con-
sidered nontrivial. Firstly, the input tables are of variable
size, so the evolved programs have to be general in this re-
spect. In other words, evolving a simple sequence of in-
structions that individually and in turn pop the elements
from the stack may be insufficient to solve a task, as such
a program may reach the bottom of the stack too early for
short tables, or ignore some elements on the stack for long
tables. Secondly, because of that varying input size, we are
not using the type.input.k instruction, which fetches the kth
element from the input vector of the corresponding type
(e.g., integer.input.2 fetches the third element of the input
data). This instruction is present in the original Push to
provide permanent access to particular input data for the
entire program runtime; without it, the initial instructions
of a program can quickly empty the stacks. In absence of
the input instruction, programs cannot access input data
directly, and must therefore solve the tasks only by stack
manipulation.

We evolve a population of 1000 individuals for 100 gener-
ations, using evolutionary parameters typical for Push: viz.
mutation probability 0.2, crossover probability 0.7, probabil-
ity of reproduction 0.1, and a tournament size of 7. The In-
struction set, presented in Table 2, consists of control struc-
tures, integer arithmetic, and boolean operations. The set
of constants is limited to true, false, 0, 1, 2. To avoid
interference of other factors, we do not use any additional
mechanisms (input instruction, code stack), nor do we sim-
plify programs (in contrast to many other studies on Push).
Our implementation is based on a Push interpreter PshGP

written by Jon Klein [4].
The maximal number of instructions in a newly-generated

program is 20. However, the programs can grow much larger
as a result of mutation and recombination.

The only difference between the standard Push (STD)
and the proposed approach (PANGEA) is the manner in
which individuals are evaluated. Fitness is minimized in
both cases. In STD, it is Formula 1, and in PANGEA it is
calculated according to Formula 2. PANGEA gathers fea-

953

Table 1: The definitions of tasks.
Symbol Short explanation Output type Desired output
AEQ All Equal Boolean true iff all elements on INTEGER stack are equal
CNF Contains First Boolean true iff the element on top of INTEGER stack occurs also
COZ Count Zeroes Integer The number of zeroes on the INTEGER stack
ISO Is Ordered Boolean true iff the elements on the INTEGER stack are ordered non-descendingly
MAJ Majority Boolean true iff more than half of the elements on the INTEGER stack are ones
MAX Maximum Integer The maximum element on the INTEGER stack

Table 3: Success rate of compared methods (100 runs of each method and task).
Method AEQ3 CNF3 COZ3 ISO3 MAJ3 MAX3 AEQ4 CNF4 COZ4 ISO4 MAJ4 MAX4 Rank

STD 0.93 0.17 0.47 0.20 0.46 0.07 0.32 0.00 0.02 0.00 0.20 0.00 3.67

PANGEA 1.00 0.61 0.76 0.76 0.97 0.22 1.00 0.00 0.04 0.00 0.70 0.00 1.92

PANGEA-E 1.00 0.18 0.42 0.46 1.00 0.00 1.00 0.00 0.02 0.00 0.67 0.00 2.50

PANGEA-M 1.00 0.32 0.40 0.67 1.00 0.22 0.99 0.00 0.07 0.00 0.50 0.00 4.04

PANGEA-X 0.97 0.12 0.46 0.03 0.46 0.01 0.42 0.00 0.00 0.00 0.09 0.00 2.88

Table 2: The instruction set.
boolean.and boolean.or boolean.xor boolean.= boolean.not
boolean.dup boolean.flush boolean.pop boolean.rot
boolean.stackdepth boolean.swap
integer.+ integer.- integer.* integer./ integer.% integer.< integer.=
integer.> integer.dup integer.flush integer.pop integer.rot
integer.stackdepth integer.swap
exec.= exec.dup exec.flush exec.pop exec.rot exec.stackdepth
exec.swap exec.if exec.do*count exec.do*range exec.do*times
boolean.frominteger integer.fromboolean integer.erc true false

tures from the last three states of the interpreter (k = 3)
before program termination (the upper limit on executed
instructions is 150 instructions per test). This particular
value of k was determined by preliminary experiments. The
number of features then totals to 12k + 1 = 37 (see Sec-
tion 5). However, the tree does not have to use all of them
(as a matter of fact, it is often the case that many of those
features are constant). The decision tree is induced using
an improved implementation of the C4.5 algorithm, known
as J48 in WEKA package [2]. The algorithm builds an un-
prunned tree, i.e. no postpruning is employed.

We remind the reader that the decision trees are induced
as part of an individual’s evaluation process and do not be-
come part of the resulting solutions. A tree is built to assess
the quality of an individual, and is destroyed as soon as that
assessment is completed.

6.1 The performance of methods
Given the nature of the benchmarks considered, we are

interested only in perfect solutions, i.e. programs that solve
all training tests. For this reason, success rate (i.e. the
fraction of runs that yield perfect solutions), is our primary
performance indicator.

The upper part of Table 3 reports the success rate of the
two compared algorithms on all problems, based on 100 runs
per each setup and benchmark. Overall, the proposed ap-
proach has a much higher success ratio, often several times
greater than standard Push. The AEQ3 problem turns out
to be very easy for pure Push, so it is unsurprising that
PANGEA cannot do much better. As expected, the ‘big’
problems with four-element tables are substantially harder,
and three of them (CNF4, ISO4, MAX4) have not been
solved even once by either of the compared methods. Nev-
ertheless, PANGEA outperforms STD on the remaining big
problems.

One of the factors that can affect these results is the num-
ber of distinct desired outputs. For the AEQ, CNF, ISO,
and MAJ, there are two desired values only: true and false.
However, for the COZ and MAX tasks, there are, respec-
tively, m + 1 and m distinct output values, where m is the
size of the input table. This property of the problem deter-
mines the number of decision classes in the dataset used for
tree induction.

6.2 The role of fitness components
The interplay of the components of the fitness function

defined by Formula (2) can be expected to be very complex,
so it is worth investigating the extent to which they all con-
tribute to the performance of PANGEA. In other words:
could it be that PANGEA fares better only because the
MDL-related components introduce pseudo-random noise into
the evaluation criterion and so help the evolution to escape
stagnation?

To verify this, we ran a series of experiments with fitness
based on Formula (2), but devoid of single components:

– PANGEA-E: formula (2) devoid of the program error
(first) component,

– PANGEA-M: formula (2) devoid of the model length
(second) component,

– PANGEA-X: formula (2) devoid of the classification er-
ror (third) component.

The performance of these methods is shown in the lower
part of Table 3. As it turns out, all three components of
Formula (2) are vital. Removal of any of them typically
results in a lower success ratio than PANGEA. The only
exceptions are AEQ3 and AEQ4, which apparently can be
solved with near certainty even with such ‘crippled’ fitness
functions. This result shows that for the fitness assessment
scheme followed by PANGEA, it is important to take into
account not only the complexity of the model (tree), but
also the classification errors it commits.

To provide an overall perspective on these results, in the
last column of Table 3 we report the average rank for each of
the five setups. PANGEA clearly ranks as best. We validate
the statistical significance of ranks using the Friedman test,
the outcome of which is positive (p ≈ 0.0005), i.e. at least
one of the has success ratio significantly different from the
others. Shaffer’s post-hoc analysis procedure allows us to
determine that PANGEA is significantly better (p < 0.05)
than STD and PANGEA-M.

954

6.3 Dynamics of the search process
To illustrate the working principle of PANGEA, in this

section we shortly analyze an exemplary evolutionary run
for MAJ3 problem. That particular run lasted for 20 gener-
ations, in which an ideal solution has been found.

The chart in Fig. 2 summarizes the dynamics of that search
process by plotting the important parameters of the best-
of-generation individuals. For each such individual p, we
show in parallel the essential components of PANGEA fit-
ness (Formula 2): program fitness fP (p), the actual error
f(p) committed by the program on the fitness cases, the size
l(p) (the number of nodes) of the associated decision tree in-
duced from trace features, and the classification error e(p)
committed by the tree. Because of different magnitudes, the
former two are plotted against the left-hand ordinate axis,
and the latter against the right-hand ordinate axis.

In the first five generations of the run evolution does not
seem to make progress and all the parameters of the best-
of-generation solutions remain unchanged. In this period,
the decision trees comprise only three nodes and commit
8.4 classification errors (in general, the classification error of
C4.5 is defined on a continuous scale), i.e. roughly eight of 12
fitness cases that constitute the MAJ3 task get misclassified.
Let us emphasize that the fixing of this parameters may be
purely incidental, i.e. it does not imply that the trees cor-
responding to these five best-of-generation individuals use
the same features. The very small tree size in connection
with relatively large number of classification errors suggests
that the traces are scant in useful features, and that deci-
sion trees that accurately and succinctly map them onto the
desired output cannot be built.

In generation 6 evolution manages to make progress and
the best-of-generation fitness fP (p) substantially improves.
The reason for this is however not a better match of program
output with the desired output; just the opposite, f(p) ac-
tually deteriorates. The cause for fitness improvement lies
elsewhere: what actually happened is that the classification
error committed by the tree e(p) dropped from 8.4 to 3.5,
while the size of the tree l(p) increased from 3 to 5. Appar-
ently, at some stage of execution of the best-of-generation
program, a new pattern emerged in its traces (new w.r.t.
to the best programs from previous generations). That fea-
ture (one or more) allowed building a more accurate decision
tree that has only two more nodes. As a result, the prod-
uct of the two MDL-related terms in Formula 2 decreased,
and brought down the overall fitness fP (p) despite actual
deterioration of the final output produced by the program
as measured by the standard fitness f(p) (Formula 1).

In the subsequent 7th generation the induction algorithm
manages to build an even smaller tree, bringing its size back
to three nodes, while maintaining the same classification er-
ror e(p) = 3.5. This results in further improvement of overall
fitness, even given that f(p) remains unchanged.

Generation 8 is the first time when program trace allows
building a perfect decision tree (e(p) = 0). This is also the
generation in which the mismatch between the program’s
output and the desired output (e(p)) is maximal in this run.
This however does not prevent this program to outperform
the best-of-run of the previous generation in terms of fitness
f(p).

The tree found in generation 8 is large: it comprises 21
nodes. Nevertheless, the very next generation sees a large
decrease of this value: the tree has five nodes again, and clas-

Figure 2: The changes of parameters of best-of-
genration programs for an exemplary evolutionary
run solving MAJ3 task.

sifies all examples perfectly. With minor fluctuations, this
state is maintained in the remaining part of the run, while
the evolution clearly works on the output of the program,
gradually bringing f(p) to zero.

This illustration confirms our rationale behind PANGEA’s
design, which we expressed in Section 3.3: the MDL-related
components in fitness definition protect the individuals that
discover meaningful patterns in the task and display those
patterns in their behavior (written down in program traces).
Without this mechanism, the individual like the that became
best-of-generation 6 would most probably get lost in the
selection process, as its error f(p) is noticeably worse than
the error of the best individual from the previous generation.

PANGEA enables even more insightful analysis, which we
are forced to omit in this short contribution. For instance,
it would be fascinating to see what are the features that
led to the major transitions observable in runs like the one
here, and also the code that generated it. Such investiga-
tions could help us for instance to determine whether, in the
example above, evolution, after discovering the meaningful
patterns around generations 5 to 8, kept the initial parts
of programs roughly unchanged (to preserve the patterns),
while working mostly on the final instructions (responsible
for producing the final program output).

7. DISCUSSION
Our approach relies on a three-stage process: the recog-

nition of patterns, the explicit description of such patterns
in ‘working memory’, and the exploitation of these patterns
to guide the search process. In the approach described here,
the patterns are written down as decision trees, which in
turn augment the fitness function. Of course, such classi-
fiers might be incapable of capturing the specific form of
patterns that are relevant for solving a particular task.

We have adopted the intentionally evocative term ‘pat-
tern’ rather than feature in order to emphasize the potential
for algorithmic sophistication and nontrivial computational
effort in detecting and exploiting any aspects of the search
process. We might therefore hope to mine for such pat-
terns in problem description, genotype-to-phenotype map-
ping, solution-state trajectory, algorithm-state trajectory, or
operator-sequence trajectory. It is clearly possible to com-
bine these modalities, e.g. as in the current article which
works with the combined trajectories of algorithm state, so-
lution state and operator sequence.

955

We give here some possible ‘use cases’ for pattern detec-
tion that illustrate the potential for future work within this
abstract framework:

1. One of the well-known properties of GP is that it is
a ‘model-agnostic’ approach - assuming that we apply the
function set {+,-,*,/,exp, log, sin, cos, tan} to a function
that is actually linear, then we expect the transcendental
non-terminals to be dropped and the resulting best program
to be a linear expression.

However, the detection of linearity is merely implicit in
GP - this activity is not explicitly directed by any features
of the problem. GP may find out at some point of evo-
lution that using a linear model is profitable, but does not
‘sanction, mandate or suggest’ it. The detection of linear re-
lationships between features is of course a relatively trivial
computational task, but the ability to explicitly recognize
such patterns and inject the corresponding (sub)programs
into the population can be viewed as a special case of a
more general recognition-exploitation strategy [13].

2. Consider a training set T over a function f(x, y), in
which f(x, y) = f(y, x)∀f ∈ T . Even in the absence of
prior domain knowledge, a human presented with sufficient
samples from the raw training data for this task would in
all probability notice that the function is symmetric. Algo-
rithms for online induction of symmetries in the context of
search and optimization is given in [1, 11]. Such symmetry
is of course a very specific case of (what is provisionally con-
jectured to be) an invariant of the function. Presented with
such a regression task, a ‘pattern-sensitive’ human being
would likely proceed to synthesize a function that respects
this invariant. A partial synthesis might of course break the
invariant, but activity is subject to the implicit understand-
ing that ultimately restoring it is imperative. There are a
number of ways in which one might attempt to incorporate
the invariant into the subsequent search process, perhaps
the most obvious of which is to add it as a soft constraint of
the heuristic function.

8. CONCLUSIONS
PANGEA imposes a gradient on the fitness function of

a metaheuristic (in this case, Genetic Programming) via a
metric (Minimum Description Length) obtained from pat-
terns detected in the trajectory of program execution (trace).
The success of this method was demonstrated on a range
of integer and Boolean-valued problems. The method is
conceptually straightforward and applicable to virtually any
genre of GP. The computational overhead it imposes in com-
parison to conventional fitness assessment is reasonable, be-
cause trace acquisition is done on the fly during program ex-
ecution (which has to be carried out in regular GP as well).
The only substantial additional cost results from training
the classifier, however simple symbolic classifiers like C4.5
learn quickly.

It is increasingly being acknowledged that EC approaches
are not a “one size fits all” approach. In particular, it is
now understood that the initially popularized crossover and
mutation operators do not enjoy the universality that were
once ascribed to them. There is therefore in general a re-
quirement in current EC practice for human ingenuity in the
design and application of domain-specific operators, penalty
functions etc. This work is an initial attempt to circum-
vent this requirement via the exploitation of regularity. In
this case, regularity was determined by a statistical machine

learning approach, i.e. the induction of a decision tree. In
future work, we seek to extend the both the pattern detec-
tion methodology and the means by which it influences the
subsequent search process.

Acknowledgments

K. Krawiec acknowledges financial support from grant no.
91507. J. Swan acknowledges support from grant EP/J017515/1.

9. REFERENCES
[1] J. Crawford, M. Ginsberg, E. Luks, and A. Roy.

Symmetry-breaking predicates for search problems. In
5th International Conference on Principles of

Knowledge Representation and Reasoning, pages
148–159. Morgan Kaufmann, 1996.

[2] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: an update. SIGKDD Explor. Newsl.,
11(1):10–18, Nov. 2009.

[3] H. Iba, T. Sato, and H. de Garis. System identification
approach to genetic programming. In Proceedings of

the 1994 IEEE World Congress on Computational

Intelligence, volume 1, pages 401–406, Orlando,
Florida, USA, 27-29 June 1994. IEEE Press.

[4] J. Klein. Psh - java implementation of the push
programming language. Avalable from
https://github.com/jonklein/Psh, 2010.

[5] K. Krawiec. On relationships between semantic
diversity, complexity and modularity of programming
tasks. In T. Soule et al., editors, GECCO ’12:

Proceedings of the fourteenth international conference

on Genetic and evolutionary computation conference,
pages 783–790, Philadelphia, Pennsylvania, USA, 7-11
July 2012. ACM.

[6] K. Krawiec and B. Bhanu. Visual learning by
evolutionary and coevolutionary feature synthesis.
IEEE Transactions on Evolutionary Computation,
11(5):635–650, Oct. 2007.

[7] N. F. McPhee, B. Ohs, and T. Hutchison. Semantic
building blocks in genetic programming. In M. O’Neill
et al., editors, Genetic Programming, volume 4971 of
LNCS, pages 134–145. Springer, 2008.

[8] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc.,
New York, NY, USA, 1 edition, 1997.

[9] J. Quinlan. C4.5: Programs for machine learning.
Morgan Kaufmann, San Mateo, 1992.

[10] J. Rissanen. Modeling By Shortest Data Description.
Automatica, 14:465–471, 1978.

[11] I. Shlyakhter. Generating effective symmetry-breaking
predicates for search problems. Discrete Appl. Math.,
155(12):1539–1548, June 2007.

[12] L. Spector and A. Robinson. Genetic programming
and autoconstructive evolution with the push
programming language. Genetic Programming and

Evolvable Machines, 3(1):7–40, Mar. 2002.

[13] J. Swan, J. Woodward, E. Özcan, G. Kendall, and
E. Burke. Searching the hyper-heuristic design space.
Cognitive Computation, February 2013.

[14] B.-T. Zhang and H. Mühlenbein. Balancing accuracy
and parsimony in genetic programming. Evolutionary
Computation, 3(1):17–38, 1995.

956

	Introduction and motivations
	The Background
	The method
	Program trace acquisition
	Extracting trace features
	Capturing patterns in features
	Fitness calculation

	Related work
	Implementing PANGEA with Push
	The fundamentals of Push
	Trace acquisition and feature extraction in Push

	Experiment
	The performance of methods
	The role of fitness components
	Dynamics of the search process

	Discussion
	Conclusions
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20130430085333
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20130430085333
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryList_V1
 qi2base

