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Abstract—In this paper we apply Coevolutionary Temporal
Difference Learning (CTDL), a hybrid of coevolutionary search
and reinforcement learning proposed in our former study, to
evolve strategies for playing the game of Go on small boards
(5× 5). CTDL works by interlacing exploration of the search
space provided by one-population competitive coevolution and
exploitation by means of temporal difference learning. De-
spite using simple representation of strategies (weighted piece
counter), CTDL proves able to evolve players that defeat
solutions found by its constituent methods. The results of the
conducted experiments indicate that our algorithm turns out to
be superior to pure coevolution and pure temporal difference
learning, both in terms of performance of the elaborated
strategies and the computational cost. This demonstrates the
existence of synergistic interplay between components of CTDL,
which we also briefly discuss in this study.

I. INTRODUCTION

Local and global search techniques feature complementarily
appealing characteristics. The former ones investigate the
search space in immediate proximity of the current solution
and use the gathered information to determine the search
direction that seems to be most promising for the nearest
feature. The latter ones, particularly evolutionary algorithms
that are of interest here, explore in parallel distant areas of the
search space and typically do not care much about the local
structure of the fitness landscape. Thus, these approaches
assume radically different perspectives on exploration and
exploitation of the search space, and both can turn out useful
depending on the characteristic of the problem and the stage
of the search process.

It is not surprising then, that hybridization of different
varieties of evolutionary algorithms with local search has
been subject to intense research in past, resulting in such
approaches like memetic algorithms or genetic local search
[1]. However, there are only a few results on hybridizing
local search with coevolution [2], [3]. Because there are no
obvious reasons for which coevolution could not benefit from
local search too, in our research we intend to fill that gap.
In [4] we investigated the interplay between temporal dif-
ference learning (TDL), a canonical reinforcement learning
method typically trained by some form of gradient descent,
and simple competitive coevolution, in which individuals
compete with each other and propagate their features using
the principles of simulated evolution. This fusion, termed Co-
evolutionary Temporal Difference Learning (CTDL), proved
beneficial for learning to play Othello. Here, we conduct an
analogous investigation for the game of small-board Go.
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Fig 1. The game of small-board Go

This paper is organized as follows. In Section II we
describe the rules of the game, the way in which they
are simplified to study algorithms that autonomously learn
to play Go, and a brief history of research in this area.
Section III introduces the representation of strategy adopted
in this study, reviews key concepts of temporal difference
learning and coevolutionary learning, and introduces CTDL.
In Section IV we describe the experiment and discuss its
results, finally concluding in Section V.

II. THE GAME OF GO

The game of Go is believed to have originated about 4000
years ago in Central Asia, which makes it one of the oldest
known board games. Although the game itself is very difficult
to master, its rules are relatively simple and comprehensible.
For this reason the famous chess player, Edward Lasker,
summarized Go in the following way: The rules of Go are so
elegant, organic and rigorously logical that if intelligent life
forms exist elsewhere in the universe they almost certainly
play Go [5].

A. Original Game Rules

Go is played by two players, black and white, typically on an
19× 19 board, though the rules can be easily applied to any
board size. Figure 1 shows the board state of an examplary
5×5 Go game. Players make moves alternately, blacks first,
by placing their stones on unoccupied intersections of the
grid formed by the board. At any time the player who is
about to move may pass his turn. The game ends if both
players pass consecutively.

The objective of the game is, roughly speaking, to control
more territory than the opponent at the end of the game. This
can be achieved by positioning stones to form connected
groups enclosing as many vacant points and opponent’s
stones as possible. A stone group is a set of same-colour
stones adjacent to each other; empty intersections adjacent to



a group are called its liberties. If a group has no liberties, i.e.,
it is completely surrounded by opponent’s stones or edges of
the board, then it is captured and removed.

A legal move consists of placing a piece on an empty
intersection and capturing enemy groups which are left
without liberties. Additional restrictions on making moves
concern suicides and the so-called ko rule. A suicide is a
potential move that would deprive player’s own group of
liberties. Moves leading to suicides are illegal. Ko rule, in
turn, forbids moves that recreate a previous board state (i.e.,
arrangement of stones on the board).

The winner is the player who at the end scores more points
calculated according to agreed scoring system. There are two
most popular systems known as area counting (Chinese)
and territory counting (Japanese). Both systems take into
consideration the number of empty intersections surrounded
by a player (player’s territory). In area counting, the number
of stones a player has on the board is added to this value,
whereas in territory counting the number of captured stones
(prisoners) is added instead. The reader interested in more
detailed description of Go rules is referred to [6].

B. Simplified Game Rules

There are a few noteworthy issues about the original
rules of Go that make developing computer players difficult.
First of all, human players stop a game after they agree
that they can gain no further advantages. In such situations
they use a substantial amount of knowledge to recognize
particular intersections as implicitly controlled. Computer
Go players based on concrete evaluation functions usually
continue playing the game until all intersections are explicitly
controlled. As a result, games played by computers can be
much longer than those played by humans.

In some rule sets (including Chinese rules), ko rule appears
in form of super-ko, which prohibits repetition of a board
state during a single game. Recurrently appearing states may
lead to cycles and, theoretically, an infinite game. However,
a literal implementation of this rule would require storing all
previous board configurations and comparing them to the
current state. Since most of possible state cycles are not
longer than 3, a reasonable approach is to remember just two
previous board configurations. To ensure that the game ends,
an additional upper limit on the total number of moves can
be placed. Exceeding this limit results in declaring game’s
result as a draw [7].

Finally, according to the original rules, if it is impossible
to prevent a group from being captured, it is not necessary to
capture it explicitly in order to gain its territory. Such a group
is considered as dead and is removed at the end of the game,
when both players agree which groups would inevitably be
captured. Because determining which stones are dead is not a
trivial problem, it is much easier to assume that all groups on
the board are alive. Thus, explicit capture is always required
to remove opponent’s group.

In this study we decided to use the above simplifications
and the Japanese scoring system.

C. Previous Research on Computer Go

The game of Go has been a subject of computational intelli-
gence research for more than 40 years and it is increasingly
recognized as a great challenge because best computer play-
ers can still be beaten by professional human players in full-
board games [8], [9]. This is a result of a huge combinatorial
complexity of this game which is much higher than for
other popular two-player deterministic board games – its state
space cardinality is around 10170 and the game tree has an
average branching factor of around 200. For this reason a lot
of research on computer Go focuses on versions with smaller
boards, like 9× 9 or even 5× 5. The rules of the game are
flexible enough to be easily adapted to such boards.

Conventional Go-playing programs are precisely tuned
expert systems based on a thorough human analysis of the
game. In such programs, knowledge of professional Go
players formulated as a multitude of rules and guidelines
is applied to game-playing algorithm in order to recognize
particular board patterns and react to them. However, this
knowledge-based approach is constrained by the extent and
quality of the available knowledge and possibility of its
articulation in the source code of the playing program.

An appealing alternative to using hand-coded expert rules
is an approach based on Monte Carlo techniques [10], which
by contrast, requires very little domain knowledge. This
method chooses a move on the basis of statistics collected
during thousands of pseudorandom playouts starting from
the current board state. One of the strongest Go programs
using this approach is Fuego [11], 2009 Computer Olympiad
champion in 9×9 Go [12], which has recently defeated 9-dan
professional player on the same board size. Another major
program, Many Faces of Go [13], champion from 2008, uses
an interesting combination of Monte Carlo Tree Search with
an older knowledge-based approach.

Nevertheless, the most challenging scenario of elaborating
game strategy is learning without any reference to human
knowledge or game strategy given a priori. This task formu-
lation is addressed by, among others, Temporal Difference
Learning (TDL) and Coevolutionary Learning (CEL), which
were investigated and compared in the context of small-board
Go by Runarsson and Lucas [14]. There are more examples
of using self-learning approaches for Go including [7] and
[15]. A comprehensive review of all AI methods applied to
computer Go can be found in [16].

III. METHODS

A. Strategy Representation

Representation of strategy is the primary determinant of
behavior and quality of playing of a computer-based player.
However, in this study we are mainly interested in analyzing
the relative improvements that the hybridized CTDL method
can bring when compared to its constituents, so the absolute
player’s performance is of secondary importance. Therefore,
we employ here probably the least sophisticated strategy
representation for board games — weighted piece counter
(WPC). WPC assesses the utility of a particular board state



TABLE I
A STRATEGY REPRESENTED BY WPC

-0.10 0.20 0.15 0.20 -0.10
0.20 0.25 0.25 0.25 0.20
0.10 0.30 0.25 0.30 0.10
0.20 0.25 0.25 0.25 0.20

-0.10 0.20 0.15 0.20 -0.10

by independently considering the occupancy of all board
intersections. Technically, WPC is a matrix that assigns a
weight wi to each board intersection i and uses scalar product
to calculate the utility f of a board state b:

f(b) =

s×s∑
i=1

wibi, (1)

where s is board’s size and bi is +1, -1, or 0 if, respectively,
intersection i belongs to the black player, the white player,
or is empty. In the course of the game, player’s WPC is used
as a board evaluation function within 1-ply minimax search.
The players interpret the values of f in a complementary
manner: the black player prefers moves leading to states with
larger values, while smaller values are favored by the white
player. Alternatively, WPC may be viewed as an artificial
neural network comprising a single linear neuron with inputs
connected to board intersections.

The main advantage of WPC is its simplicity resulting in
a very fast board evaluation. Moreover, WPC strategies can
be often easily interpreted and compared just by inspecting
the weight values. Table I presents the weight matrix of an
exemplary player for 5× 5 Go that clearly focuses at taking
possession of the middle of the board while avoiding corners.

B. Coevolutionary Learning

Coevolutionary algorithms are variants of evolutionary com-
putation where individual’s fitness depends on other individ-
uals. Evaluation of an individual takes place in the context
of at least one other individual, and may be of cooperative
or competitive nature. In the former case, individuals share
the fitness they have jointly elaborated, whereas in the latter
one, a gain for one individual means a loss for the other.
Past research has shown that this scheme may be beneficial
for some types of tasks, allowing task decomposition (in the
cooperative variant) or solving tasks for which the objective
fitness function is not known a priori or is hard to compute,
with games being the most representatives examples of such
problems [17], [18].

Coevolutionary Learning (CEL) follows the competitive
evaluation scheme and typically starts with generating a ran-
dom initial population of player individuals. Individuals play
games with each other, and the outcomes of these confronta-
tions determine their fitness values. The best performing
strategies are selected, undergo genetic modifications such
as mutation or crossover, and their offspring replace some
of (or all) former individuals. Though this general scheme
seems straightforward, it lacks many details that need to be
filled in, some of which relate to evolutionary computation
(population size, variation operators, selection scheme, etc.),

while some pertain specifically to coevolution (the way the
players are confronted, the method of fitness estimation, etc.).
No wonder CEL embraces a broad class of algorithms, some
of which we shortly review in the following.

In their influential study, Pollack and Blair [19] used one
of the simplest evolutionary algorithm, a random hill-climber
to successfully address the problem of learning backgammon
strategy. Runarsson and Lucas [14] used (1 + λ) and (1, λ)
Evolution Strategies to learn a strategy for the game of small-
board Go. An important design choice was the geometrical
parent-child recombination: instead of replacing the parent by
the best of the new offspring, the parent strategy was fused
with the child strategy using linear combination. Moreover,
self-adapting mutation strength was also employed, but for
larger populations its effects were unnoticeable.

Various forms of CEL have been successfully applied to
many two-person games, including Backgammon [20], Chess
[21], Checkers [22], Othello [23], NERO [24], Blackjack
[25], Pong [26], and AntWars [27], [28].

C. Coevolutionary Archives

The central characteristic of CEL is that it refrains from
using the objective fitness of individuals. This feature makes
it appealing for applications where objective fitness cannot
be unarguably defined or is costly to compute. Games, often
involving huge numbers of possible strategies, are canonical
representatives of such problems. However, inaccessibility of
the objective fitness implies a serious impairment: there is
no guarantee that an algorithm will progress at all. Lack of
progress can occur when, for instance, player’s opponents are
not challenging enough or much too difficult to beat. This and
other undesirable phenomena, jointly termed coevolutionary
pathologies, have been identified and studied in past [29].

In order to deal with coevolutionary pathologies, co-
evolutionary archives were introduced that try to sustain
progress. A typical archive is a (usually limited in size, yet
diversified) sample of well-performing strategies found so
far. Individuals in a population are forced to play against the
archive members, who are replaced occasionally, typically
when they prove inferior to some population members. Of
course, an archive still does not guarantee that the strategies
found by evolution will be the best in the global, objective
sense, but this form of long-term search memory enables at
least some form of historical progress [30].

In this study we use Hall of Fame (HoF, [31]), one of
the simplest archives. HoF stores all the best-of-generation
individuals encountered so far. The population members,
apart from playing against their peers, are also forced to
play against randomly selected players from the archive.
In this way, individual’s fitness is partially determined by
confrontation with past ‘champions’.

Most of the studies quoted above involve a single popu-
lation of players, a setup called one-population coevolution
[32] or competitive fitness environment [17], [33]. Although
such design seems most natural for games, recent work on
coevolution indicates that, even if the game is symmetric,
it is worth to maintain in parallel two types of strategies:



solutions, which are expected to improve as evolution pro-
ceeds, and tests, whose main purpose is to differentiate
solutions by defeating some of them and yielding to others.
It has been demonstrated [34], [35] that such design can
improve search convergence, give better insight into the
structure of the search space, and in some settings even
guarantee monotonic progress towards the selected solution
concept. Here, however, we remain within the one-population
framework to keep our setup as simple as possible and limit
the number of factors that could interfere with hybridization
of CEL and TDL.

D. Temporal Difference Learning

Temporal Difference (TD), a method proposed by Sutton
in 1988 [36], has become a popular approach for solving
reinforcement learning tasks. Some suggest [37] that the
famous chess playing program by Samuel [38] in 1959 was
in fact taught by a simple version of temporal difference
learning (however others [39] treat it rather as a first example
of coevolution). One of the most spectacular successes of
temporal difference learning in game playing is undoubtedly
Tesauro’s TD-Gammon [40]. This influential work has trig-
gered off a lot of research in reinforcement learning and TD
methods, including their applications to Go [7], [15], [41].

The TD(λ) procedures solve prediction learning prob-
lems that consist in estimating the future behavior of an
incompletely known system from the past experience. TD
learning occurs whenever systems state changes over time
and is based on the error between the temporally successive
predictions. Its goal is to make the preceding prediction
to match more closely the current prediction (taking into
account distinct system states observed in the corresponding
time steps).

Technically, prediction at a certain time step t can be
considered as a function of two arguments: the outcome of
system observation P and the vector of modifiable weights
w. A TD algorithm is expressed by the following weight
update rule:

∆wt = α(Pt+1 − Pt)

t∑
k=1

λt−k∇wPk, (2)

where α is the learning rate, Pt is the prediction at time t,
and the gradient ∇wPt is the vector of partial derivatives
of Pt with respect to each weight. This general formulation
of TD takes into account the entire history of the learning
process; in case of TD(0), the weight update is determined
only by its effect on the most recent prediction Pt:

∆wt = α(Pt+1 − Pt)∇wPt. (3)

When applied to the problem of learning game-playing
strategy represented by a WPC, Pt estimates the chances of
winning given the game state bt at time t. The WPC function
f computes the dot product of the board state vector bt and
the weight vector w (see Eq. (1)), and the obtained value
is subsequently mapped to a closed interval [-1, 1] using
hyperbolic tangent, so that Pt has the form:

Pt = tanh(f(bt)) =
2

exp(−2f(bt)) + 1
− 1 (4)

By applying (4) to the TD(0) update rule (3) and calculat-
ing the gradient, we obtain the desired correction of weight
wi at the time step t:

∆wi,t = α(Pt+1 − Pt)(1− P 2
t )bi (5)

If the state observed at time t + 1 is terminal, the exact
outcome of the game is known and may be used instead of
the prediction Pt+1. The outcome value is +1 if the winner
is black, -1 if white, and 0 when the game ends in a draw.

The process of learning consists of applying the above
formula to the WPC vector after each move. The training data
(i.e., collection of games) according to which the presented
algorithm can proceed, may be obtained by self-play. This is
a popular technique whose major advantage is that it does not
need anything besides the learning system. During game play,
moves are selected on the basis of the most recent evaluation
function.

Go is deterministic, thus the course and the outcome of
a game between a particular pair of deterministic players
is always the same. This feature reduces the number of
game trees to be explored and makes learning ineffective.
To remedy this situation, it is typical in TDL to force a
random move in each turn, with certain probability. After
such a random move, no weight update occurs.

E. Coevolutionary Temporal Difference Learning

The past results of learning WPC strategies for small-board
Go [14] and Othello [23] demonstrate that TDL and CEL
exhibit complementary features. TDL typically learns much
faster and converges within several hundreds of games, but
then stucks and fails to produce a well-performing strategy,
no matter how many games it plays. CEL progresses slower,
but, if properly tuned, eventually outperforms TDL. There-
fore, it sounds reasonable to combine these approaches into a
hybrid algorithm that would possibly exploit the advantages
of both methods.

To benefit from the complementary advantages of TDL
and CEL we propose a method termed Coevolutionary
Temporal Difference Learning (CTDL). CTDL maintains a
population of players and alternately performs TD learning
and coevolutionary learning. In the TD phase, each player
is subject to TD(0) self-play. Then, in the CEL phase,
individuals are evaluated on the basis of a round-robin
tournament. Finally, a new generation of individuals is bred
using standard selection and variation operators, and the
cycle repeats.

Other hybrids of TDL and CEL have been occasionally
considered in the past. Kim et al. [42] trained a population of
neural networks with TD(0) and used the resulting strategies
as an input for the standard genetic algorithm with mutation
as the only variation operator. Recent work by Manning
[43] demonstrate a bounded-size Nash Memory archive for
coevolution [44] and employed TDL as a weight mutation



operator. In [2], Singer has shown that reinforcement learn-
ing can be superior to random mutation as an exploration
mechanism. His Othello-playing strategies were three-layer
neural networks trained by interlacing reinforcement learning
phases and evolutionary phases. In the reinforcement learning
phase, a round robin tournament was played 200 times and
network weights were modified after every move using back-
propagation algorithm. The evolutionary phase consisted of
a round-robin tournament that determined players’ fitnesses,
followed by crossover at feature-level and mutation. The
experiment yielded a strategy that was competitive with
an intermediate-level handcrafted Othello player; however,
no comparison with preexisting methods was presented.
Also, given the proportions of reinforcement learning and
evolutionary learning, it seems that Singer’s emphasis was
mainly on reinforcement learning, whereas in our CTDL it
is quite the reverse: reinforcement learning serves as a local
improvement operator for evolution.

IV. EXPERIMENTS

We conducted several experiments comparing CTDL, CEL,
TDL, and their extensions with the Hall of Fame (HoF)
archive [31], all implemented using Evolutionary Computa-
tion in Java (ECJ) library [45]. To provide fair comparison,
all runs used the same settings and stopped when the number
of games played reached 2 millions. For statistical signif-
icance, each experiment was repeated 25 times. Wherever
it was possible we used parameters taken directly from our
previous comparison of the same set of methods [4]. The
only exception was so called TDL-CEL ratio (see section
IV-A4) which we increased to 10.

A. Algorithms and setup

1) TDL: TDL is an implementation of a gradient-descent
temporal difference algorithm TD(0) described in Section
III-D. The weights are initially set to 0 and the learner is
trained solely through self-play, with random moves occur-
ring with probability p = 0.1. The learning rate α = 0.01.

2) CEL: CEL uses a generational coevolutionary algo-
rithm with population of 50 individuals initialized randomly.
During mutation, the weights are limited to the range [−1, 1].
In the evaluation phase, a round-robin tournament is played
between all individuals, with wins, draws, and losses re-
warded by 3, 1, and 0 points, respectively. The evaluated
individuals are selected using standard tournament selection
with tournament size 5, and then, with probability 0.03, their
weights undergo Gaussian mutation (σ = 0.25). Next, they
mate using one-point crossover, and the resulting offspring
is the only source of genetic material for the subsequent
generation (there is no elitism). As each generation requires
50× 50 games, each run lasts for 800 generations to get the
total of 2, 000, 000 games.

3) CEL + HoF: This setup extends the previous one with
the HoF archive. Each individual plays games with all 50
individuals from the population (including itself) and with
50 randomly selected individuals from the archive, so that its
fitness is determined by the outcomes of 100 games scored
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Fig 2. Probability of the best-of-generation individual winning against a
random player, plotted against the number of training games played.

as in CEL. In each generation, the best performing individual
is copied into the archive. The archive serves also as a
source of genetic material, as the first parent for crossover
is randomly drawn from it with probability 0.2. The number
of generations was set to 400.

4) CTDL = TDL + CEL : CTDL combines TDL and CEL
as described in Section III-E, with the TDL phase parameters
described in 1) and CEL phase parameters described in 2).
It alternately repeats the TDL phase and the CEL phase
until the total number of games attains 2, 000, 000. The exact
number of generations depends on the TDL-CEL ratio, which
we define as the number of self-played TDL games per one
generation of CEL. For example, if the TDL-CEL ratio is 10
(default), there are 3, 000 games per generation (including
the round-robin tournament of CEL).

5) CTDL+HoF = TDL + CEL + HoF: This setup com-
bines 3) and 4) and does not involve any extra parameters.

B. Results

To monitor the progress of evolution, 50 times per run
(approximately every 40, 000 games) we appoint the indi-
vidual with the highest fitness (i.e., the subjectively best
strategy) as the best-of-generation individual and assess its
performance. For TDL, we take the only solution maintained
by the method. A fully objective assessment requires playing
against all possible opponents, but the sheer number of them
makes this option impossible. Thus, we rely on two approxi-
mate quality measures: playing against a random player and
against a predefined, human-designed WPC strategy whose
weights were based on the best players presented in [14].
Both of them estimate individual’s quality by playing 1, 000
games (500 as black and 500 as white) and calculating the
probability of winning.

1) Performance against random player: Figure 2 illus-
trates how the best-of-generation strategies perform on av-
erage against the random player, by which we mean a
strategy that makes a (legal) random move in each turn.
Data points represent the probability of winning of a best-
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Fig 4. Graphical representation of WPC of the handcrafted heuristic
strategy used for performance assessment.

of-generation individual averaged over 25 runs. The graphs
clearly indicate that all methods are almost certain to defeat
such an opponent. This is not surprising given that, even in
case of small 5×5 board, branching factor of Go is relatively
high, especially at the beginning of the game, thus there are
many ways in which a bad move can be made. Random
players for games with smaller branching factor, like Othello,
can be more challenging.

It seems that among all compared methods CEL achieves
the worst performance on this quality measure. A possible
explanation is that other methods can encounter random
opponents, or beginners that behave like random players,
during the entire learning process, and thus have to remember
how to deal with them. In particular, TDL-based methods
are taught partially by randomized self-play, whereas HoF-
based methods remember the beginner players from the early
generations of evolution. In CEL, on the contrary, very bad
strategies go extinct in the early stages of the run and
infrequently emerge later. As a result, simple CEL can forget
how to respond to such player’s behavior.

2) Performance against heuristic WPC: Figure 3 presents
the probability of winning of best-of-generation individuals
when confronted with a handcrafted WPC strategy presented
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in Table I and graphically in Fig. 4 (the darker the shade, the
lower the weight). To obtain this graph, following [23], we
forced both players to make random moves with probability
ε = 0.1; this allowed us to take into account a richer reper-
toire of players’ behaviors and make the resulting estimates
more continuous and robust. The plots clearly demonstrate
that the fusion of local search with coevolution can be
beneficial: methods that incorporate both TDL and CEL
quickly pass the 0.5 mark and maintain their performance for
the rest of the run, while the remaining ones struggle to make
progress. Only CEL+HoF joins the leaders at the end of the
run, at much greater computational expense. This is probably
possible thanks to the archive (HoF), as pure coevolution
(CEL) stucks at a significantly lower performance level.

Though the performance of all methods in absolute terms
is rather moderate, this can be attributed to simplicity of
WPC representation, which is not the best choice for the
highly non-positional game of Go. Let us also notice that
we do not know the performance of the optimal WPC-
represented Go strategy (if such a strategy exists), so judging
the above probabilities as objectively good or bad would be
inconsiderate.

3) Round-robin tournament between teams of best individ-
uals: The above results let us conclude that the handcrafted
WPC strategy is more challenging than the random player.
Unfortunately, even if randomized, such an opponent can-
not be expected to represent the full spectrum of possible
behaviors of Go strategies represented as WPCs. In order
to get a more realistic performance estimate, we recruit a
more diverse set of opponents by organizing tournaments
between the teams of best-of-generation individuals rep-
resenting particular methods. The same best-of-generation
strategies that were subject to individual performance assess-
ment in previous sections are now combined into five teams,
each representing one method and having 25 members (one
per run). Next, we play a round-robin tournament between
the teams, where each strategy plays against 4 × 25 = 100
strategies from the opponent teams for a total of 200 games



TABLE II
THE RESULTS OF THE ROUND-ROBIN TOURNAMENT OF BEST-OF-RUN

INDIVIDUALS.

Team Games Wins Draws Defeats Score
CTDL+HoF 5000 3039 147 1814 9264
CEL+HoF 5000 2979 151 1870 9088
CTDL 5000 2666 180 2154 8178
CEL 5000 2050 179 2771 6329
TDL 5000 1361 153 3486 4236

TABLE III
THE RESULTS OF DIRECT MATCHES BETWEEN TEAMS OF BEST-OF-RUN

INDIVIDUALS FOUND BY PARTICULAR METHODS.

CTDL+HoF CEL+HoF CTDL CEL TDL
CTDL+HoF — 1974 2052 2385 2853
CEL+HoF 1740 — 2149 2352 2874
CTDL 1653 1558 — 2255 2712
CEL 1326 1359 1445 — 2199
TDL 870 870 996 1500 —

(100 as white and 100 as black). The final score of a team
is determined as the sum of points obtained by its players
in overall 5, 000 games, using the scoring scheme presented
in Section IV-A2. The results of the tournaments, presented
in Fig. 5, are even more evident than the former charts:
the hybrid methods combining CEL with TDL take the lead
extremely quickly, and later on yield only a little to the other
algorithms, in particular to CEL+HoF.

The results of the last round-robin tournament, which
may be viewed as the relative performance of best-of-run
individuals, are presented in detail in Tables II and III. It
can be observed that CEL+HoF loses against CTDL+HoF in
direct comparison but against other teams it achieves similar
or even slightly better performance (against CTDL).

4) Changes observed in genotypic traits: The above ag-
gregate results of multiple runs let us draw sound conclusions
about the superiority of some approaches to others, but say
little or none about the actual dynamics of the learning
process. Figure 6 presents the timeline of snapshots of
genotypes of best-of-generation individuals taken from a
single CEL+HoF run. It is interesting to note that qualitative
genotypic changes occur in bursts, over relatively short time
spans, with rather lengthy periods of stagnation in between,
which resonates with the theory of punctuated equilibria [46].
It is also striking how qualitatively different are the best
genotypes discovered by evolution in particular stages. For
instance, the central field is for quite a long time consid-
ered as undesired, and then suddenly, after approximately
a half million of games (over 100 generations), its utility
dramatically changes. The gradual discovery of different
forms of symmetry of the board is also remarkable: the
central symmetry, evidently present in generations 96 and
112, is later abandoned, and, after a period of exploring
asymmetric WPCs, a new form of reflection-like symmetry
emerges in the final stages of the run. Notably, this final WPC
bears significant resemblance to our heuristic WPC player
presented in Table I and Fig. 4, even though the evolving
individuals never played against the heuristic WPC, which

Generation 0 Generation 8 Generation 48

Generation 96 Generation 112 Generation 136

Generation 400Generation 344Generation 216

Fig 6. Genotypic changes in the best-of-generation individuals of an
exemplary CEL+HoF run. Individuals are illustrated as 5 × 5 Go boards
colored accordingly to correspondingweights (white = −1, , black = 1).

was used only for external assessment. This convergence is
surely not coincidental.

V. CONCLUSION AND DISCUSSION

In [4], we demonstrated that hybridizing coevolution with
gradient-based local search proves beneficial when learning
strategy of the game of Othello. Here, we come to similar
conclusions for the game of Go. Based on that, we hypoth-
esize that CTDL could be also beneficial for other games
where both TDL and CEL can be applied separately. Also,
there is no reason to claim that this conclusion holds only
for strategies represented by WPCs – any representation to
which gradient-based search is applicable is likely to benefit
from this hybridization.

Though this result is encouraging, we are far from com-
plete understanding of the underlying causes of this synergy.
TDL, as a gradient-based technique, is able to link the
outcome P of its actions to each parameter of solution
(element of WPC matrix) independently and calculate the
desired correction vector (cf. Eq. 3). With this skill, it com-
plements evolution, which is devoid of such ability. However,
the changes introduced by TDL to individual’s genotype
result exclusively from the characteristics of that particular
individual and abstract from the global characteristics of the
population. Thus, such modifications can be incompatible
with the current trend of changes resulting from evolution,
and potentially deteriorate effectiveness of the search process
(e.g., by leading to premature convergence).

This becomes even more intriguing when we realize that in
our method TDL actually ignores the fitness assigned to the
individual by evolution and trains it by self-play. Therefore,



TDL operates in abstraction from the actual fitness landscape
and has no access to player’s performance as measured in
the context of population. Thus, what we witness here is
a quirky variant of local search where the performances
of neighboring solutions directly depend on the current
(optimized) solution. Yet, as the results prove, TDL is able
to substantially improve the convergence of CEL.

The above observations call for in-depth explanation and
theoretical support, and point out the future directions we
envision for this research.
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