
Analysis of Semantic Modularity for Genetic Programming

Krzysztof KRAWIEC Bartosz WIELOCH ∗

Abstract. In this paper we analyze the properties of functional modularity, a
concept introduced in [14] for detecting and measuring modularity in problems of au-
tomatic program synthesis, in particular by means of genetic programming. The basic
components of functional modularity approach are subgoals – entities that embody
module’s semantic – and monotonicity, a measure for assessing subgoals’ potential
utility for searching for good modules. For a given subgoal and a sample of solutions
decomposed into parts and contexts according to module definition, monotonicity
measures the correlation of distance between semantics of solution’s part and the fit-
ness of the solution. The central tenet of this approach is that highly monotonous
subgoals can be used to decompose the task and improve search convergence. In
the experimental part we investigate the properties of functional modularity using
eight instances of problems of Boolean function synthesis. The results show that
monotonicity varies depending on problem’s structure of modularity and correctly
identifies good subgoals, potentially enabling automatic program decomposition.

Keywords: Automatic Program Synthesis, Modularity, Problem Decomposition,
Evolutionary Computation, Genetic Programming

1 Introduction

The objective of this study is to explore a new formulation of detection and exploita-
tion of modularity in problems of automatic program synthesis. In general, the task
of automatic program synthesis may be formulated in the following way: given a
programming language L and a set of examples E of desired behavior of a program,
synthesize a program in L that reproduces that behavior. By behavior we mean here
the output produced by the program in response to some input, thus each example in
E is equivalent here to a pair, where the first element of the pair is the input data for
∗Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60965 Poznań,

Poland, {kkrawiec,bwieloch}@cs.put.poznan.pl



the program, and the second element of the pair is the desired output of the program.
The ultimate goal is to reproduce the behavior given by E perfectly; however, in case
of iterative methods, it is often necessary to know how much the actual program
output diverges from the desired one, which in turns implies the need of existence of
some kind of divergence measure (typically a metric).

Approaches to automatic program synthesis have originated from different branches
of computational intelligence. Examples include inductive logic programming and au-
tomatic feature construction for learning from examples. The background of this par-
ticular study is genetic programming (GP), an evolution-inspired method for program
synthesis. Technically, GP is a variant of evolutionary computation (EC) [11, 8, 18].
A typical GP algorithm is a randomized iterative parallel search procedure that main-
tains a set (population) of working solutions (individuals), each of them being a pro-
gram. The programs are composed of primitives (instructions) from a predefined set
and, in the most popular variant of GP introduced by Koza [12], take the form of
tree, with the leaves (terminals) representing input data and constants, and the inner
nodes (functions) processing the data up to the root node. In the evaluation phase
of the evolutionary algorithm, the data returned by the root node is compared to the
desired output and the quantitative (e.g., distance-based) outcome of this compari-
son, usually averaged over the examples from E , determines the fitness of the solution.
The fitness values of particular individuals determine the outcome of the subsequent
process of selection, which tends to terminate the unfit individuals and allows only
the more fit individuals to pass to the next stage – breeding. The breeding phase
typically embraces solution recombination, in which programs swap code fragments,
and mutation, in which randomly selected code fragments are randomly perturbed.
This process produces offspring solutions that fill up the new population, and the ar-
tificial evolution proceeds to the next generation. The search terminates when some
problem-specific stopping criteria (typically fitness level) are met.

It should be emphasized that due to the complexity of program synthesis task,
most of GP research does not involve off-shelf imperative programming languages.
Rather than that, the aim is typically to evolve expressions (algebraic, logic, etc.),
which are usually free of conditional statements and loops. This holds also for the
study reported here.

State-of-the-art research demonstrates that GP, similarly to other approaches to
automated program synthesis, fails to overcome an important challenge: scalability.
Canonical GP algorithms perform well as long as the number of independent variables
that form the input data is low and the expression to be evolved is relatively straight-
forward. Things get worse as problem instances become larger and more sophisticated.
This calls for an automatic decomposition of the task of program synthesis. Given a
difficult program synthesis task, a decomposition method would ideally break it down
into smaller subproblems, which would be easier to solve. The overall solution to
the original problem could be then easily assembled from the subproblems’ solutions.
Delivering such a method is a far-fetched goal of our research.

In this study we propose a specific methodology that aims at this goal, which we
refer to as functional modularity. However, due to the preliminary character of this
paper, we conduct our investigations abstracting from evolutionary computation: for-



malization as well as experimental results presented here concern static, non-evolving
samples of randomly generated programs. Thus, for a reader unfamiliar with GP, this
study may be considered as a statistical analysis of semantics of randomly generated
Boolean expressions.

The remaining part of this paper starts with a preliminary Section 2 that provides
general description of modularity and reviews research on this topic. In Section 3,
following [14] we motivate, define, and formalize our approach to this problem. Section
4 reports the results of experimental validation of functional modularity on eight
instances of two problems of logical function synthesis. Finally, Section 5 summarizes
the experimental outcomes and outlines the future research.

2 Defining and Exploiting Modularity

The No Free Lunch theorem states that no search algorithm is better than one when
compared on a uniformly distributed population of all problems [23]. In this light, su-
periority of some algorithms to others on real-world problems indirectly demonstrates
that some problems (and problem instances) are more likely to occur in practice than
others. This propels the quest for properties that are common for the real-world prob-
lems (or some classes of them) and that may be exploited in the search process for the
benefit of faster convergence. Examples of such properties studied in the past include
fitness-distance correlation, unimodality of the fitness landscape, and modularity, the
last one being of interest here.

The term ‘module’ is difficult to define without referring to a more specific back-
ground. There is quite firm agreement that a module is a part of solution (i.e.,
something that may be clearly delineated from the solution), such that it exhibits
some form of independence (full of partial) from the remaining part of solution (often
referred to as context). That independence is usually understood in terms of mod-
ule’s contribution to solution’s performance (fitness) [22]. In an extreme case of a
fully independent module, its contribution does not depend on the context, in which
case the problem becomes separable [21] and the module may be optimized indepen-
dently using any context. Such scenario is however unlikely in the real world, where
modules and contexts are usually interdependent: a module contributes to the over-
all fitness, but its contribution depends on the context. This dependency can take
on different forms and result in module’s observed contribution that is non-linear,
non-monotonous, or indeterministic, rendering module detection difficult. The other
factor that makes it hard is the likely presence of multiple modules, which gives rise
to exponential explosion (see [21] for an in-depth analysis of modularity and related
topics, like compositionality, accretive evolution, and the building block hypothesis).

The ability of a search algorithm to benefit from modularity is important, because
a large proportion of real-world problems turn out to have interdependent modules.
Detection and proper exploitation of modularity prior to or during search may speed
up convergence, prevent code bloat, and cause the evolved solutions to be more robust.
But most importantly, modularity is essential for scalability, which is a particularly
difficult issue for genetic programming (GP), as demonstrated in past research [15].



The strict definition of a module obviously depends on the representation of so-
lutions that the search algorithm operates on. In genetic algorithms (GA) or evolu-
tionary programming, where solutions are represented as vectors of variables, module
has a natural interpretation of a subset of variables. In tree-based GP, it is most
common to equate a module with a subtree. Methods referring to such module def-
inition include evolutionary module acquisition [2], automatically defined functions
[13], adaptive representations [19], and hierarchical genetic programming [3]. The
approaches proposed in past concerned not only canonical tree-based GP, but also
other representations like cartesian genetic programming [20]. However, what these
previous approaches have in common is their purely syntax-based formulation of mod-
ularity; in this paper, on the contrary, we aim at enriching the analysis of modularity
with program semantic.

In general, the concept of a module for optimizing a vector of variables and the
concept of a module for evolving executable programs are fundamentally different.
However, modularity for vector representations seems to be a good starting point for
introducing our idea of functional modularity. Thus, in following we briefly summarize
a recent study on modularity in GA, related to Harik’s work on learning gene linkage
[10] and Goldberg’s competent genetic algorithms [9].

In Watson’s and De Jong’s formulation [21, 7], given a set of variables V , a module
is identified with a subset of variablesM ⊂ V such that the linkage between variables
in M is tighter than the linkage between variables from M and the variables from the
context, i.e., V \M . The definition of linkage refers to the notion of context-optimal
setting, which is a combination of values of variables from M with the property of
being optimal for at least one combination of values of context variables. Depending
on the algorithm, the considered set of contexts may contain all possible contexts [22]
or a sample of them [7].

Given this background,M is a module if the number of its context-optimal settings
is smaller than the number of all possible settings of variables inM . It turns out that,
under assumption that the modules are hierarchically organized, it is possible to
effectively and robustly detect the modules without considering all possible contexts.
This idea has been exploited by Watson, Thierens, and de Jong, who designed the
hierarchical genetic algorithm (HGA) and have shown in [7] that it effectively solves
a subclass of artificial hierarchical modular problems [6]. This result was obtained in
the realm of Boolean problems, where enumerating the settings of a set of variables
is possible; an extension of this approach to real-valued problems is still to come.

3 Functional Modularity

The aforementioned variable-based concepts of module and its context-optimal set-
ting cannot be directly transplanted into the GP domain. First of all, variables in
optimization problems lack natural counterparts in GP. Secondly, even if we identify
a variable with, e.g., a specific locus of GP tree and treat a set of such loci as a
module, then the interplay between such a module and the remaining part of the
tree is complex and, in general, cannot be easily modelled using fitness contributions.



Thirdly, adopting such module definition still would not enable us to borrow some
concepts from HGA [7], as it would be computationally too expensive to enumerate
all possible settings of a module (a subtree in such case). And, last but not least, the
genotype-phenotype mapping in GP is many-to-one, i.e., different GP subtrees may
have the same semantics, so considering all of them seems superfluous.

However, we hypothesize that discovery of a module is possible without finding
its optimal settings. Using more general terms, the need for a specific module in
solution structure may be detected based on the structure (some characteristics) of
the solution space alone, even if we do not know what is the best value (setting) for
that module. To justify this claim, let us consider an illustrative optimization task
of designing a battery-powered torch, with the optimized objective (fitness) being
the time for which the torch’es brightness sustains a predefined threshold (maximal
uptime). Let us delineate two main torch parts: the battery and the bulb. For the
sake of this thought experiment, the battery will play the role of a module, while the
bulb will act as the context.

The common-sense knowledge suggests that the design of the battery is (at least
to some extent) independent of the design of the bulb. Some battery designs are
better than others, and some of them may be considered optimal, meaning that they
maximize the overall quality (fitness) of the entire solution (torch).

Let us now point out an important feature of modularity in this example. We
do not need to test the fitness of the torch to assess the quality of the battery it
contains. There may exist other quality measures, able to evaluate the settings of
the module in a way that is consistent with the fitness function. For the above
example, it might be the case that measuring the loss of battery voltage after it has
been short-circuited for a certain time is sufficient to accurately estimate the maximal
uptime of the torch. Even if such a perfectly consistent measure does not exist, then
it is likely that we can find some approximate surrogate for it, which is sufficiently
correlated with the fitness function. The existence of the former, fully consistent
measure would imply separability, the existence of the latter, approximate estimator
– modular interdependence (see Section 1 and [21]).

This example illustrates the possibility of detecting the need for a module in
problem structure by discovering the proper decomposition of solution and finding
an appropriate measure of module quality. To delineate such approach to defining
and analyzing modularity in GP from the more common syntax-based (or genotype-
based) methods, we coin the term functional modularity.

Finding a fully consistent measure of module quality may be difficult or impossible,
as it subsumes separability, which is infrequent in real-world design problems and
unrealistic in GP context for the reasons listed at the beginning of this section. In
general, the more interdependent the module and its context are, the more complex
the relation between such measures and the fitness function. In such circumstances,
rather than making a qualitative decision about module existence, it may be better
to quantify the degree of modularity of a particular module candidate. Analogously,
it seems more reasonable to consider multiple quality measures and evaluate their
utilities for module search, than pursuing the search for the ultimate best-of-all quality



measure that may never be found. These observations motivated our formal definition
of the functional module introduced in following.

3.1 Formalization

Let X be the set of all programs (solution space of the problem of consideration),
and let f : X → R be a maximized fitness function. A binary solution decomposition
function (decomposition for short) is any invertible function d : X → P × C that
decomposes a solution into two components, i.e., such that:

∀x ∈ X : d(x) = (p, c), d−1(p, c) = x, (1)

where p is called a d-part of x and c is the d-context of x. In following, p and c
are referred to as part and context and written as p(x) and c(x) when obtained from
solution x. We also assume that d is given and fixed, thus omitting the d prefix. P and
C are the sets of all possible parts and contexts, respectively. For the decomposition
d to be non-trivial, p(x) 6= x and c(x) 6= x must hold.

In general, elements of X, P and C are programs. Or, if one would like to reserve
the term ‘program’ to the piece of code that solves the entire problem, then the
elements of P and C should be called subprograms. The solution decomposition
function d must observe the constraints imposed by the syntax of the language used
for representing solutions, so that the parts and contexts constitute independently
executable pieces of code1. However, in the simple case of type-less Koza-I-style GP
considered in this paper, the distinction between X, P and C is immaterial: P and
C are equivalent to X, which is in this case the set of all trees that may be generated
given the set of terminals and set of functions (nonterminals).

A part quality function is any real-valued function fP : P → R. A part quality
function will be identified with a subgoal that parts are supposed to optimize, anal-
ogously to the way solutions optimize the fitness function f . We assume positive
preference ordering on fP , i..e., we aim at maximizing its value.

By monotonicity degree (monotonicity for short) m(fP , f) of fP with respect to
f we mean a real-valued function that measures some form of monotonicity (strict,
weak, or partial) between the values returned by fP and the values returned by f .
In this paper, we equate monotonicity with Spearman’s rank correlation coefficient.
Thanks to this, we can abstract from the metric scale of fitness and focus on actual
ordering of f and fP values. Technically, this measure is equivalent to the Pearson’s
correlation coefficient with ranks substituted for f and fP :

m(fP , f) := ρX(RfP ,Rf) = 1
σRfσRfP

∑
x∈X

(Rf(x)−Rf)(RfP (p(x))−RfP ), (2)

where RfP and Rf are raw scores of fP and f converted to ranks. σRf and σRfp
denote the standard deviations of RfP and Rf respectively. Other reasonable defi-
nitions of monotonicity include Kendall’s tau and ordinal contingency.

1More technically, it will become clear later that at least the part p has to be independently
executable.



Monotonicity measures how much the quality of the part in fP sense is correlated
with the fitness function f over the entire population of solutions X. An optimal part
quality function f∗P is any part quality function with the highest monotonicity:

f∗P = arg max
fP :P→R

m(fP , f) (3)

A problem given by solution space X and fitness function f is α-modular under
the assumed solution decomposition function d : X → P × C iff

m(f∗P , f) ≥ α. (4)

Let us now illustrate these notions in terms of the torch example presented earlier.
In that case, X is the population of all possible torch designs and f is the torch fitness
measure as defined in our thought experiment. The solution decomposition function
d decomposes a torch x ∈ X a into a battery p = p(x) and a bulb c = c(x), and the
sets P and C have the interpretation of, respectively, the populations of all batteries
and all bulbs that are d-compatible with the torch design, i.e., batteries and bulbs
that may be assembled into a torch using d−1. The fP functions are different battery
quality measures: some of them are highly monotone with respect to f (e.g., the initial
battery voltage), some of them not (e.g., battery color). The torch design problem is
α-modular if there exist a battery (part) quality function fP that has monotonicity
≥ α.

To summarize, a problem is α-modular if two conditions are fulfilled:

1. There exists a way of decomposing the problem into parts (solutions decompo-
sition function d).

2. For the given d, there exists a part quality function with monotonicity ≥ α.

The rationale behind such definition of functional modularity is obviously motivated
by the possible benefits from problem decomposition. Its exploitation could proceed
as in the following scenario (though other approaches are conceivable). If we knew
the solution decomposition function d and the corresponding optimal part quality
function f∗P , and if its monotonicity with respect to f would be sufficiently high,
we could decompose the problem using d. Then we could use f∗P to search for the
optimal part p∗; this search would take place in the solution space P , which we expect
to be smaller than X. Finally, having found p∗ (or its good approximation), we could
simplify the search in X (e.g., make it converge faster) by considering only solutions
x such that x = d−1(p∗, c), i.e., searching only the space of contexts.

In the extreme case of m(f∗P , f) = 1, such proceeding would guarantee finding the
optimal solution, provided we could find p∗. On the other hand, this is a degenerate
case that is beyond our interest: perfect correlation between part quality function
fP and fitness function f would imply that f does not depend on context; fP would
account for (explain) all the variability of f across solutions in X. In such a case,
context could be ignored, so no problem decomposition in the semantic sense would
take place.



3.2 Functional modularity for case-based problems

To enable practical realization we need to constrain fP to some implementable form.
As solution parts p ∈ P are programs, two following classes of part quality functions
seem natural: syntactic and semantic ones.

By syntactic part quality function we mean a function fP that relies exclusively
on the code of program p, i.e., how it looks. Such quality functions are appropriate
for, among others, problems that are decomposable due to independency between
particular components of program input, feed into GP tree via terminals. A simple
example could be here a bivariate symbolic regression aimed at finding the 3v2

1 + 2v2
2

function: a decomposition into two univariate problems constrained to particular
variables (v1, v2) is here obvious. fP should in such a case prefer parts (program
fragments) that use only some of the terminals, letting the remaining terminals to
be used in the context. Such decomposition related to structure of program input
data is sometimes known in advance thanks to domain knowledge; however, for many
real-world this particular type of decomposability cannot be assumed.

A nice property of the functional approach to modularity is its applicability to
other, non-syntactic properties of parts. We focus here on specific class of such func-
tions, called semantic part quality functions, which investigate how a program works
in order to assess its quality. In computer science, various definitions of program
semantics have been proposed in past; here, following former research in GP[17, 4],
we define the semantics of a program by what it does to the input data. We assume
that a set of l fitness cases is given that the programs (or program parts) may be
applied to. For a solution x, its semantics x is the vector of actual output values it
produces for the consecutive fitness cases. The particular type of the elements of x
(Booleans, reals, images, etc.) is irrelevant for our approach.

We also assume that the desired values to be returned by the program are known
for all fitness cases, and that the fitness function f measures some form of similarity
between x and the desired outputs. Formally, we redefine f as f(x) := s(x, f),
where s is a similarity metric and f is the vector of desired outputs. For the class of
logical problems considered in the next section, we base our maximized fitness on the
Hamming distance h:

s(x, f) := l − h(x, f). (5)

Under these assumptions there is one-to-one correspondence between fitness functions
f and the vectors of desired output values f . By the same token, we assume that each
part quality function fP corresponds one-to-one to a vector of desired output values
fP , called subgoal, and is redefined as fP (p) := s(p, fP ), where p is the vector of actual
output values produced by part p. For simplicity we assume that the same similarity
measure is used for x’s and p’s, though in some cases this may not hold (e.g., typed
GP trees may require different measures for xs and ps). Henceforth, the symbols f
and f as well as the symbols fP and fP will be used interchangeably.

Let us note that in GP, it sounds reasonable to equate the above syntax–semantics
distinction with the genotype–phenotype dichotomy. The authors would like to pro-
mote this viewpoint, despite the fact that opinions on what is the phenotype of a
GP program vary substantially across the GP community, ranging from the one used



here (program semantic) to its identification with the genotype. However, dictionary
lookup clearly favours the former case: phenotype is typically defined as ‘the set of
observable characteristics of an individual resulting from the interaction of its geno-
type with the environment’ [1]. The actions carried out by a program on data may
be definitely considered as genotype’s interaction with the environment. Also, such
interpretation of GP phenotype is consistent with the mounting agreement that phe-
notype should not be limited to physical manifestation in the form of an organism,
but embrace the entirety of genotype’s expression (cf. Dawkin’s concept of extended
phenotype [5]). Therefore, in our framework the syntactic quality functions work on
program genotype (a tree in the case of tree-based GP), while the semantic ones – on
program phenotype.

4 Experimental Analysis of Functional Modularity

In a long run, we are interested in exploiting the modularity for the sake of improving
search convergence and other properties of the search algorithm and/or the evolved
solutions. However, as mentioned earlier, the necessary precondition for modularity
exploitation is modularity detection. Thus, in the experimental part of this study we
investigate mainly the distribution of monotonicity within different GP problems and
their relationships with fitness, without actually running the evolution. More techni-
cally, all the results quoted in following have been obtained by computing appropriate
statistics from the same, problem- and instance-independent random sample of GP
individuals.

We approach two Boolean problems, called Xor and Or-And in following, and
consider four instances for both of them: 3, 4, 6, and 8-bit, where the number of
bits is also the number of input variables vi. The optimal solution in case of the Xor
instances is an expression that implements the exclusive-or operation on all the input
variables. In case of Or-And problems, the optimal solution is any expression that
implements the same semantics as the following expressions:

• Or-And-3 : (OR (AND v1 v2) v3),

• Or-And-4 : (OR (AND v1 v2) (AND v3 v4)),

• Or-And-6 : (OR (OR (AND v1 v2) (AND v3 v4)) (AND v5 v6)),

• Or-And-8 : (OR (OR (AND v1 v2) (AND v3 v4)) (OR (AND v5 v6) (AND v7
v8))),

For the 3-bit problems, assuming the typical ordering of the l = 23 = 8 fitness cases
(v3, v2, v1) = [000, 001, . . . , 111], the vector of desired values f is [01101001] for Xor-3
problem and [00011111] for Or-And-3. By analogy, for 4-bit problems we have l =
24 = 16 fitness cases and the vector of desired values f is [0110100110010110] for Xor-
4 and [0001000100011111] for Or-And-4, assuming an ordering of fitness cases from
0000 to 1111. Analogous desired semantics of lengths 64 and 256 can be calculated
for 6- and 8-bit problems, respectively.



Different structures of modularity are expected to emerge for these problems. We
anticipate Xor to exhibit weaker modularity due to its perfect symmetry with respect
to the independent variables (swapping the variables does not change the desired
value) and due to hypothesized ‘ruggedness’ of its fitness landscape, resulting from
extreme sensitivity to the states of single variables (flipping any input variable flips
the desired output value).

Monotonicity of subgoals is estimated for each problem separately. For 3-bit and
4-bit problems, the small number of fitness cases l = 8 (or l = 16) allows us to consider
all possible 28 = 256 (or 216 = 65536) part quality functions (subgoals). For 6-bit
and 8-bit problems, the numbers of subgoals are prohibitively large. Thus, for these
instances we limit our considerations to a sample of 1,000 subgoals – one being the
appropriate vector of desired values f and 999 randomly generated ones.

Ideally, one would estimate monotonicity by enumerating all possible solutions in
X (see Formula (2)) for a certain expression tree depth limit (17 in case of standard
‘Koza-I-style’ parameter settings). This is unfortunatelly computationally infeasible.
Thus, we estimate monotonicity from a sample of 1,000,000 individuals generated
using ramped half-and-half method with the ramp from 2 to 10 inclusive. Other pa-
rameters are set according to standard settings for the parity problem as implemented
in the ECJ software library [16]. In particular, we use function set consisting of four
binary functions: And, Or, Nand, and Nor.

Each individual from the sample is partitioned into part p and context c using
decomposition function d defined as d(x) = (‘the leftmost child of the root node
of x’, ‘the remaining part of x’) (see Formula (1)). For instance, the result of
decomposition function applied to the tree that defines our Or-And-3 problem is
d((OR(AND v1 v2) v3)) = (p, c) = ((AND v1 v2), (OR# v3)), where # denotes an
empty tree branch. If x contains only one node and thus the leftmost child of the
root is absent, we ignore the individual and generate another one in its place. Next,
for each subgoal, we calculate its monotonicity (see Formula (2)) using our sample of
individuals.

The symmetry of the space of Boolean functions is an important feature that must
not be ignored in this study. For any fitness function f and its logical negation f it
holds that s(x, f) = l − s(x, f) for all x ∈ X. This implies that an evolutionary
process driven by fitness function f essentially solves two problems at a time: that of
minimizing the individual’s distance from f and that of maximizing its distance from
f . Technically, solving a problem given by f is equivalent to solving a problem given
by f .

Another property of Boolean problems that stems from the choice of functions is
that the a priori probabilities of generating an individual with semantic x and that
of generating an individual with semantic x are in general very close. In particular,
for the specific set of functions used in this study these probabilities are exactly the
same. Obviously, the same can be said about the semantics of parts, p and p. As a
consequence, an individual that contributes positively to monotonicity of a subgoal
fP , necessarily contributes negatively to monotonicity of subgoal fP . Over the sample,
these contributions greatly compensate each other and the resulting monotonicities
are very close to zero.



To compensate for this, we employ a de-symmetrized fitness function by redefining
s in the following way (cf. Formula (5)):

s(x, f) := l −min(h(x, f), h(x, f)). (6)

So, we consider the f task and the f task equivalent, and an individual is rewarded
either for optimizing f or optimizing f , whatever it is better at. We adopt an analogous
modification to part quality functions fP . As a result, f and fP range from l/2 to l.

4.1 Intra-problem monotonicity distribution

Figures 1 and 2 present the monotonicity of subgoals for particular instances of the
Xor problem and the Or-And problem, respectively. The subgoals have been ordered
according to the increasing value of monotonicity. For clarity, the horizontal axes
are labelled only by the first and the last subgoal in this order. Let us remind that
for 3- and 4-bit instances, these axes list all possible subgoals, while for the 6- and
8-bit instances, they embrace the 1000 subgoals from the sample. For the former
instances, the abscissa labels illustrate the semantics of the lowest- and the highest-
ranked subgoals; for the latter instances, semantics are too long and hence not shown.

It is easy to notice that for both problems and all instances, monotonicity signif-
icantly varies across subgoals. In particular, highly-monotonous subgoals are infre-
quent. Also, some subgoals are ‘deceptive’ in the sense that they have remarkably
negative monotonicity. This result indicates that, in the space of semantics of parts
(subgoals), there are points (‘good’ subgoals) with the property that if the semantic
of the part becomes more similar to one of them, then the fitness of the entire in-
dividual/solution is likely to increase. And conversely, there are also ‘bad’ subgoals
with the inverse property. In short: monotonicity differentiates the subgoals in a way
that is consistent with the fitness landscape.

In terms of α-monotonicity (Formula (4)), Xor-3 is approximately 0.35-modular
as the maximum monotonicity over all subgoals amounts here to 0.3497. Or-And-3
has the maximum subgoal monotonicity around 0.4 (precisely: 0.4005).

An analogous relation holds for 4-bit instances: Xor-4 is 0.41-modular and Or-
And-4 is 0.46-modular. For these instances, the ranges of monotonicity are wider
than for 3-bit: [−0.18, 0.41] for Xor-4, and [−0.40, 0.46] for Or-And-4. It may be
observed that the analogous ranges for 6- and 8-bit instances of Xor problem are
wider than for smaller ones, but for the Or-And problem the tendency is completely
opposite – the range of monotonicity for Or-And-8 instance is much narrower than
for Or-And-3.

4.2 Inter-problem differences in monotonicity

The mean monotonicity over all subgoals is very close to zero for both problems and
all instances. However, the graphs in Figures 1 and 2 clearly demonstrate that Or-And
and Xor have notably different distributions of monotonicity across the subgoals: for



instance, the monotonicity of Or-And-3 subgoals seems more dispersed than of Xor-3.
This is confirmed by standard deviations, which amount to 0.0973 and 0.1191 for Xor-
3 and Or-And-3, respectively. The difference between the corresponding variances
seems statistically significant (p-value of F -test < 0.05), though the variables are not
normally distributed. For the 4-bit problems, the difference is also remarkable (0.0705
for Xor-4 and 0.1641 for Or-And-4 ) and significant (p < 10−30). This indicates that
the Or-And problems are more modular than the Xor problems. Interestingly, this
observation seems to hold independently on instance size. Thus, different problems
tend to exhibit different structure of monotonicity.

Not surprisingly, the subgoal that maximizes monotonicity is that one which is
equivalent to the vector f of desired values of the fitness function. This holds for all
problems and instances; e.g., for And-Or-3, that subgoal is 00011111. Explanation of
this observation is straightforward: if by chance solution’s part p(x) returns f and the
processing performed by the context does not affect it, so that the entire tree returns
f , the solution’s contribution to subgoal’s monotonicity is very high.

Because of this phenomenon, we observe a prominent peak of monotonicity at
the rightmost end of all charts. The monotonicities of subsequently ranked subgoals
are remarkably lower. However, this decline is more prominent for the Xor prob-
lems, particularly for 6- and 8-bit instances; for Or-And, the group of subgoals having
monotonicity around 0.2 is quite numerous, while for Xor it is empty for most in-
stances. This may indicate that the Or-And problem is more modular and gives more
hope for being automatically decomposed.

4.3 Relation between monotonicity and fitness

The previous two sections focused on the global, unconditional, distribution of mono-
tonicity in the sample of subgoals. The objective of the analysis presented in following
is to relate those results to the fitness of complete solutions. More technically, we ver-
ify whether the well-performing solutions are more modular than the other ones.

We do that by analyzing in more detail the sample used for the estimation in
Sections 4.1 and 4.2. To this aim, we group the 1,000,000 individuals with respect to
fitness. Then, within each fitness group, we perform the following: from each individ-
ual x, we extract its part p(x), calculate its semantics p(x), and find the subgoal that
is most similar to it in terms of Hamming distance (including the desymmetrization
process). This results in each individual in each fitness group having one subgoal as-
signed to it. Finally, we average the monotonicities within the fitness group, obtaining
the mean intra-group monotonicity.

When a fitness group is smaller than five individuals, we restrain from calculating
the mean, as this would imply very wide confidence intervals and would not tell us
much. This happened in all 4-or-more-bits instances except for Or-And-4 and was
obviously more likely for higher fitness values. For Xor-4 the best reached fitness of
14 was attained by only one out of 1,000,000 individuals in the sample, for Xor-6 only
two individuals scored 39 (and none more), and for Xor-8 only four individuals scored



Monotonicity of Xor−3

m
on

ot
on

ic
ity

01010100 01101001

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Monotonicity of Xor−4

m
on

ot
on

ic
ity

0010001011110010 0110100110010110

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Monotonicity of Xor−6

m
on

ot
on

ic
ity

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Monotonicity of Xor−8

m
on

ot
on

ic
ity

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Figure 1: Monotonicity of all subgoals for Xor problem estimated from 1,000,000
random individuals.



Monotonicity of Or−And−3

m
on

ot
on

ic
ity

11101110 00011111

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Monotonicity of Or−And−4

m
on

ot
on

ic
ity

0000011001100000 0001000100011111

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Monotonicity of Or−And−6

m
on

ot
on

ic
ity

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Monotonicity of Or−And−8

m
on

ot
on

ic
ity

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Figure 2: Monotonicity of all subgoals for Or-And problem estimated from 1,000,000
random individuals.



●

●
●

●

●

Mean intra−group monotonicity for Xor−3

fitness

m
on

ot
on

ic
ity

●

●
●

●

●

4 5 6 7 8

−
0.

2
0.

0
0.

2
0.

4

●

●
●

●

●

●

Mean intra−group monotonicity for Xor−4

fitness

m
on

ot
on

ic
ity

●

●
●

●

●

●

8 9 10 11 12 13

−
0.

2
0.

0
0.

2
0.

4

●

●
●

● ●
●

●

Mean intra−group monotonicity for Xor−6

fitness

m
on

ot
on

ic
ity

●

●
●

● ●
●

●

32 33 34 35 36 37 38

−
0.

2
0.

0
0.

2
0.

4

●

●
●

●
●

●
● ●

Mean intra−group monotonicity for Xor−8

fitness

m
on

ot
on

ic
ity

●

●
●

●
●

●
● ●

128 129 130 131 132 133 134 135

−
0.

2
0.

0
0.

2
0.

4

Figure 3: Mean intra-group monotonicity of Xor instances estimated from 1,000,000
random individuals.



●
●

●

● ●

Mean intra−group monotonicity for Or−And−3

fitness

m
on

ot
on

ic
ity

●
●

●

● ●

4 5 6 7 8

−
0.

2
0.

0
0.

2
0.

4

●
●

●

●

●

●

●

●

●

Mean intra−group monotonicity for Or−And−4

fitness

m
on

ot
on

ic
ity

●
●

●

●

●

●

●

●

●

8 9 10 11 12 13 14 15 16

−
0.

2
0.

0
0.

2
0.

4

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

Mean intra−group monotonicity for Or−And−6

fitness

m
on

ot
on

ic
ity

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

32 34 36 38 40 42 44 46 48 50 52 54 56

−
0.

2
0.

0
0.

2
0.

4

●

●

●
●

●

●

●

●

●
●

●
●

● ● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

Mean intra−group monotonicity for Or−And−8

fitness

m
on

ot
on

ic
ity

●

●

●
●

●

●

●

●

●
●

●
●

● ● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

128 137 146 155 164 173 182 191 200 209

−
0.

2
0.

0
0.

2
0.

4

Figure 4: Mean intra-group monotonicity of Or-And instances estimated from
1,000,000 random individuals.



better than 135. As the Or-And problem is much easier, for 3- and 4-bits instances
each possible fitness was attained at least by several hundreds random individuals.
For bigger instances of Or-And, similarly to Xor, many fitness groups did not contain
at least five individuals and are not shown in the graph.

Let us emphasize that matching part semantics p(x) to subgoals is qualitatively
different depending on instance size. For 3- and 4-bit instances, the set of considered
subgoals is complete, so finding a subgoal that perfectly matches part semantics (in
other words, the subgoal that is realized by the part p(x); zero Hamming distance) is
guaranteed. This is not the case for 6- and 8-bit instances where the subgoal sample
is only a tiny fraction of entire subgoal space: here, the Hamming-closest subgoal may
differ from p(x) on an arbitrary number of bits (fitness cases).

Figures 3 and 4 present the values of the mean intra-group monotonicity for
particular fitness groups accompanied by 0.95-confidence intervals. For the above-
mentioned reason, the horizontal axes do not reach the optimum fitness values for
most instances. For the difficult Xor problems, the means are rather close to zero,
similar to each other, and do not seem to change systematically; for larger instances,
they even slightly decrease with fitness. This suggests that, in terms of fitness, there
are no definitely good and definitely bad subgoals in this problem. However, for the
presumably more modular (with respect to assumed decomposition function d) Or-
And problem, the values of intra-group monotonicity are more diversified and seem
to increase with fitness. This demonstrates that for Or-And, monotonicity can serve
as an indicator of subgoal’s usefulness. The fact that for the Or-And-4 instance all
the means are negative does not undermine this conclusion. As mentioned in Section
4.2, the overall average monotonicity for a given problem is virtually zero, so what
counts are the differences between fitness groups.

For the larger instances of Or-And, a remarkable bifurcation of the monotonicity
can be observed that follows the pattern of alternating fitness values: mean mono-
tonicity for odd-fitness groups is often significantly higher than the means in the
adjacent even-fitness groups. This artefact inclined us to investigate the parity of
semantics in our sample. As it turned out, the Boolean functions used in our setup
together with all input variables (GP terminals) having an even number of ones in
their semantics introduce a strong bias in favor of trees that have semantics with an
even number of ones. The odds for that increase with instance size and varying from
around 3:1 (for the sample used for 3-bit instances) to 9:1 (for the sample used for
8-bit instances). This obviously affects also parts, but because they are smaller, the
odds are even more extreme: from 4.5:1 to 12:1, respectively. We hypothesize that
this introduces some form of imbalance in sampling the semantic spaces of solutions
and trees, which in turns results in the observed bifurcation.



5 Discussion and Conclusions

The experimental results authorize us to formulate the following claims:

1. For some problem instances, different subgoals tend to have significantly differ-
ent monotonicity.

2. Problem instances display different structure of monotonicity, meant as the
characteristics of the distribution of monotonicity across the subgoals.

3. For some problem instances, the monotonicity of solution’s closest subgoal pos-
itively correlates with its fitness.

To some extent, these observations may be generalized from problem instances to
problems (Xor and Or-And). Because there is no reason to suppose that for all other
problems of logic function synthesis it should be different, we can hypothesize that
some problems tend to be less modular (close-to-uniform distribution of monotonic-
ity), and some more modular (significantly non-uniform distribution of monotonicity).
This gives hope for delineating the class of semantically modular problems. For such
problems, decomposition based on functional modularity is likely to provide better
scalability and enable solving problems that remain intractable using contemporary
computational resources.

Many questions and research issues pertaining to this study remain open. To
become applicable in practice, functional modularity has to be extended beyond the
realm of Boolean problems, which may prove difficult due to non-discrete form of
semantics. Also, as requiring a human to provide the appropriate decomposition
function d is far from realistic in most real-world scenarios, a complete decomposition
algorithm should be able to discover it autonomously. In particular, for the sake of
clarity, in this paper we used a specific decomposition function d that defines part
as the left-hand subtree of the root node. It should be emphasized that this form of
decomposition has potential drawbacks: the context is forced to aggregate the output
produced by the part with the values returned by the context using a single operation.
The existence of ideal solutions for the problems considered in this paper implies that
such aggregation is possible, yet not necessarily for all possible subgoals. Moreover,
even if for some subgoal there exists an optimal context that makes the entire solution
ideal, then from the viewpoint of search effort of an evolutionary run (measured, e.g.,
as the expected number of evaluations needed to find the optimum), some subgoals
and some contexts may be easier to optimize than others.

We hypothesize that using other decomposition functions d can alleviate this diffi-
culty. A simple example of such function could be d that defines part as the left-hand
child of left-hand child of the root, and context as the remaining part of the tree. In
such a case, context would have two operations at its disposal to combine the out-
put of the part with the values computed by the context, and it could use different
right-hand arguments for these operations. Therefore, there would be more ‘degrees
of freedom’ in the search process and it should be easier to evolve an optimal context.

It is interesting to note that this line of reasoning leads in the end to decomposi-
tion functions d that define part a the leftmost leaf of the tree. Such decomposition



definitely gives a lot to say to the context, so that the abovementioned risk of the
context not being able to incorporate the semantics of the part is neglectable. How-
ever, a part defined in such a way is very unlikely to have any impact on the overall
semantics of the entire tree. Thus, we conclude that using different decomposition
functions allows us to control the trade-off between the difficulty of optimizing the
context and the contribution of part semantics to the entire solution.

Another question pertains to computational efficiency: in terms of the expected
time required to find the optimal solution, does it pay off to decompose the problem
into two subproblems and solve them independently, given the extra overhead imposed
by the analysis of monotonicity? And if yes, then when? Finally, a more complete
theory supporting this approach would be of much help.

The above experimental analysis is a proof-of-concept demonstrating that func-
tional modularity may be helpful for characterizing the compositionality and difficulty
of a problem. Knowing the structure of modularity for a particular problem is the
first step for effective exploitation of monotonicity, which we will pursue in future
research.

Acknowledgments

This research has been supported by research grants DS-91-471 and N N519 3505 33.

References

[1] New Oxford American Dictionary. 2008.

[2] P. J. Angeline and J. B. Pollack. The evolutionary induction of subroutines.
In Proceedings of the Fourteenth Annual Conference of the Cognitive Science
Society, pages 236–241, Bloomington, Indiana, USA, 1992. Lawrence Erlbaum.

[3] W. Banzhaf, D. Banscherus, and P. Dittrich. Hierarchical genetic programming
using local modules. Technical Report 50/98, University of Dortmund, Dort-
mund, Germany, 1998.

[4] L. Beadle and C. Johnson. Semantically driven crossover in genetic programming.
In J. Wang, editor, Proceedings of the IEEE World Congress on Computational
Intelligence, pages 111–116, Hong Kong, 1-6 June 2008. IEEE Computational
Intelligence Society, IEEE Press.

[5] R. Dawkins. The Extended Phenotype : The Long Reach of the Gene. Oxford
University Press, USA, August 1999.

[6] E. D. de Jong, R. A. Watson, and D. Thierens. A generator for hierarchical
problems. In GECCO ’05: Proceedings of the 2005 workshops on Genetic and
evolutionary computation, pages 321–326, New York, NY, USA, 2005. ACM.



[7] E. D. de Jong, R. A. Watson, and D. Thierens. On the complexity of hierarchical
problem solving. In GECCO ’05: Proceedings of the 2005 conference on Genetic
and evolutionary computation, pages 1201–1208, New York, NY, USA, 2005.
ACM.

[8] D. Goldberg. Genetic algorithms in search, optimization and machine learning.
Addison-Wesley, Reading, 1989.

[9] D. E. Goldberg. The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[10] G. Harik. Learning Gene Linkage to Efficiently Solve Problems of Bounded Dif-
ficulty Using Genetic Algorithms. PhD thesis, University of Illinois at Urbana-
Champaign, 1997.

[11] J. Holland. Adaptation in natural and artificial systems, volume 1. University of
Michigan Press, Ann Arbor, 1975.

[12] J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[13] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge Massachusetts, May 1994.

[14] K. Krawiec and B. Wieloch. Functional modularity for genetic programming. In
G. Raidl, F. Rothlauf, G. Squillero, R. Drechsler, T. Stuetzle, M. Birattari, C. B.
Congdon, M. Middendorf, C. Blum, C. Cotta, P. Bosman, J. Grahl, J. Knowles,
D. Corne, H.-G. Beyer, K. Stanley, J. F. Miller, J. van Hemert, T. Lenaerts,
M. Ebner, J. Bacardit, M. O’Neill, M. Di Penta, B. Doerr, T. Jansen, R. Poli,
and E. Alba, editors, GECCO ’09: Proceedings of the 11th Annual conference
on Genetic and evolutionary computation, pages 995–1002, Montreal, 8-12 July
2009. ACM.

[15] M. Looks. Competent Program Evolution. Doctor of science, Washington Uni-
versity, St. Louis, USA, 11 Dec. 2006.

[16] S. Luke. ECJ evolutionary computation system, 2002. (http://cs.gmu.edu/
eclab/projects/ecj/).

[17] N. F. McPhee, B. Ohs, and T. Hutchison. Semantic building blocks in genetic
programming. In M. O’Neill, L. Vanneschi, S. Gustafson, A. I. Esparcia Alcazar,
I. De Falco, A. Della Cioppa, and E. Tarantino, editors, Proceedings of the 11th
European Conference on Genetic Programming, EuroGP 2008, volume 4971 of
Lecture Notes in Computer Science, pages 134–145, Naples, 26-28 Mar. 2008.
Springer.

[18] Z. Michalewicz. Genetic algorithms + data structures = evolution programs.
Springer-Verlag, Berlin, 1994.



[19] J. P. Rosca and D. H. Ballard. Genetic programming with adaptive represen-
tations. Technical Report TR 489, University of Rochester, Computer Science
Department, Rochester, NY, USA, Feb. 1994.

[20] J. A. Walker and J. F. Miller. The automatic acquisition, evolution and reuse of
modules in cartesian genetic programming. IEEE Transactions on Evolutionary
Computation, 12(4):397–417, Aug. 2008.

[21] R. Watson. Compositional Evolution: Interdisciplinary Investigations in Evolv-
ability, Modularity, and Symbiosis. PhD thesis, Brandeis University, 2002.

[22] R. A. Watson and J. B. Pollack. Modular interdependency in complex dynamical
systems. Artif. Life, 11(4):445–458, 2005.

[23] D. Wolpert and W. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997.


	Introduction
	Defining and Exploiting Modularity 
	Functional Modularity
	Formalization
	Functional modularity for case-based problems

	Experimental Analysis of Functional Modularity
	Intra-problem monotonicity distribution 
	Inter-problem differences in monotonicity 
	Relation between monotonicity and fitness

	Discussion and Conclusions

