
Coordinate System Archive for Coevolution

Wojciech Jaśkowski and Krzysztof Krawiec, Member, IEEE

Abstract—Problems in which some entities interact with
each other are common in computational intelligence. This
scenario, typical for co-evolving artificial-life agents, learning
strategies for games, and machine learning from examples, can
be formalized as test-based problem. In test-based problems,
candidate solutions are evaluated on a number of test cases
(agents, opponents, examples). It has been recently shown that
at least some of such problems posses underlying problem
structure, which can be formalized in a notion of coordinate
system, which spatially arranges candidate solutions and tests
in a multidimensional space. Such a coordinate system can be
extracted to reveal underlying objectives of the problem, which
can be then further exploited to help coevolutionary algorithm
make progress. In this study, we propose a novel coevolutionary
archive method, called Coordinate System Archive (COSA)
that is based on these concepts. In the experimental part,
we compare COSA to two state-of-the-art archive methods,
IPCA and LAPCA. Using two different objective performance
measures, we find out that COSA is superior to these methods
on a class of artificial problems (COMPARE-ON-ONE).

I. INTRODUCTION

A canonical coevolutionary algorithm evolves a population
of (candidate) solutions and a population of tests based on
the results of elementary interactions between them. This
simple scheme is applicable to a surprisingly wide scope of
test-based problems [1], including learning game strategies,
machine learning from examples, artificial life, etc. Because
an outcome of a single interaction is usually not informative
enough, multiple outcomes are typically aggregated to drive
the evaluation and selection during evolution. Unfortunately,
the aggregation of outcomes is one of the reasons for
which coevolutionary algorithms often suffer from so-called
pathologies: over-specialization, loss of gradient, cycling [2]
or disengagement [3]. These phenomena are not problematic
for natural evolution that has no externally imposed goals,
but make it difficult to force a coevolutionary algorithm to
make a steady progress towards a specific solution concept
[4] posed by the researcher.

In Pareto-coevolution [5], [6] proposed to overcome some
of these these drawbacks, each test gives rise to a separate
objective that orders the solutions with respect to how well
they fare against it, and thus the aggregation is no longer
required. This transforms the test-based problem into a
multiobjective optimization problem and allows relying on
the well-defined concept of dominance – solution s1 is not
worse than solution s2 if and only if s1 performs at least
as good as s2 on all tests. Unfortunately, in real test-based
problems the number of tests is usually prohibitively large;
take for example the number of strategies in chess. Therefore,

W. Jaśkowski and K. Krawiec are with the Institute of Computing Science,
Poznan University of Technology, Piotrowo 2, 60965 Poznań, Poland; email:
{wjaskowski,kkrawiec}@cs.put.poznan.pl.

also the dimensionality of search space in Pareto-coevolution
could be enormous.

Fortunately, it was shown [7] that at least some test-based
problems possess an underlying problem structure, which
manifests itself by the existence of groups of tests that
examine the same skill or aspect of solution performance,
but with different intensity. Such tests can be ordered with
respect to difficulty and placed on a common axis to form a
new objective that replaces the constituent (old) objectives,
leading to reduction of the dimensionality of the search
space. These so-called underlying objectives [8] are typically
not know a priori and have to be revealed during exploration
of the problem. For instance, underlying objectives in chess
could measure skills of controlling the center of the board,
using knights, playing endgames, etc.

The above intuition about underlying objectives and inter-
nal structure of a problem was first formalized in the notion
of coordinate system in [1] and then further investigated in
[9], the studies which our work is based on. An important
feature of coordinate system is that while compressing the
initial set of objectives, it preserves the relations between
solutions and tests. Each solutions is embedded in the system
and the outcome of its interaction with any test can be
determined given its position on all axes.

The idea of extracting and using the underlying problem
structure to support the progress in coevolution was first
applied in Dimension Extraction Coevolutionary Algorithm
(DECA) [10]. Here we propose another method, called
Coordinate System Archive (COSA), that is based on similar
principles. Our method differs substantially from the earlier
attempt, since DECA uses a different definition of coordinate
system (see Section IV) and exploits it in a different way.
COSA is a proof-of-concept that the coordinate system de-
fined in [1] can be also successfully used in a coevolutionary
archive algorithm.

The paper is organized as follows. We start with formally
introducing all the necessary concepts and elaborating on the
coordinate system defined by Bucci [1] in Sections II, III,
and IV. After describing in details our method in Section
V, we present our co-evolutionary framework in Section VI.
This section describes also the LAPCA and IPCA algorithms,
the problem COMPARE-ON-ONE and the experimental setup.
Finally, we discuss the results in Section VII.

II. MATHEMATICAL PRELIMINARIES

Definition 1: Partially ordered set (poset, for short) is
a pair (X,P), where X is a set and P is a reflexive,
antisymmetric, and transitive binary relation on X . We call
X the ground set while P is a partial order on X .

We write x ≤ y in P when (x, y) ∈ P and x ≥ y in P
when (y, x) ∈ P . The notations x < y in P and y > x in P
mean x ≤ y in P and x 6= y. When the context is obvious,
we will abbreviate x < y in P by just writing x < y.

Definition 2: For a poset (X,P), x, y ∈ X are compara-
ble (x ⊥ y) when either x ≤ y or x ≥ y; otherwise, x and
y are incomparable (x ‖ y).

Definition 3: A poset (X,P) is called a chain if every
pair of elements from X is comparable. When (X,P) is a
chain, we call P a linear order on X . Similarly, we call a
poset an antichain if every pair of distinct elements from X
is incomparable. A chain (respectively, antichain) (X ′, P ′)
is a maximum chain (respectively, maximum antichain) in
(X,P), X ′ ⊆ X,P ′ ⊆ P if no other chain (respectively,
antichain) in (X,P) has more elements than it.

Definition 4: The width of a poset (X,P), denoted as
width(X,P), is the number of elements in its maximum
antichain.

Theorem 1: (Dilworth [11]) If (X,P) is a poset and
width(X,P) = n, then there exists a partition of X =
C1 ∪C2 ∪ · · · ∪Cn, where Ci is a chain for i = 1, 2, . . . , n.
We call it minimum chain partition, as it comprises the
smallest possible number of chains. Note that an important
consequence of Dilworth theorem is that each Ci contains
exactly one element of the maximum antichain.

c

f

a

d

b

e

In (X,P) some of elements are comparable, e.g. a ≤ f ,
b ≤ e; others are incomparable, e.g., c ‖ d, a ‖ e, thus
it is not a linear order. Examples of chains in (X,P) are
a < c and b < d < f . The latter is a maximum chain in
(X,P). {a, e} is an example of antichain, and {c, d, e} is
a maximum antichain of this poset, thus width(X,P) = 3.
{a, c, f} ∪ {b, d} ∪ {e} is an example of a minimum chain
partition. {c, d, e} is the only antichain in P of size 3.

III. TEST-BASED PROBLEM

In this paper, by test-based problem we will mean a formal
object G = (S, T,G) that consists of a set S of solutions
(a.k.a. candidate solutions [12], candidates [1], learners [13]
or hosts [14]), a set T of tests (a.k.a. teachers, parasites),
and an interaction function G : S × T → R. We restrict our
attention to the case where the codomain of G is a binary set
{0, 1}. If G(s, t) = 1, we say that solution s solves test t; if
G(s, t) = 0, we say that s fails test t. Where convenient, we
will treat G as a relation and denote the fact that solutions
s solves test t as G(s, t) and the fact that it fails test t
as ¬G(s, t). Notice that in the perspective of game theory,
G can be interpreted as a payoff matrix, S, T as sets of
strategies and G as a game. Thus, in this paper we will use
the terms ‘test-based problem’ and ‘game’ interchangeably.

Solutions failed set SF (t) ⊆ S is comprised of all solu-
tions that fail the test t. Dually, tests solved set TS(s) ⊆ T
is comprised of all tests that are solved by solution s. Notice
also that t ∈ TS(s) ⇐⇒ s /∈ SF (t) for all s ∈ S, t ∈ T ,
since both sides hold if and only if s solves t.

Test t1 is weakly dominated by test t2, written t1 ≤ t2,
when SF (t1) ⊆ SF (t2) for t1, t2 ∈ T . Dually, solution
s1 is weakly dominated by solution s2, written s1 ≤ s2,
when TS(s1) ⊆ TS(s2) for s1, s2 ∈ S. For brevity
we use the same symbol ≤ for both relations, as they
are univocally determined by the context. Since ≤ inherits
transitivity and reflexivity from ⊆, it is a preorder in both S
and T . To make ≤ a partial order we need to assume that
no two elements of one set are indiscernible with respect
to how they interact with the elements of the other set,
precisely: @t1, t2 ∈ T, t1 6= t2 : SF (t1) = SF (t2) and
@s1, s2 ∈ S, s1 6= s2 : TS(s1) = TS(s2). Under this
assumption s1 = s2 ⇐⇒ TS(s1) = TS(s2) and, dually,
t1 = t2 ⇐⇒ SF (t1) = SF (t2); thus (S,≤) and (T,≤) are
posets, what eases our further arguments. In case when some
indiscernible objects do exist (it can happen in practice), we
can merge them into one object without losing any important
features of G.

IV. COORDINATE SYSTEM

In the context of test-based problems, a coordinate system
is a formal concept revealing internal problem structure
by enabling solutions and tests to be embedded into a
multidimensional space. Of particular interests are such defi-
nitions of coordinate systems, in which the relations between
solutions and tests (≤) are reflected in spatial arrangement
of their locations in the coordinate system. Previous work
suggests that this formalism can help designing better coevo-
lutionary algorithms [10] and examining properties of certain
problems [7].

There is no unique definition of coordinate system for a
test-based problem; currently we are aware of two formula-
tions: by Bucci et al. [1] and by de Jong and Bucci [10], [7].
The difference between them lies in the way they define the
axes. [1] defines an axis as a sequence of tests ordered by
the domination relation, while [10] as a sequence of sets of
solutions ordered by the inclusion relation. In the algorithm
introduced in this paper we use the historically first definition
of coordinate system introduced in [1], so in the following
by coordinate system we mean the one defined there. There
are slight differences in our formulation, which, however, do
not affect any important properties of the coordinate system.

For convenience, we introduce a formal element t0 such
that G(s, t0) for all s ∈ S. Also, we define an operator
‘overline’ that augments a set of tests with t0, i.e., X̄ =
X ∪ {t0}.

Definition 5: A coordinate system C for a game G is a set
of axes (Ai)i∈I , where each axis Ai ⊆ T is linearly ordered
by <. I is an index set and the size of the coordinate system,
denoted by |C|, is the cardinality of I .

We interpret axis as an underlying objective of the prob-
lem. Tests on an axis are ordered with respect to increasing

difficulty (< relation), so that every solution can be posi-
tioned on it according to the results of its interaction with
these tests. The position of a solution is determined be the
position function defined below.

Definition 6: Position function pi :S → Āi is a function
that assigns a test from Āi to solution s ∈ S in the following
way:

pi(s) = max{t ∈ Āi|G(s, t)}, (1)

where the maximum is taken with respect to the relation <.
The test pi(s) is the position of s on the axis Āi.

To understand the above definition better, we show an
important property of a coordinate system. Let pi(s) = t.
From the definition of position function pi as the maximal
test t for which G(s, t), it follows immediately that ¬G(s, t1)
for each t1 > t. On the other hand, tests on axis Ai are
linearly ordered by the relation <, which means that for
each t1, t2 ∈ Ai, t1 < t2 when SF (t1) ⊂ SF (t2). Thus,
according to the definition of SF (t), G(s, t2) for each t2 < t.
Consequently, if Ai = {t1 < t2 < · · · < tki

} is an axis
and pi(s) = tj , we can picture s’s placement on Ai in the
following way [1]:

G(s, t) 1 1 . . . 1 0 . . . 0
Āi t0 t1 . . . tj tj+1 . . . tki

As we can see, according to the position function, s is
placed in such a way that for each axis it solves all tests on
its left and fails all on its right.

Definition 7: Coordinate system C is correct for a game
G iff for all s1, s2 ∈ S

s1 ≤ s2 ⇐⇒ ∀i∈Ipi(s1) ≤ pi(s2)

Basically, this definition means that all relations between
solutions in set S have to be preserved the coordinate system.

Definition 8: We say that test t orders solution s1 before
solution s2, written s1 <t s2, if ¬G(s1, t) and G(s2, t).
Similarly, we use s1 =t s2 when G(s1, t) = G(s2, t),
and s1 ≤t s2 when s1 <t s2 or s1 =t s2. This is
similar to the notion of distinctions [5]. Dually, we say that
solution s orders test t1 before test t2, written t1 <s t2, if
G(s, t1) and ¬G(s, t2). Similarly, we use t1 =s t2 when
G(s, t1) = G(s, t2), and t1 ≤s t2 when t1 <s t2 or t1 =s t2

Definition 9: A correct coordinate system C is a minimal
coordinate system for G if there does not exist any correct
coordinate system for G with smaller size.

Definition 10: The dimension dim(G) of a game G is the
size of the minimal coordinate system for G.

A. Example

Let us consider an exemplary test-based problem from [7],
i.e., the misère version of game of Nim-(1,3) with two piles
of sticks: one containing a single stick and one containing
three sticks. The exact rules of this game are not important
here, but an interested reader is referenced to [7].

The payoff matrix of Nim-(1,3) is shown in Table I.
There are a total of 144 strategies, but merging indiscernible
strategies reduces the number of first player strategies to six

Table I: The payoff matrix for Nim-(1,3) . An empty cell
means 0.

t1 t2 t3 t4 t5 t6 t7 t8 t9

s1 1 1 1 1 1 1
s2
s3 1 1 1 1 1 1 1 1 1
s4 1 1 1 1 1 1
s5 1 1 1
s6 1 1 1

(candidate solutions s1− s6) and second player strategies to
nine (tests t1 − t9).

t9 t8 t2

t4
s1

s2

s3

s4

s5

s6

Figure 1: A minimal coordinate system for Nim-(1,3)

Figure 1 presents a minimal coordinate system for this
game. We can see that the initial set of nine tests was
“compressed” to only two underlying objectives represented
by axes A1 = {t9 < t8 < t2}, A2 = {t4}. First, notice that
the tests on both axes are placed according to the definition of
coordinate system, that is in the order of increasing difficulty
(in A1, t9 is less difficult than t8, which is in turn less
difficult than t2). The correctness of this coordinate system
can be verified by checking whether all relations between
pairs of solutions are preserved (see conditions in Def. 7).
For instance, consider a pair (s1, s3) for which s1 < s3: s1
is also dominated by s3 in the 2D space; on the other hand,
s1‖s2 (since s1 <t8 s2 and s2 <t1 s1), thus s1 and s2 do not
dominate each other also in the figure. Second, solutions are
placed with accordance to the position function. For example,
s6 is placed so that it solves t9 and t8, but fails t4 and t2,
which is consistent with the relations in the original payoff
matrix.

Finally, with a little of effort one could demonstrate
that in this example width(T,≤) = 3 and the minimum
chain partition of (T,≤) consists of the following chains:
(t9, t3, t6), (t8, t2, t5), (t7, t1, t4).

V. COORDINATE SYSTEM ARCHIVE (COSA)

The goal of coevolutionary archives is to sustain progress
during a coevolutionary run. A typical archive is a (usually
limited in size, yet diversified) sample of well-performing
individuals found so far. New individuals submitted to the
archive are forced to interact with its members, who may
be replaced when proved to be no more useful. Archives in
coevolution may be seen as a counterpart of elitism in stan-
dard evolution. Historically, one of the oldest and simplest
archives was Hall of Fame [15] that stores all the best-of-
generation individuals encountered so far. Modern examples

Algorithm 1 COSA

1: procedure SUBMIT(Snew, Tnew)
2: T ← Tarch ∪ Tnew

3: S ← Sarch ∪ Snew

4: T ← GETUNIQUE(T, S)
5: S ← GETUNIQUE(S, T)
6: SPareto ← {s ∈ S|∀s′∈Ss

′ ≤T s}
7: Tbase ← FINDTESTS(T, SPareto)
8: Sreq ← PAIRSETCOVER(SPareto, S, Tbase)
9: Treq ← PAIRSETCOVER(Tbase, T, SPareto)

10: Sarch ← Sreq

11: Tarch ← Treq

12: end procedure
13:
14: procedure GETUNIQUE(A,B)
15: U ← ∅
16: for a ∈ A do
17: I ← {e ∈ A|∀b∈BG(a, b) = G(e, b)}
18: U ← U ∪ oldest individual from I
19: A← A \ I
20: end for
21: return U
22: end procedure
23:
24: procedure PAIRSETCOVER(Amust, A,B)
25: A← A \Amust

26: N ← {(b1, b2)|b1, b2 ∈ B . Pairs to be ordered
27: ∧∃a∈Ab1 <a b2) ∧ @a∈Amustb1 <a b2)}
28: V ← Amust

29: while N 6= ∅ do . Are all pairs ordered?
30: u← argmaxa∈A\V |{(b1, b2) ∈ N|b1 <a b2}|
31: N ← N \ {(b1, b2) ∈ N|b1 <u b2}
32: V ← V ∪ {u}
33: end while
34: return V
35: end procedure

of archives include IPCA and LAPCA (see Sections VI-A
and VI-B).

The idea of our novel archive algorithm is based on
the concept of underlying problem structure and coordinate
system, described in Section IV. The archive extracts a
coordinate system of the game using the currently available
solutions and tests and uses it to retain the base set of tests,
which contains only one test from each axis. Apart from that,
COSA maintains a set of Pareto non-dominated solutions.
Details of the algorithm are described in the following.

The algorithm maintains two separate archives, one for
solutions (Sarch) and one for tests (Tarch). Each time new
solutions and tests (Snew, Tnew) are submitted by evolution
(line 10 of Alg. 3), COSA joins them with the archives into
temporary sets of candidates, S and T (see Alg. 1, lines 2, 3).
Ultimately, only some of these candidates will be retained.

The algorithm first gets rid of any duplicates in both
archives (lines 4-5): from every equivalence class (group

Algorithm 2 A procedure that finds the tests that should be
kept in the archive

1: procedure FINDTESTS(T, SPareto)
2: C ← CHAINPARTITION(T,≤)
3: ndims = |C|
4: SSorted ← SPareto sorted descendingly by

min(GETPOS(s, C))
5: for s ∈ SSorted do
6: T ′ ← {t ∈ T |G(s, t)}
7: (A, found)← greatest antichain in poset (T ′,≤)
8: if found then
9: return A

10: end if
11: end for
12: return T
13: end procedure
14:
15: procedure CHAINPARTITION(X,P)
16: return minimal chain partition of poset (X,P)
17: end procedure
18:
19: procedure GETPOS(s, C)
20: ndims ← |C|
21: P ← array[1 . . . ndims]
22: for i = 1 . . . ndims do
23: P [i]← |{c ∈ C[i]|G(s, c)}|
24: end for
25: return P
26: end procedure

of individuals that are indiscernible in terms of the payoff
matrix) only the oldest one is retained. Preferring the older
individuals prevents replacing the objectively better individu-
als by the worse ones, which is likely due to predominantly
destructive character of mutation and crossover typical for
evolution.

In lines 6-7, COSA decides which individuals must be
retained. For solutions, it is SPareto, the set of solutions
that are mutually Pareto non-dominated with respect to T .
For tests, it is the base set of tests Tbase determined by the
FINDTESTS procedure described in details later. However,
SPareto and Tbase are not sufficient to provide each other
stability, i.e., prevent changing the mutual relationship be-
tween these individuals and, in consequence, being removed
during subsequent submissions. Therefore COSA selects
some additional individuals and forms supersets Sreq and
Treq of, respectively, SPareto and Tbase, which become the
new archives at the end of submission phase (lines 10 and
11). Sreq ⊆ S is a set of solutions that orders all pairs of
tests from Tbase that can be ordered. Formally, if for a pair
t1, t2 ∈ Tbase there exists s ∈ S such that t1 ≤s t2, then
Sreq must contain s′ such that t1 ≤s′ t2. Dually, Treq is a
set of test that orders all pairs of tests from SPareto that can
be ordered.

Both Sreq and Treq are computed by PAIRSETCOVER,

which accepts generic arguments A and B. Amust is the
set of individuals that have to be retained, thus pairs of
elements of B ordered by individuals from Amust are not
considered (line 27). N is the set of pairs that have to
be ordered. Starting with set V containing only individuals
from Amust, PAIRSETCOVER in each step extends it by
such an element from A that orders the maximal number
of not yet ordered pairs from N . The procedure stops when
all pairs are ordered. PAIRSETCOVER is a greedy heuristics
and may not produce the minimal set of required elements,
but has a very good logarithmic approximation ratio [16];
roughly speaking, it is the best possible polynomial-time
approximation algorithm for this problem (c.f. [17]).

The most important part of the archive algorithm is the
FINDTESTS procedure that determines the base set of tests
(see Alg. 2). FINDTESTS builds up a coordinate system
using CHAINPARTITION procedure, which finds a minimal
chain partition C of poset (T,≤) (line 2). CHAINPARTITION
implements the standard O(|X|3) algorithm (c.f. [18], [19])
that computes max-flow on a bipartite network with unit
capacities1. Each chain of C, being linearly ordered by <
(Def. 5), corresponds to one axis of the coordinate system,
thus C is a coordinate system. This coordinate system is even
correct (Def. 7), but the formal proof of this fact is beyond
the scope of this paper.

The number of dimensions of the extracted coordinate
system ndims (line 3) is a temporal estimation of the true
dimension of our game. It may be, but it does not have to
be, the exact dimension of the test-based problem we are
trying to solve, because (i) the extracted coordinate system
is correct but not necessarily minimal, and (ii) we operate
only on samples of all possible solutions and tests.

Having the coordinate system C, we can easily determine
the coordinates of each solution s in C by computing the
number of tests that are solved by s on each axis (procedure
GETPOS, lines 19-26). The position is represented by a
vector of ndims cardinal numbers (c.f. Def. 6).

In lines 4–11, FINDTESTS tries to find an antichain (a
set of tests that are mutually incomparable) in T with three
properties: (i) its size is ndims, (ii) it is the greatest antichain,
and (iii) there exists a solution that solves all its elements.
Considering the first property, according to the Dilworth
theorem (Theorem 1), such antichain always exists, since
width(T,≤) = ndims.

Let us explain the second property. Let X be the set of all
maximum antichains of (T,≤) and P be a relation on X such
that X1PX2 iff there exists a bijection f : X1 → X2 such
that x1 ≤ f(x1). Then, it can be proved (beyond the scope of
this paper) that the poset (X ,P) has the maximum element,
called here the greatest antichain of T . The polynomial-time
algorithm (line 7) finding the greatest antichain of T is easy
but long, so we do not describe it here.

The third property cannot be always fulfilled, since the
maximum antichain of size ndims, guaranteed to exist in

1This can be further improved to O(n5/2/
√
logn) by a method intro-

duced in [20].

(T,≤), does not necessarily exist in (T ′,≤), where T ′ ⊆ T
is a set of tests solved by certain solution s.

FINDTESTS iterates over all solutions from SPareto and
returns the first encountered antichain with the three prop-
erties described above (line 9); if such antichain does not
exist, it returns all tests from T . The solutions from SPareto

are considered in the order of decreasing minimal dimension,
which identifies the weakest element of solution (strategy).
Thanks to that, the algorithm prefers the search direction
that equally treats all the underlying dimensions, which is
intended to protect COSA from over-specialization.

VI. EXPERIMENT

We conducted an experiment in which we com-
pared COSA with two state-of-the-art Pareto-coevolutionary
archives that are shortly described in the following sections

A. Iterated Pareto-Coevolutionary Archive (IPCA)

IPCA is a coevolutionary archive proposed in [13] and
further investigated in [21]. It guarantees monotonic progress
for solution concept of Pareto-Optimal Set. This, however,
comes at a cost: its test archive may grow infinitely.

IPCA, maintains a set of tests and a set of solutions. A
newly generated solution is accepted by the archive only
if it is non-dominated with respect to the tests maintained
in the archive. When a solution is being accepted, a newly
generated test that is required to keep it non-dominated is
also accepted to the archive. The solutions in archive that
become dominated by newly accepted solutions are removed.
For details of this procedure see [21].

B. Layered Pareto-Coevolutionary Archive (LAPCA)

LAPCA [22] maintains a set of Pareto layers. For a set of
solutions and tests (S = Sarch ∪ Snew, T = Tarch ∪ Tnew),
the first Pareto layer consists of all non-dominated solutions.
Each subsequent layer is obtained in a similar way, after
removing the solutions from all previous layers. The solution
archive consists of solutions of first l layers, where l is a
parameter of the method. In theory, l makes it easy to trade-
off the archive size (thus computational power) and reliability
of the archive. However, generally it is unknown which value
of l is right for a particular problem.

LAPCA maintains also archive Tarch of tests that separate
the solutions stored by Sarch. For any two solutions si, sj ∈
Sarch in layers i and j respectively, where |i − j| ≤ 1, if
there exists a test t ∈ T that orders si before sj , then such
a test must also be retained in Tarch. Tests are processed in
any order, and the first one that orders a not-yet-ordered pair
of solutions is selected to Tarch.

C. Compare-on-one game

We compare the discussed methods on COMPARE-ON-
ONE, a variant of the abstract Numbers Game [2], proposed
in [8] and widely used as a coevolutionary benchmark [22],
[23], [8], [13], [24], [10], [21], [1], [25]. In this game, strate-
gies are represented as vectors of non-negative real numbers
of length d, which we call here the a priori dimension of the

game. The outcome of an interaction between solution s and
test t is determined in two steps. First, t appoints the index
m of vector elements to be compared: m = arg maxi t[i],
where t[i] denotes the i-th element of vector t. Then,

G(s, t) ⇐⇒ s[m] ≥ t[m]

Figure 2 illustrates the principle beyond COMPARE-ON-
ONE for d = 2. Solution s1 solves only the tests from the
shaded polygon.

Both solutions and tests are represented as individuals
with a genotype of d genes, each corresponding to one
objective of the game. But, obviously, this fact, known to the
experimenter, is not known to the evolutionary algorithm.

Despite a straightforward formulation, COMPARE-ON-ONE
is challenging because it has been designed to induce over-
specialization: a co-evolving system of solutions and tests
can easily focus on some (or even a single) underlying
objectives, while ignoring the remaining ones. As soon as
all the tests start appointing the same comparison index m,
other objectives cease to matter, and it becomes difficult to
discover their importance. To make steady progress on this
problem, an algorithm has to carefully maintain the tests that
support all underlying objectives from the very beginning of
the run.

COMPARE-ON-ONE is obviously an artificial problem.
Thanks to that, we can objectively and precisely measure
the progress of coevolution, what is impossible in case of
practical test-based problems and real games2.

x

y

s1

Figure 2: Visualization of COMPARE-ON-ONE for d = 2. s1
solves all tests from the gray area.

D. Objective progress measures

To objectively monitor progress of algorithms on this
problem, we employ two measures: lowest dimension and
expected utility.

Lowest dimension was designed to detect over-
specialization and is the standard progress measure for
COMPARE-ON-ONE. For a given solution s, it is defined
as maxi s[i], and determines the ‘weakest point’ of the
solution.

Expected utility corresponds to the solution concept [4] of
Maximization of Expected Utility (c.f. [24]). Expected utility
of a solution s is formally the probability that s solves a
test. However, in absence of upper limits on vector elements,

2If it were possible, the objective measure could be used as fitness
function for a standard evolution and no coevolution would be necessary.

Algorithm 3 Coevolutionary framework

1: procedure COEVOLUTION
2: S, T ← Initialize populations
3: Sarch ← ∅
4: Tarch ← ∅
5: while ¬stopped do
6: Snew ← GenerateNewSolutions(S, Sarch)
7: Tnew ← GenerateNewTests(T, Tarch)
8: S ← S ∪ Snew

9: T ← T ∪ Tnew

10: Archive.Submit(S, T) . Updates Sarch and
Tarch

11: Evaluate(S, T)
12: S, T ← Select(S, T)
13: end while
14: end procedure

strategies can contain arbitrarily large numbers, and such
probability amounts to zero for all solutions. This is why
we equal the expected utility with the hypervolume of the
polyhedron that contains all the tests solved by s, visualized
for COMPARE-ON-ONE for d = 2 in Fig. 2 and for d = 3 in
Fig. 3. The hypervolume of such a polyhedron is given by:

U(s) =
1

d

∑
i=1...d

s[i]d

Figure 3: Visualization of COMPARE-ON-ONE for d = 3. A
solution s = [0.5, 0.8, 0.2] solves all tests bounded by the
polyhedron.

E. Experiment setup

Algorithm 3 details the overall coevolutionary framework
that is common for all the archive methods discussed in this
paper. The coevolutionary algorithm maintains n solutions
and n tests (here, n = 20) and works as follows. At the
beginning, both populations are initialized, with each gene
drawn at random from the [0, 1] range (line 2). Archives
are initially empty (lines 3-4). Afterwards, COEVOLUTION
iterates over consecutive generations in a way that resembles

an ordinary evolutionary algorithm. Each generation involves
breeding of new solutions and tests using the generator (lines
6 and 7), evaluation (line 11), and selection (line 12). The
following paragraphs detail these stages.

The exploration of the search space is driven by a genera-
tor which, in evolutionary terms, is responsible for providing
genetic variation. Technically, the generator of solutions
(GenerateNewSolutions in Alg. 3) and the generator of tests
(GenerateNewTests) work similarly. Generator produces n
individuals (offspring) in the following way. First, it ran-
domly decides (with equal probability) whether the parent
of the generated individual should come from the population
or from the archive. Next, the generator mutates the parent
and returns it as a new individual. The difference between
generating solutions and generating tests lies in handling
the archive. Generator of tests uses all tests from Tarch as
potential parents, whereas the generator of solutions uses
only the Pareto non-dominated solutions from Sarch as
potential parents (this increases the pressure towards better
solutions).

Mutation randomly perturbs two genes of an individual
(solution or test). As in [21], the mutation is uniform in
interval [−0.2, 0.1], thus it is negatively biased: it is more
likely to decrease a gene than to increase it. Such asymmetry
causes the problem to be harder and bear more resemblance
to real problems, where variation is more likely to cause
regress than progress.

For a similar reason our generators refrain from crossing
over the parent strategies: for this particular game of consid-
eration and this particular strategy encoding, crossover could
easily produce very good solutions and could alleviate to
some extent the intentionally built-in tendency to focusing,
rendering the game too easy3.

The rationale behind mutating exactly two of vector ele-
ments is that such variation simulates epistatic interactions
between the elements of the strategy or, in other words, a
non-trivial genotype-phenotype mapping [22] – the offspring
(generated strategy) differs from the parent on more than
one dimension (skill). Mutating only one element would
imply one-to-one correspondence between genes (strategy
elements) and game skills, which would be simplistic and
unrealistic from real-world perspective. Thus, modifying two
elements is the minimal non-trivial perturbation. This and
other aforementioned design choices make COMPARE-ON-
ONE, despite its simplicity, a realistic and scalable approxi-
mation of practical test-based problems.

After updating Sarch and Tarch by an appropriate archive
algorithm, COEVOLUTION proceeds to the evaluation phase,
where each solution from S is given a fitness value computed
as the number of tests it solves from T . Dually, the fitness
of a test t from T equals to the number of solutions from
S that does not solve t. This fitness determines the odds
for an individual to pass the subsequent selection, which is
implemented as tournament of size 2. Selection of solutions

3Consider, for example, two solutions: [0,10] and [10,0] and a possible
product of crossing-over them: [10,10]

proceeds independently from the selection of tests.
COEVOLUTION quits when the total number of evaluations

(games played) reaches 1, 000, 000. Note that the actual num-
ber of elapsed generations can be, and usually is, different
for particular algorithms and runs, because the number of
evaluations depends directly on the size of the archive, which
varies over time.

VII. RESULTS AND DISCUSSION

Charts presented in Figs. 4 and 5 summarize the results
of the conducted experiment for COMPARE-ON-ONE of di-
mensions d = 2, 3, and 5. LAPCA has been run thrice, for
l = 3, 5, 10 layers, to give it a chance of attaining good
performance. The left column of charts in Fig. 4 depicts
the performance of the algorithm expressed by the lowest
dimension of the best solution in the archive, and the right
one – the expected utility of the best solution in the archive.
In Fig. 5, all charts visualize the sizes of archives, left-hand
charts for solutions, right-hand charts for tests. All charts
present the averages of 10 runs.

The superiority of COSA for this problem is evident
and spans all considered problem instances and performance
measures. In particular, COSA is able to make a steady
progress in terms of the lowest dimension of the solutions.
The other algorithms lag far behind, particularly for harder
problems (larger d). LAPCA is quite good for d = 2. The
best version of LAPCA seems to be the one with 5 layers:
LAPCA-3 is initially better, but then slows down. For d = 2,
LAPCA-10 is slow, but still faster than IPCA. The things
change for d = 3, when IPCA gets better than all LAPCAs.
For d = 5 no substantial progress in the lowest dimension
is observed both for IPCA and LAPCA. All in all, COSA
copes with over-specialization better than other considered
methods.

The expected utility of the best evolved solution also votes
in favor of COSA. Therefore, the probability of a test being
solved by the best solution in the archive is highest for
COSA. The progress on this criterion looks polynomially for
all algorithms, because, roughly speaking, the hypervolume
depends on the dth power of the largest dimensions of
a solution. For the same reason, the absolute values of
this measure get much higher when increasing the problem
dimension.

Also from the viewpoint of archive sizes, COSA is among
the leaders. For solutions, it is neck and neck with IPCA,
and together they beat LAPCA. For d = 5, COSA seems
to noticeably subdue IPCA in the later phases of the search.
Strikingly, for d = 2 and 3 the number of solutions stored
in the archive is extremely low and does not increase over
time. For test archives, the differences between methods are
even more striking: this time, even IPCA is unable to keep
pace with COSA, which is not surprising as IPCA never
discards any older tests, while COSA stores only one test
per dimension and a few additional tests to separate solutions
in the Pareto layer. Our algorithm manages to maintain the
lowest number of tests, which is usually only a small fraction
of the archives of other methods. Most importantly, COSA’s

0

10

20

30

P
er
fo
rm

a
n
ce

(l
ow

es
t
d
im

en
si
on

)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of evaluations

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(a) d = 2, lowest dimension

0

200

400

600

800

P
er
fo
rm

a
n
ce

(e
x
p
ec
te
d
u
ti
li
ty
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of evaluations

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(b) d = 2, expected utility

0

5

10

15

P
er
fo
rm

an
ce

(l
ow

es
t
d
im

en
si
on

)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of evaluations

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(c) d = 3, lowest dimension

0

1000

2000

3000

4000

P
er
fo
rm

an
ce

(e
x
p
ec
te
d
u
ti
li
ty
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of evaluations

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(d) d = 3, expected utility

0

1

2

3

4

P
er
fo
rm

an
ce

(l
ow

es
t
d
im

en
si
on

)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of evaluations

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(e) d = 5, lowest dimension

0

5 · 103

1 · 104

1.5 · 104

P
er
fo
rm

a
n
ce

(e
x
p
ec
te
d
u
ti
li
ty
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of evaluations

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(f) d = 5, expected utility

Figure 4: Results for d-dimensional COMPARE-ON-ONE (d = 2, 3, 5) for two performance measures: expected utility and
lowest dimension

dimension COSA IPCA LAPCA-3 LAPCA-5 LAPCA-10

2 980.9±1.8 407.7±15.0 915.3±53.0 763.0±10.3 488.4±18.7

3 928.1±2.3 343.9±22.2 380.6±256.1 133.2±82.5 51.3±33.7

5 705.6±251.3 344.6±35.7 104.5±18.1 59.1±7.9 41.2±5.5

Table II: Average number of generations algorithms were able to perform during 1,000,000 evaluations

0

20

40

60

A
rc
h
iv
e
si
ze

(s
ol
u
ti
o
n
s)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of evaluations

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(a) d = 2

0

50

100

150

A
rc
h
iv
e
si
ze

(t
es
ts
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of evaluations

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(b) d = 2

0

100

200

300

400

A
rc
h
iv
e
si
ze

(s
ol
u
ti
on

s)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of evaluations

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(c) d = 3

0

50

100

150

A
rc
h
iv
e
si
ze

(t
es
ts
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of evaluations

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(d) d = 3

0

200

400

600

A
rc
h
iv
e
si
ze

(s
ol
u
ti
o
n
s)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of evaluations

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(e) d = 5

0

50

100

150

A
rc
h
iv
e
si
ze

(t
es
ts
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of evaluations

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(f) d = 5

Figure 5: Archive sizes for d-dimensional COMPARE-ON-ONE (d = 2, 3, 5)

archive sizes remain virtually constant over time and there is
no reason to doubt in further maintenance of this behavior,
while other archives’ sizes keep growing and do not seem to
saturate, which at some stage can render them useless.

The fact that IPCA is better than LAPCA for d = 3 and
that, in general, LAPCA performs so poorly is surprising,
since it contradicts the findings of earlier research [21], where
IPCA was found worse than LAPCA on a similar problem.
The charts in Fig. 5 suggest that the presumed reason for
that is an excessive growth of LAPCA’s archive, because the
Pareto layers contained many non-dominated solutions. This,
in turn, could be caused by the absence of crossover in our
setup ([21] used two-point crossover with 50% probability).
However, this hypothesis deserves a separate investigation.

As mentioned earlier, the number of iterations executed
by the coevolutionary loop (Alg. 3) depends on the sizes of
archives. We illustrate this dependency in Table II, where
we report the average number of generations that each
algorithm went through. The presented numbers resonate
with the charts: because COSA is able to maintain small
and approximately constant-sized archives, its run length
measured in generations is the highest and does not seem
to be affected by the dimensionality of the problem d, which
is not the case for LAPCA. This is critical, as the number of
iterations is also the number of generator invocations, which
are the only source of variability for the search.

VIII. SUMMARY

In this paper we proposed Coordinate System Archive, a
novel archive-based coevolutionary algorithm based on the
concept of underlying problem structure and coordinate sys-
tems. We demonstrated that COSA performs better than two
state-of-the-art algorithms on a class of problems, in terms
of both avoiding over-specialization and expected utility of
the produced solutions. Whether this class of COMPARE-ON-
ONE-alike problems is representative to a large class of real-
world problems or not is a question that we would like to
answer in future.

ACKNOWLEDGMENTS

This work was supported in part by Ministry of Science
and Higher Education grant # N N519350533. W. Jaśkowski
gratefully acknowledges financial support from grant # N
N516188337.

REFERENCES

[1] A. Bucci, J. B. Pollack, and E. de Jong, “Automated extraction
of problem structure,” in Genetic and Evolutionary Computation –
GECCO-2004, Part I, ser. Lecture Notes in Computer Science, K. D.
et al., Ed., vol. 3102. Seattle, WA, USA: Springer-Verlag, 26-30 Jun.
2004, pp. 501–512.

[2] R. A. Watson and J. B. Pollack, “Coevolutionary dynamics in a
minimal substrate,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), L. S. et al., Ed. San
Francisco, California, USA: Morgan Kaufmann, 7-11 Jul. 2001, pp.
702–709.

[3] J. P. Cartlidge, “Rules of Engagement: Competitive coevolutionary
dynamics in computational systems,” Ph.D. dissertation, University of
Leeds, 2004.

[4] S. G. Ficici, “Solution concepts in coevolutionary algorithms,” Ph.D.
dissertation, Waltham, MA, USA, 2004, adviser-Pollack, Jordan B.

[5] S. G. Ficici and J. B. Pollack, “Pareto optimality in coevolutionary
learning,” in Advances in Artificial Life, 6th European Conference,
ECAL 2001, ser. Lecture Notes in Computer Science, J. Kelemen and
P. Sosı́k, Eds., vol. 2159. Prague, Czech Republic: Springer, 2001,
pp. 316–325.

[6] J. Noble and R. A. Watson, “Pareto coevolution: Using performance
against coevolved opponents in a game as dimensions for pareto
selection,” in Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO-2001), L. S. et al., Ed. San Francisco,
California, USA: Morgan Kaufmann, 7-11 Jul. 2001, pp. 493–500.

[7] E. de Jong and A. Bucci, “Objective Set Compression. Test-Based
Problems and Multiobjective Optimization,” in Multiobjective Problem
Solving from Nature: From Concepts to Applications, J. K. et al., Ed.
Berlin: Springer, 2008, pp. 357–376.

[8] E. D. de Jong and J. B. Pollack, “Ideal Evaluation from Coevolution,”
Evolutionary Computation, vol. 12, no. 2, pp. 159–192, Summer 2004.

[9] W. Jaśkowski and K. Krawiec, “Formal analysis and algorithms for
extracting coordinate systems of games,” in IEEE Symposium on
Computational Intelligence and Games, Milano, Italy, 2009, pp. 201–
208.

[10] E. D. de Jong and A. Bucci, “DECA: dimension extracting coevolu-
tionary algorithm,” in GECCO 2006: Proceedings of the 8th annual
conference on Genetic and evolutionary computation, M. C. et al., Ed.
Seattle, Washington, USA: ACM Press, 2006, pp. 313–320.

[11] R. Dilworth, “A decomposition theorem for partially ordered sets,”
Annals of Mathematics, pp. 161–166, 1950.

[12] A. Bucci and J. B. Pollack, “A mathematical framework for the study
of coevolution,” in Foundations of Genetic Algorithms 7, K. A. De
Jong, R. Poli, and J. E. Rowe, Eds. San Francisco: Morgan Kaufmann,
2003, pp. 221–236.

[13] E. D. de Jong, “The Incremental Pareto-Coevolution Archive,” in
Genetic and Evolutionary Computation–GECCO 2004. Proceedings of
the Genetic and Evolutionary Computation Conference. Part I, K. D.
et al., Ed. Seattle, Washington, USA: Springer-Verlag, Lecture Notes
in Computer Science Vol. 3102, Jun. 2004, pp. 525–536.

[14] C. D. Rosin and R. K. Belew, “Methods for competitive co-evolution:
Finding opponents worth beating,” in ICGA, L. J. Eshelman, Ed. San
Francisco, CA: Morgan Kaufmann, 1995, pp. 373–381.

[15] C. Rosin and R. Belew, “New methods for competitive coevolution,”
Evolutionary Computation, vol. 5, no. 1, pp. 1–29, 1997.

[16] D. S. Johnson, “Approximation algorithms for combinatorial prob-
lems,” Journal of Computer and System Sciences, vol. 9, pp. 256–278,
1974.

[17] C. Lund and M. Yannakakis, “On the hardness of approximating
minimization problems,” Journal of the ACM (JACM), vol. 41, no. 5,
pp. 960–981, 1994.

[18] R. Möhring, “Algorithmic aspects of comparability graphs and interval
graphs,” Graphs and Order: The Role of Graphs in the Theory of
Ordered Sets and Its Applications, pp. 41–102, 1984.

[19] S. Felsner, V. Raghavan, and J. Spinrad, “Recognition algorithms for
orders of small width and graphs of small Dilworth number,” Order,
vol. 20, no. 4, pp. 351–364, 2003.

[20] H. Alt, N. Blum, K. Mehlhorn, and M. Paul, “Computing a maximum
cardinality matching in a bipartite graph in time O n 1.5 m/log n,”
Information Processing Letters, vol. 37, no. 4, pp. 237–240, 1991.

[21] E. D. de Jong, “A Monotonic Archive for Pareto-Coevolution,” Evo-
lutionary Computation, vol. 15, no. 1, pp. 61–93, Spring 2007.

[22] E. De Jong, “Towards a bounded Pareto-Coevolution archive,” in
Proceedings of the Congress on Evolutionary Computation CEC-04,
vol. 2. Portland, Oregon, USA: IEEE Service Center, Jun. 2004, pp.
2341–2348.

[23] E. De Jong and J. Pollack, “Learning the ideal evaluation function,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO-03. Berlin, 2003: Springer, 2003, pp. 274–285.

[24] E. de Jong, “The maxsolve algorithm for coevolution,” in GECCO
2005: Proceedings of the 2005 conference on Genetic and evolutionary
computation, H.-G. B. et al., Ed., vol. 1. Washington DC, USA: ACM
Press, 25-29 Jun. 2005, pp. 483–489.

[25] T. C. Service and D. R. Tauritz, “Co-optimization algorithms,” in
GECCO ’08: Proceedings of the 10th annual conference on Genetic
and evolutionary computation. New York, NY, USA: ACM, 2008,
pp. 387–388.

