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Abstract
One way of solving multi-label classification
is to reduce the original problem to a number
of simple binary problems, for which we can
use any existing learning algorithm. The sim-
plest reduction for multi-label classification un-
der Hamming loss is the so-called binary rele-
vance (BR), in which an independent binary clas-
sifier is trained for each label. This approach is
statistically consistent, but its train and test time
complexity is linear (in the number of labels)
which can be too expensive in many applica-
tions. Many reduction approaches exist that im-
prove over the complexity of BR, but quite often
they sacrifice statistical consistency. We intro-
duce and analyze two label-tree-based reduction
techniques that are consistent and significantly
improve the test time complexity. As the main
theoretical result we prove the regret bounds for
these algorithms. Moreover, the empirical stud-
ies show competitive results in comparison to the
state-of-the-art methods.

1. Introduction
Nowadays learning problems are characterized not only by
a large number of examples and features, but also by a
large number of labels. In these problems we often deal
with tens or hundreds of thousands (Deng et al., 2009), or
even millions of labels (Agrawal et al., 2013). Applications
of that kind can be found in image classification (Deng
et al., 2011), text document classification (Dekel & Shamir,
2010), on-line advertising (Beygelzimer et al., 2009a), and
video recommendation (Weston et al., 2013).
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The simplest reduction for multi-label classification under
Hamming loss is the so-called binary relevance (BR), in
which an independent binary classifier is trained for each
label. This approach is statistically consistent, i.e., by solv-
ing the resulting binary classification problems optimally,
we get an optimal solution for the multi-label problem.
However, the linear (in the number of labels) train and test
time complexity of BR can be too expensive in many ap-
plications. Many reduction approaches exist that improve
over the complexity of BR, but quite often they sacrifice
statistical consistency. The most popular approaches are
PLST (Tai & Lin, 2012), compressed sensing (Hsu et al.,
2009), and robust Bloom filters (R-BF) (Cisse et al., 2013).

In this paper we introduce and analyze two algorithms, re-
ferred to as probabilistic trees (PT) and BR-trees, that are
based on the label tree approach which organizes classifiers
in a tree structure. Classification of a test example relies
then on a sequence of decisions made by these classifiers,
leading the test example from the root to the leaves of the
tree. The label tree approaches aim mainly in improving the
test time complexity and belong to the most efficient ones
for the problems with a large number of labels (Beygelz-
imer et al., 2009b; Bengio et al., 2010; Deng et al., 2011).
It is usually assumed that learning can be more costly and
performed off-line (Bengio et al., 2010). This assumption
is reasonable in many large-scale machine learning applica-
tions in which classification/test time is of the main interest.
A similar assumption is also made in other domains, like in
databases, where index structures are built for efficient data
access, or in information retrieval, where expensive learn-
ing of hash codes is used to optimize their performance.

Both algorithms introduced in this paper significantly im-
prove the test time complexity over BR. In the best case
scenario, we can get logarithmic complexity in the num-
ber of labels. The first algorithm, PT, can also be faster
in training than BR, while the second algorithm, BR-trees
needs two times more time than BR for training. The space
complexity of both algorithms is twice the complexity of
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BR. From statistical point of view, the main advantage of
the introduced algorithms is their statistical consistency. As
the main theoretical contribution of this paper we prove the
regret bounds for these two algorithms. We also perform
a large experiment, in which we show that our approach is
competitive to R-BF in terms of time complexity and pre-
dictive performance under the Hamming loss, micro- and
macro-F-measure.

There are only few related approaches suited for multi-
label classification. A similar tree structure is considered
in (probabilistic) classifier chains (Read et al., 2009; Dem-
bczyński et al., 2010) and condensed filter trees (Li &
Lin, 2014), but the leaf nodes in these approaches cor-
respond to label combinations, not to single labels as in
our case. Therefore the test time complexity of these ap-
proaches is linear in the number of labels. PT can be in
fact treated as a specific variant of conditional probabil-
ity trees (Beygelzimer et al., 2009b) or probabilistic classi-
fier chains suited for Hamming loss minimization. PT are
also similar to Homer (Tsoumakas et al., 2008), which uses
the same transformation of training examples, but does not
have probabilistic interpretation. We discuss thoroughly
the difference between PT and Homer further in the paper.
BR-trees, in turn, adapt to some extent the underlying idea
of filter trees (Beygelzimer et al., 2009a) to the problem of
Hamming loss minimization. There is, however, no tour-
nament between labels, as they are all predicted simultane-
ously. There is also a similarity of our work to hierarchical
multi-label classification (Vens et al., 2008), but in our case
we assume that the hierarchical structure is not given and
do not consider any hierarchy-based loss function.

The paper is organized as follows. We formally define the
problem in Section 2. Section 3 defines the label tree clas-
sifiers in a more precise way. PT are introduced and ana-
lyzed in Section 4, while BR-trees in Section 5. Section 6
presents the experimental results. Section 7 concludes the
paper.

2. Problem statement
Let L = {λ1, λ2, . . . , λm} be a finite set of labels. In
multi-label classification each instance x ∈ X , where X
denotes a feature space, is (non-deterministically) associ-
ated with a subset of labels L+ ∈ 2L; this subset is often
called the set of relevant (positive) labels, while the com-
plement L \ L+ is considered as irrelevant (negative) for
x. We identify a set L+ of relevant labels with a binary
vector y = (y1, y2, . . . , ym), in which yi = 1 iff λi ∈ L+.
We refer to vector y as a label vector. The set of all pos-
sible label combinations is denoted by Y = {0, 1}m and
its cardinality is 2m. We assume that observations (x,y)
are generated independently and randomly according to a
probability distribution P (x,y) on X × Y .

The goal in multi-label classification is to train a classifier
h(x) whose predictions ŷ = (ŷ1, ŷ2, . . . , ŷm) are as close
as possible to true label vectors y of instances x ∈ X . By
hi(x) we denote the prediction of h for the i-th label.

There is a multitude of loss functions that can be consid-
ered for assessing the predictive performance of a multi-
label classifier. In the following, we focus on Hamming
loss defined as:

`H(y, ŷ) =
1

m

m∑
i=1

Jyi 6= ŷiK

where J·K is the indicator function. Remark that Jyi 6= ŷiK
is the typical 0/1 loss used in binary classification, which
we denote by `0/1. The expected loss, also referred to as
risk, is defined by:

L(h, P ) = E [`(Y ,X)] =

∫
`(y,h(x)) dP (x,y) ,

For the Hamming loss, the risk gets the following form:

LH(h, P ) =
1

m

∫ m∑
i=1

`0/1(yi,hi(x))dP (x,y)

=
1

m

m∑
i=1

L0/1(hi, Pi) ,

i.e., it is a sum of m binary classification risks.

The optimal classifier, commonly referred to as Bayes clas-
sifier, minimizes the risk. It suffices to minimize the risk
pointwise:

h∗(x) = argmin
h∈Y

L(h, P |x) .

We note that h∗ is in general not unique. However, the risk
of h∗, denoted L∗(P ), is unique, and is called the Bayes
risk. It is easy to check that the Bayes classifier for Ham-
ming loss h∗H = (h∗1,h

∗
2, . . . ,h

∗
m) is given by:

h∗i (x) = argmax
b∈{0,1}

P (yi = b |x)

The regret of h on P (X,Y ) is defined as:

reg(h, P ) = L(h, P )− L∗(P )

The goal is to train a classifier h with a small regret, ideally
equal to zero. Obviously we cannot measure the regret,
but we can analyze learning and classification algorithms
in terms of regret. We say that an algorithm is statistically
consistent (or calibrated) if its regret can be reduced down
to zero.
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The regret for the Hamming loss can be given as an average
over m regrets of 0/1 loss:

regH(h, P ) =
1

m

m∑
i=1

reg0/1(hi, Pi),

where:

reg0/1(hi, P ) = L0/1(hi, Pi)− L∗(Pi) =

=

∫
`0/1(yi,hi(x))− `0/1(yi,h∗i (x))dP (yi |x)︸ ︷︷ ︸

reg0/1(hi,P |x)

dP (x)

The pointwise regret reg0/1(hi, P |x) can be readily ex-
pressed by:

reg0/1(hi, P |x) = P (yi = h∗i )− P (yi = hi). (1)

The above analysis suggests that one can solve a multi-
label problem by reducing it to a series of m binary clas-
sification tasks, in which each hi corresponds to a simple
binary classifier h. Such an approach is usually referred
to as binary relevance (BR). Let us denote the binary rele-
vance classifier by BR and its prediction for i-th label by
BRi. Its regret is then:

regH(BR, P ) =
1

m

m∑
i=1

reg0/1(BRi, Pi) . (2)

The remaining problem is to build a consistent binary clas-
sifier h. The popular choice is to use algorithms that min-
imize margin-based loss functions, for example, logistic
loss. Let y ∈ {0, 1} be a label to be predicted, and q the
estimate of p = P (y = 1 |x). Logistic loss is then defined
as:

`log(y, q) = y log(q) + (1− y) log(1− q). (3)

The conditional regret of logistic loss is given by:

reglog(q, P |x) = p log
p

q
+ (1− p) log 1− p

1− q
(4)

Based on the results from (Bartlett et al., 2006), we can
upper bound reg0/1(h, P ) by a function of reglog(q, P ).

Concluding the above discussion, we note that by solving
each binary problem optimally, we get zero regret for the
multi-label problem. Thus, BR is consistent for Hamming
loss. Unfortunately, computational complexity of this re-
duction is linear in the number of labels for both training
and classification. Below we consider two other algorithms
that are not only consistent, but also they improve compu-
tational complexity of the classification procedure.

3. Label Tree Classifiers
We consider a label tree classifier that uses a tree T of clas-
sifiers to compute prediction for a test instance x. In the
following we assume that the tree is binary and its struc-
ture is given prior to learning classifiers. For simplicity, we
assume that the number of labels is always a power of 2.
Then, form = 2k, the depth of the tree is k+1. In general,
there are 2m− 1 classifiers, one classifier in each node.

The root of the tree T is denoted by r(T ). The leaves of
tree T correspond to labels. We denote a set of leaves of a
(sub)tree rooted in node n as L(n). If n is a root of T then
we write L. Similarly, we denote a set of internal nodes of
the tree rooted in node n as N(n). If n is a root of T then
we write N . We assume that a root node is also an internal
node, i.e., n ∈ N(n). The parent node of n is denoted by
pa(n), and the left and the right child by l(n) and r(n),
respectively. The path from the root r(T ) to the i-th leaf is
denoted by Path(i).

An internal node classifier decides whether to go down the
tree to both child nodes. A leaf node classifier makes a
final decision regarding the prediction of a label associated
with this leaf. These two aspects make the main difference
in comparison to the label tree algorithms used for multi-
class classification. If classes are mutually exclusive, then
we can follow only one path to a leaf node in the tree. This
is not a case of multi-label classification.

To assign label λi to a test instance x all classifiers on
Path(i) need to pass x down to the i-th leaf node. Then,
in the leaf node, a final decision is made whether λi is as-
signed or not to x. In other words, the prediction proce-
dure starts with a vector of all zeros and traverses a tree
from a root to leaves to predict positive labels for a given
test instance. This procedure can be much cheaper than
m independent queries to BR, since many subtrees are not
explored. If there is only one label to predict than in the
optimal scenario the label tree needs to call 2k − 1 clas-
sifiers corresponding to a path from the root to a leaf plus
all sibling node classifiers. If the tree predicts two positive
labels, than the cost will be the same if these labels are di-
rect siblings. Of course, in the worse-case scenario the en-
tire tree might be explored, but then there is no more than
2m−1 calls required. In case of sparse label sets, the label
tree classifiers can significantly speed up the classification
procedure. The expected cost of this prediction procedure
depends on the tree structure and accuracy of binary classi-
fiers.

4. Probabilistic Trees
Probabilistic trees (PT) use a path from a root to the i-th
leaf to compute the conditional probability P (yi |x). In
other words, we divide the process of estimating P (yi |x)
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to k + 1 stages, each corresponding to a level of the tree
T . In each node j, we associate a label zj with a training
instance x such that:

zj =

{
1, if

∑
i∈L(j) yi ≥ 1 ,

0, otherwise.

Recall that L(j) is a set of all leaves of a subtree with the
root in the j-th node. Notice that in leaf nodes the labels zi,
i ∈ L, correspond to original labels λi.

Consider the leaf node i and the path from the root to this
leaf node. Using the chain rule of probability, we can ex-
press P (yi = 1 |x) in the following way:

P (yi = 1 |x) =
∏

j∈Path(i)

P (zj = 1 | zpa(j) = 1,x) , (5)

where for the root node rT we have P (zrT = 1 | zpa(rT ) =
1,x) = P (zrT = 1 |x).

The learning algorithm of PT is given in Algorithm 1. Let
S be a training set of multi-label examples (x,y). To learn
classifiers in all nodes of tree T we need to properly filter
training examples (x,y) to estimate P (zj = 1 | zpa(j) =
1,x). Moreover, we need to use a learning algorithm which
trains a probability estimation classifier. We denote by
qj(x) a probability estimation function trained by such a
classifier in node j. In the theoretical analysis of PT we
will focus on logistic loss minimization to obtain qj .

The computational complexity of learning PT can be ex-
pressed in terms of the number of nodes in which an origi-
nal training example (x,y) is used. Since the training ex-
ample is used in a node j only if j is the root or zpa(j) = 1,
this number is upper bounded by s(2k + 1), where s is the
number of positive labels in y. Therefore PT can be faster
than BR. Notice also that learning can be performed simul-
taneously for all nodes.

Prediction with probabilistic trees relies on estimating (5)
by traversing the tree from the root to leaf nodes. However,
if the intermediate value of this product in node j, denoted
by p, is smaller than a given threshold t, then the subtree
starting with this node j is no longer explored. Formally,
we can express this by a function hj(x) = sgn(p ≥ t).
For minimization of Hamming loss it is reasonable to take
t = 0.5. The procedure is given in Algorithm 2. For sake
of completeness, we shortly describe this procedure. We
start with setting ŷ = 0m. In order to traverse a tree we
initialize a queue Q and add the root node rT to it. In the
while loop we iteratively pop a node from Q and compute
p and hj(x). For hj(x) = 1, we either set ŷj = 1 if j is a
leaf, or add child nodes of j to Q, otherwise. If Q is empty,
we stop the search and return ŷ. With properly estimated
probabilities, the algorithm will not explore a large part of
the tree.

Algorithm 1 Learning of a Probabilistic Tree
input: a label tree T , a learning algorithmA, and a train-
ing set S
output: a set of probability estimation classifiers Q
Q = ∅
for each node j ∈ T do
Sj = ∅
for each training instance (x,y) ∈ S do

if j is root or
∑

i∈L(pa(j)) yi ≥ 1 then
zj = J

∑
i∈L(j) yi ≥ 1K

Sj = Sj ∪ (xi, zj)
end if

end for
qj = A(Sj), Q = Q∪ qj

end for
return a set of probability estimation classifiers Q.

Algorithm 2 Prediction with a Probabilistic Tree
input: a label tree T , a set of probability estimation clas-
sifiers Q, a test example x, a threshold t
input: a label vector ŷ
ŷ = 0m, Q = initializeQueue(), add(Q, (root, 1))
while Q 6= ∅ do
(j, p) = pop(Q)
p = p · qj(x)
hj(x) = sgn(p ≥ t)
if hj(x) = 1 then

if j is a leaf node then
ŷj = 1

else
add(Q, (l(j), p)), add(Q, (r(j), p))

end if
end if

end while
return ŷ.

As the main theoretical result we prove the regret bound for
PT. This regret bound is expressed in terms of the logistic
regret (4) averaged over all m paths from the root node to
leaves of T.
Theorem 4.1. Let PT be a probabilistic tree classi-
fier based on label tree T with each node associated
with a probability estimation function qj . Moreover, let
reglog(q, PT ) be the average logistic regret over m paths
from the root to the leaves in tree T:

reglog(q, PT ) =
1

m

m∑
i=1

∑
j∈Path(i)

reglog(qj , Pj) .

where Pj is distribution induced in the j-th internal node.
For any distribution P , label trees T and PT,

regH(PT, P ) ≤
√
2reglog(q, PT )
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The regret bound has a drawback that is computed over m
paths from the root to leaves and therefore the regret of
upper level nodes is counted multiple times, i.e., the error
made higher in the tree has more impact. The square root
on the right side of the bound results from using logistic
loss and is unavoidable (Bartlett et al., 2006).

PT shares some similarities with Homer (Tsoumakas et al.,
2008). Both algorithms use the same reduction of the train-
ing instances for the node classifiers. Classification of test
examples is different, since Homer does not have proba-
bilistic interpretation. It uses binary classifiers and output
either 0 or 1 in each node of the tree. In consequence,
the regret bound does not apply to this algorithm. Just
to perform a simple analysis, assume that the probabilis-
tic models in each node of the tree are perfectly trained and
that each node classifier predicts 1 if P (zj = 1 | zpa(j) =
1,x) > 0.5 (as typically in binary classification). Then, we
predict label λi to be relevant, if P (yi = 1 |x) > 0.5k+1.
This is certainly a wrong strategy for Hamming loss, for
which the optimal threshold is 0.5. The authors of Homer
have remarked that their algorithm may perform worse un-
der Hamming loss, but gets better results in terms of F-
measure. This is not surprising, as the optimal threshold for
the F-measure is usually less than 0.5 (Zhao et al., 2013).

Note that in PT we can set threshold to any value. More-
over, it does not have to be the same in each node. By
setting it appropriately we can obtain different thresholds
for each label. In this way we can easily tune PT for the F-
measure and other more complex performance measures.
PT can also be easily suited for prediction of top labels
if Q would be changed to a priority queue and the search
stopped after a given number of top labels.

5. BR-trees
The second algorithm, we refer to as BR-trees, follows a
bottom-up strategy. It first trains a regular BR, i.e., m inde-
pendent binary classifiers, one for each label. These classi-
fiers are then associated with the leaves of the label tree. In
the next steps, internal node classifiers are trained over the
predictions of BR. Each internal node classifier is trained to
decide whether to explore (hn(x) = 1) or not (hn(x) = 0)
its subtree. From this perspective, the structure of BR-trees
is similar to hierarchical indexes known from database sys-
tems. The difference is that regular indexes are built on
static data, not over classifiers that for each new test in-
stance may predict different values.

The logic behind BR-trees can be explained in the follow-
ing way. If BR predicts at least one positive label in the
leaves of a given subtree, then the algorithm will expand the
subtree. However, to reduce the computational complexity,
we do not want to explore subtrees with no positive labels

Algorithm 3 Learning of BR-trees
input: a label tree T , a learning algorithmA, and a train-
ing set S
output: a set of binary classifiersH
H = BR(S) {train BR}
for each internal node n in order from leaves to root do
Sn = ∅
for each training instance (x,y) ∈ S do
vn = vl(n)ẑl(n) + vr(n)ẑr(n)
(x,y)→ (x, zn = Jvn > 0K, wn = max(1, vn))
Sn = Sn ∪ (x, zn, wn)

end for
hn = A(Sn),H = H ∪ hn

end for
return a set of classifiersH.

in leaves. There are several ways of training internal node
classifiers to implement this logic. Below we consider one
of them that is characterized by good theoretical guarantees
in terms of predictive and computational performance.

For each example in an internal node n we compute the
following recursive value:

vn = vl(n)ẑl(n) + vr(n)ẑr(n)

where ẑn = hn(x), and vl(x) = 1 for each leaf node
l ∈ L. It is easy to see that vn corresponds to the number of
positive labels returned by BR in the leaves accessible from
n (i.e., for which exists a path with all internal node clas-
sifiers predicting 1). We train a classifier hn(x) in internal
node n using importance-weighted training examples of the
form:

(x, zn = Jvn > 0K, wn = max(1, vn))

where zn is the output variable and wn the weight of the
training example. In other words, examples (x, zn, wn) are
coming from a new distribution Pn induced by our proce-
dure in each node n of the tree.

The learning algorithm is summarized in Algorithm 3. Let
S be a training set of multi-label instances (x,y). We learn
2m − 1 classifiers, one in each node of the tree. In the i-
th leaf node, we use a training set consisting of examples
(x, yi), while in each internal node n a training set of ex-
amples (x, zn, wn). Basically, we change only the labels
and weights of the examples and the features remain un-
changed. Since each example is used 2m − 1 times, the
overall cost of learning is approximately twice the cost of
BR. The benefits, however, are in the classification proce-
dure.

The classification procedure for BR-trees is straight-
forward and resembles the procedure for PT. For sake
of completeness, we shortly describe this procedure and
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Algorithm 4 Prediction with BR-trees
input: a label tree T , a set of classifiers H, a test exam-
ple x
output: a label vector ŷ
ŷ = 0m, Q = initializeQueue(), add(Q, rT )
while Q 6= ∅ do
n = pop(Q)
if n is a leaf node then
ŷn = hn(x)

else
if hn(x) = 1 then

add(Q, l(n)), add(Q, r(n))
end if

end if
end while
return ŷ.

present the pseudo-code in Algorithm 4. We set ŷ = 0m.
In order to traverse a tree we initialize a queue Q and add
the root node rT to it. In the while loop we iteratively pop
a node from Q. If the node is a leaf then ŷ is updated by its
prediction. Otherwise we check whether we should explore
the subtree rooted in n. If hn(x) = 1, we add child nodes
of n to Q. If Q is empty, we stop the search and return ŷ.

We can easily notice that minimization of weighted false
negatives in each node n,

WFN(hn |Pn) = EPn

[
vnJzn = 1 ∧ ẑn = 0K

]
,

should lead to better predictive performance of BR-trees,
as more positive leaves would be visited in the classifica-
tion procedure. This statement can be formalized in the
following theorem.

Theorem 5.1. Let BRT be a BR-tree based on a label tree
T with each node j associated with classifier hj . Moreover,
let WFN(h,N) be the weighted false negatives averaged
over the number of leaves m in tree T:

WFN(h,N) =
1

m

∑
n∈N

WFN(hn, Pn) .

where Pn is distribution induced in the n-th internal node.
For any distribution P , label tree T and BRT, we have

regH(BRT, P ) ≤WFN(h,N) + regH(BR, P ),

where regH(BR, P ) is regret given in (2) of a binary rele-
vance classifier BR containing leaf classifiers hi, i ∈ L.

This regret bound has an advantage that the error (weighted
false negatives) is computed in each node only once. This
would not be a case, if positive examples in internal nodes
were not weighted by vn. The regret bound of PT does not

Table 1. Main characteristics and differences between datasets
used in our experiment and the experiment described in (Cisse
et al., 2013) (R-BF). The last line shows Hamming loss (%) of
all-zero classifier (predicting all zeros)

Reuters Wikipedia
R-BF Our R-BF Our

#labels 303 296 1000 933
#features 47236 1617899
#total examples 72334 72335 110530 108738
avg. cardinality 1.73 1.3 1.11 1.71
max cardinality 30 30 5 14
cardinality >2 20% 20% 10% 41%
all-zero 0.4392 0.1833

posses this advantages and the regret is summed over all
paths, not the nodes as in this case.

Let us also notice that we can control computational perfor-
mance of the classification procedure by minimizing false
positives in each node n (for negative examples wn = 1, so
there is no need to use weighted false positives)

FP(hn |Pn) = EPn

[
Jzn = 0 ∧ ẑn = 1K

]
,

These two quantities, WFN and FP, are minimized in each
node by the training algorithms. In order to control the
trade-off between WFN and FP, i.e., predictive and com-
putational performance, we can assigned additional costs
to positive and negative classes. Alternatively, we can con-
trol this trade-off in the classification procedure if we use a
scoring-based binary classifier hn(x) = sgn(fn(x) > t).
Then, the value of threshold t can be used to control the
trade-off between WFN and FP. The tree search is ex-
panded by lower values of t and narrowed for higher val-
ues. As we show in experiments, careful tunning of the
threshold improves the performance measures adding only
small additional costs of the search.

6. Experiments
We conduct experiments with a setting similar to the one
presented in (Cisse et al., 2013) in order to compare the in-
troduced algorithms with other methods, particularly with
the robust Bloom filters (R-BF).1 Experiments are per-
formed on two large datasets, Reuters and Wikipedia, ex-
tracted from two readly available datasets as described in
aforementioned article. Properties of obtained datasets and
differences between them and the datasets described in
(Cisse et al., 2013) are presented in Table 1.

We evaluate performance of the algorithms in terms of
Hamming loss and the average number of calls to node
classifiers during testing. We also compute micro- and
macro-F-measure. As the base binary classifier we use L2-
regularized logistic regression. For each LR classifier, we

1Unfortunately, there is no publicly available code of R-BF.
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tune the regularization constant on a validation set. We
average the results over 10 random splits for train, vali-
dation, and test datasets, each respectively consisting of
50/25/25% of examples. The standard deviations of per-
formance measures values are smaller than 1% of their av-
erage. Experiments were performed on a computer cluster
using scikit-learn package (Pedregosa et al., 2011).

BR-trees and PT are tested on two binary tree structures,
called naive and spectral. In the naive tree labels are as-
signed to nodes randomly. Spectral tree tries to assign
labels to leaves in such a way that labels that co-occur
most frequently have many common nodes on their paths
to the root. It is built by splitting the set of labels into
two branches recursively, minimizing the sum of similar-
ities between labels in different clusters. In each iteration
we solve a graph-cut problem for a graph defined as a la-
bel affinity matrix. The similarity measure is defined as
the labels co-occurrence count. This optimization problem
is solved with spectral clustering, using the algorithm de-
scribed in (Ng et al., 2001). In first step we use the affinity
matrix as mentioned before and in the clustering step we
ensure that clusters do not differ in size more than one.

The results concerning prediction performance are given in
Table 2, while the average number of calls to the base clas-
sifiers is given in Table 3. We compare BR-trees and PT
with several algorithms. The results in the tables for both
algorithms are reported for the standard value of thresh-
old, t = 0.5. Later in this section we show how proper
tuning of t improves the results. As a baseline we use
BR and truncated-BR that uses only top most popular la-
bels. We set top in a way corresponding to the number of
calls of BR-trees and PT. In Table 1 we also report Ham-
ming loss of a hypothetical all-zero classifier that predicts
all zeros. The main competitors of our algorithms are PT
with a classification procedure of Homer (Tsoumakas et al.,
2008) and robust Bloom filters (R-BF). The results of R-BF
are taken from (Cisse et al., 2013), where two variants of
them have been tested. In the first one, the original prob-
lem is reduced to 150/240 binary classifiers respectively
for Reuters/Wikipedia datasetes. The second one uses the
reduction to 200/500 binary classifiers. Due to the differ-
ences between datasets presented in Table 1, we include the
results of BR from the R-BF paper to allow a more fairly
comparison between the algorithms. In Table 3 we also
present the number of R-BF classifiers for a more compre-
hensive analysis. This number can be fairly compared with
the average number of calls to node classifiers as in both
experiments the base classifiers are the same.

From the results we observe that BR-trees and PT (both
with standard threshold t = 0.5) get worse results with re-
spect to Hamming loss and F-measures than BR and R-BF,
but obtain a significant speed-up. From Table 3 we may
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Figure 1. Impact of changing a threshold in the classification pro-
cedure. Top: the average number of calls to node classifiers (left)
and Hamming loss (right). Bottom: micro-F (left) and macro-F
(right).

observe that the prediction times are 10 times faster than
R-BF, and 20 (Reuters) and 30-40 (Wikipedia) times faster
than BR. Truncated-BR with a similar prediction complex-
ity gets incomparably worse results. Let us also report
that prediction times scale almost linearly with the aver-
age number of calls to classifiers. For example, prediction
times for Reuters are 730.7s for BR and 42.99s for BR-tree.

BR-trees and PT perform quite similarly. It is worth to un-
derline that PT outperforms PT-Homer in terms of Ham-
ming loss due to a correct use of probabilistic inference. As
expected, PT-Homer gets better results in terms of micro-
and macro-F, but as shown below, PT with a tuned thresh-
old outperforms PT-Homer in this regard as well. Inter-
estingly, there is almost no difference between naive and
spectral label trees. Proper construction of a label tree is
certainly an interesting problem for future research.

To give a deeper insight in the nature of BR-trees and PT

Table 3. The average number of calls to base classifiers for a sin-
gle test example.

Classifier Reuters Wikipedia

BR 296 933

truncated-BR 15 15 15
truncated-BR 35 35 35

BR-tree (spectral) 14.75 18.28
BR-tree (naive) 14.28 18.92

PT (spectral) 15.46 20.06
PT (naive) 15.37 21.38

PT-Homer (spectral) 18.80 26.41
PT-Homer (naive) 19.14 32.63

R-BF 150/240 150 240
R-BF 200/500 200 500
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Table 2. Experimental results for Hamming loss (in %), micro- and macro-F-scores of binary relevance (BR), truncated-BR, BR-trees,
probabilistic tress (PT), probabilistic trees with a classification procedure of Homer (PT-Homer), and robust Bloom filters (R-BF). For
BR-trees and PT we use two variants of label trees: naive and spectral. R-BF are used with a reduction to 150/240 and 240/500 binary
classifiers, respectively for both datasets, Reuters/Wikipedia. The results of R-BF are reported from (Cisse et al., 2013). We also include
results of BR reported in this paper, because of small differences in datasets used in their and our experiments.

Reuters Wikipedia

Classifier Hamming loss micro-F macro-F Hamming loss micro-F macro-F

BR 0.1991 75.58 56.07 0.1085 66.41 31.05

truncated-BR 15 0.3394 45.92 4.18 0.1550 40.27 1.21
truncated-BR 35 0.2951 57.12 9.25 0.1432 47.68 2.84

BR-tree (spectral) 0.2422 66.56 40.00 0.1166 60.60 22.06
BR-tree (naive) 0.2350 65.67 41.73 0.1211 57.76 18.38

PT (spectral) 0.2388 68.07 36.20 0.1151 63.25 20.78
PT (naive) 0.2396 67.94 36.65 0.1198 60.87 17.98

PT-Homer (spectral) 0.2684 70.69 52.21 0.1464 62.94 34.35
PT-Homer (naive) 0.2715 70.53 53.64 0.1696 58.93 31.83

BR in R-BF 0.2000 72.43 47.82 0.0711 55.96 34.70
R-BF 150/240 0.2100 71.31 43.44 0.0728 55.85 34.65
R-BF 200/500 0.2050 71.86 44.57 0.0705 57.31 36.85

we plot the results for different values of threshold t on the
Reuters dataset (Figure 1). We vary the threshold from 0.1
to 0.5 (recall that results in Table 2 are given for t = 0.5).
In case of BR-trees, we can see that prediction performance
approaches the results of BR, but the costs of the classi-
fication procedure are still very low. For t = 0.1, BR-
trees achieve Hamming loss of 0.214, micro-F of 72.81,
and macro-F of 51.22 with less than 21 calls to classifiers
per example on average, which is 12 times faster than BR.
Moreover, this result is very close to R-BF 150 (worse on
Hamming loss, but better in terms of F-measures), but re-
quires much less time. As already mention, PT with a tuned
threshold obtains better results than PT-Homer, and gets
better micro- ad macro-F than R-BF being very close to
BR under these measures.

7. Conclusions
We introduced two label tree classifiers for Hamming loss
minimization in multi-label classification. These algo-
rithms are characterized by very efficient classification pro-
cedures. Moreover, as the main theoretical contribution we
proved the regret bound for both algorithms. We verified
empirically both algorithms in a large experimental study,
showing their potential for consistent and effective multi-
label classification.
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Dembczyński, K., Cheng, W., and Hüllermeier, E. Bayes
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