
Efficient exact batch prediction for label trees
Extended Abstract

Kalina Jasinska
Institute of Computing Science, PUT Poznan

kalina.jasinska@cs.put.poznan.pl

ABSTRACT
Label tree algorithms have recently gained increasing attention
as they scale well to extreme classification problems. Examples of
such algorithms are hierarchical softmax, probabilistic label trees
or Parabel. Prediction for new test examples in these algorithms
can be performed by following either uniform-cost search or beam
search. While both of these approaches can be easily implemented
in the online (i.e., example-by-example) mode, it is not entirely clear
how to efficiently implement the uniform-cost search in the (mini-)
batch mode. Below we show how to solve this problem.

KEYWORDS
extreme classification, label trees, multi-label classification, uniform-
cost search, batch prediction

1 INTRODUCTION
Label tree algorithms, like HSM [5], PLT [4], or Parabel [6], are used
in both multi-class and multi-label classification to create efficient
predictive models. In general, they are specific trees of classifiers
with labels assigned to leaves, where score (or a probability) of a leaf
(label) is a function of scores of nodes in the path from the tree root
to this leaf. Then, the prediction procedure, tailored for precision@k,
is finding the k leaves with the highest probabilities. Finding the
exact top k leaves requires searching the tree, for example with
uniform-cost search. This however was used only for example-by-
example prediction. In situatons where batch prediction is required
the exact algorithm was not yet used. We show that exact batch
prediction is not only possible, but also that it is competitive to
heuristic search algorithms, such as beam search, in terms of both
prediction time and memory requirements.

A label tree classifier consists of a number of underlying classi-
fiers organized in a tree structure, such that each label is assigned
to one and only one path from the root to a leaf. The classifier
estimates the mariginal probability of a label by a product of the
probability estimates delivered by the underlying classifiers on the
corresponding path.

The exact prediction is searching the tree to retrieve the highest
scoring leaves, using the intermediate scores in the inner nodes to
guide the search procedure. This is usually accomplished by using
a priority queue sorting the nodes on the frontier of the explored
part of tree.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
The WWWWorkshop: XMLC for Social Media, 23 April 2018, Lyon, France
© 2018 Copyright held by the owner/author(s).

In many situations the easy to implement example-by-example
prediction is efficient. This is so when, while test example features
must be stored in a sparse format, a direct memory access to the
models weights is possible. For example, if dense storage of all the
models is possible, or feature hashing is applied [4]. However, when
both example features and model weights are stored in a sparse
format, the vector-vector product becomes expensive. To overcome
the problem of sparse vector products one can convert the sparse
model vector to a dense one, and process a batch of examples at
once. Such approach can be applied to beam search.

We show that it is possible to apply this trick also to uniform-
cost search. This way we can run the exact prediction in a batch
mode. It can be shown that our algorithm visits exactly as many
tree nodes as the uniform-cost search run examplewise. However,
because it allows for benefits from the direct memory access it can
proceed more efficiently.

Exact prediction is in general more computionally expensive
than approximate. Exact search requires visiting as many nodes as
necessary to ensure that the retrieved leaves are the highest scoring
ones. Therefore, in the worst case the whole tree may be explored.
This is not the case for approximate algorithms. However, as we
show, in many real-word situations the exact prediction is feasible.

We first describe the batch prediction algorithm, that uses an
additional data structure suited for the task, and then demonstrate
empirically it’s efficiency. The introduced technique can be ap-
plied not only to multi-label learning algorithms like PLT [4] or
Parabel [6], but also to multi-class ones like HSM [5].

2 BATCH UNIFORM-COST SEARCH
The proposed prediction algorithm, given in Algorithm 1, runs n
uniform-cost searches at once, and processes all n elements in the
batch simultaneously. In uses an additional data structure, suited
for such application, named MultiQueue. This structure stores n
priority queues and keeps track of the frequency of top elements
among them. The pseudocode of this data structure is given in Algo-
rithm 2. We firstly briefly describe how the MultiQueue works, and
secondly, give the details of the batch top-k prediction algorithm.

TheMultiQueue is a data structure consisting ofn priority queues
qi , and a master priority queue q, aggregating the top elements
from all the n queues. Each queue qi sorts the elements according
to some criterion i . The master queue q sorts the elements from
queues qi according to the number of criteria on which they are
ontop and is capable of providing a list of their indices.

In case of use of this data strucure as a part of the batch prediction
algorithm, n is the number of examples in a batch, each qi is related
to a single test example and tracks the state of the uniform-cost
search for this example. The elements in the queues are nodes of the
label tree, and the priority is the intermediate probability product
in given node. Therefore q sorts the nodes of the tree according

The WWWWorkshop: XMLC for Social Media, 23 April 2018, Lyon, France K. Jasinska

Algorithm 1 Batch uniform-cost search prediction
1: input: example features X , batch size n, number of nodes in

the tree c , number of top labels to retrieve k
2: Ŷ top−k = [∅]n
3: MQ = MultiQueue(n, c)
4: preds = densePredict(root.w,X , [1 : n]])
5: for i = 1, . . . ,n do
6: MQ .push(i, (preds[i], 0))
7: end for
8: retrievedCount = [0]n , removedInstances = ∅,
9: while |removedInstances| , n do
10: toDelete = ∅
11: node, instances, values = MQ .topAndPop()
12: if node.isLeaf then
13: for i ∈ instances do
14: Ŷ top−k [i].add(node.label)
15: retrievedCount[i] + +
16: if retrievedCount[i] == k then
17: toDelete.add(i)
18: end if
19: end for
20: else
21: for child ∈ node.children do
22: preds = densePredict(child.w,X, instances)
23: for i ∈ instances do
24: p = values[i] · preds[i]
25: MQ .push((i, (p, child)))
26: end for
27: end for
28: end if
29: end while
30: return Ŷ top−k .

to the number of examples with the highest intermediate product
in this node at this step of the search. One can of course think of
another aggregation criterion.

The exact batch inference works as follows. The batch size de-
fines how many examples are processed at once. For each batch
the prediction algorithm creates a MultiQueue with n equal to the
batch size. Initially, the root node is added to the queues qi of all the
examples. Then, untill for all examples top k labels are retrieved,
the prediction algorithm queries the MultiQueue for the node t to
process and a list of examples (queues qi) with this node ontop.
Then, for each child of the node t , the inference algorithms cre-
ates a dense representation of the model of the child, calculates
the product of example features (only from the list) and the dense
model to get the scores, and in case of logistic models, may use the
sigmoid transformation to get probabilities. Finally, the child nodes
and their intermediate estimates are added to the relevant queues
qi in the MultiQueue. If the processed node is a leaf, the algorithm
predicts the corresponding label for all the examples from the list.
Notice that the implementation details may vary. For example, one
may process the node model weights, not its children. In such case,
when a leaf is processed, one should push the final predictions into

Algorithm 2 MultiQueue

function init (n, t)
for i = 1, . . .n do
qi = priorityQueue()

end for
q = priorityQueueWithRandomAccess()
function push (i,v)

prevTop = qi .top(), qi .push(v), currTop = qi .top()
decreasePriority(q, prevTop), increasePriority(q, currTop)
function pop (i)

prevTop = qi .top(), qi .pop(v), currTop = qi .top()
decreasePriority(q, prevTop, i), increasePriority(q, currTop, i)
function topAndPop (i)

j = q.top(), q.pop()
for i ∈ j .queues do
qi .pop()

end for
function decreasePriority (q,v, i)

q[v].s .remove(i)
q.decrease(v) {according to |q[v].s |}
function increasePriority (q,v, i)

q[v].s .add(i)
q.increase(v) {according to |q[v].s |}
function remove (i)
delete qi , remove i from q

the priority queues and predict the relevant labels once they get
popped again.

It can be shown that such algorithm visits exactly as many nodes,
or in other words calculates as many vector-vector products, as
example-by-example exact prediction algorithm (as used in [3]
and [2]). However, thanks to the use of MultiQueue, can be used in
batch mode, and have the advantage of calculating the products in
an efficient matrix mode.

3 EXPERIMENTS
We run the experiments on a selection of datasets of various sizes
from [1]. We trained three types of models, each with a balanced
binary tree, differing with the assignment fo labels to leaves. We
used the 2-means++ assignment [6], the random assignment and
assignment according to the indices of labels in the dataset. To
measure the memory used by the process we use the unix time −v
command and report the maximum resident set size.

As Table 1 shows, precision@k of exact prediction algorithm is
between beam search with window size 10 and 100. Notice that in
case of beam search bigger window size not always gives higher
precision, and sometimes beam search with smaller window out-
performs exact predictions. Exact inference is better or equal to the
beam search with medium window size. It’s predictive performance
is most similar to beam search with large window, however, as the
next experiments show, exact batch prediction can be performed
faster and with less memory.

Interestingly, the label partitioning influences not only the pre-
dictive performance, but also the computational one. This can be
noticed on Figures 2a, 2b, 2c, 2d, which present results for 3 different

Efficient exact batch prediction for label trees The WWWWorkshop: XMLC for Social Media, 23 April 2018, Lyon, France

Table 1: Precision@k of predictions obtained by the beam search compared to exact predictions.

Beam 5 Beam 10 Beam 100 Exact
p@1 p@3 p@5 p@1 p@3 p@5 p@1 p@3 p@5 p@1 p@3 p@5

EUR-Lex-4K 79.71 65.92 54.35 79.73 65.93 55.24 79.71 65.93 55.23 79.71 65.93 55.23
AmazonCat-13K 92.52 78.05 63.26 92.52 78.06 63.44 92.52 78.06 63.44 92.52 78.06 63.44
Wiki10-30K 82.42 71.62 61.64 82.42 72.16 63.88 82.42 72.16 63.90 82.42 72.16 63.89
WikiLSHTC-325K 59.23 38.43 27.49 59.28 38.71 28.43 59.28 38.72 28.45 59.28 38.72 28.45
Amazon-670K 42.28 37.28 33.50 42.97 38.37 34.90 43.19 38.82 35.60 43.19 38.81 35.59

tree structures. The precisions@k of all the models matched the fol-
lowing pattern: p@k2−kmenas++ > p@kin−order > p@krandom .
The prediction time with a better scoring tree is lower than with
poorer scoring tree. This can be explained by the fact that the better
is tree structure, the easier are the underlying binary problems,
and the more accurate are the probability estimates provided by
the node classifiers. Then, to find the exact top-k labels, less nodes
must be explored.

Finally, the batch uniform-cost search algorithm proves in ex-
periments to be efficient. The Figure 1 shows the prediction time
per example and maximal memory used by the process of exact in-
ference implementation (with growing batch size). The lines show
the time and memory of the beam search with various window
size. It can be seen that there is a time-memory tradeof: processing
more examples at once requires more, and possibly longer, prior-
ity queues to be stored in memory, what has a visible impact on
the memory consumption. However, the more examples are in the
batch, the fewer times the sparse vectors are turned to dense vectors
and the products are calculated more efficiently.

The following results show that, first, given a good batch size,
the exact inference is feasible. Secondly, they show that for specific
batch sizes of exact inference algorithm, and window sizes of beam
search, the exact inference algorithm outperforms the approximate
in terms of memory and time. Such phenomena is obseved because
beam search is performed on the whole dataset. Then, the window
size and numer of examples determine the memory use. Scaling
down the memory use twice, results in, more or less, growth of
prediction time twice. The exact batch prediction scales differently
(see Figure 1), therefore with proper batch size, it is competitive in
terms of computation requirements to the approximate one.
ACKNOWLEDGEMENTS
The work was supported by the Polish National Science Centre
under grant no. 2017/25/N/ST6/00747.

REFERENCES
[1] 2016. The Extreme Classification Repository. (2016). Retrieved Match 15, 2018

from http://manikvarma.org/downloads/XC/XMLRepository.html
[2] 2017. PLT in vowpal wabbit. (2017). Retrieved Match 15, 2018 from https:

//github.com/mwydmuch/extweme_wabbit
[3] Kalina Jasinska and Krzysztof Dembczynski. 2015. Consistent Label Tree Classifiers

for Extreme Multi-Label Classification. In XML Workshop 2015 at ICML.
[4] Kalina Jasinska, Krzysztof Dembczynski, Robert Busa-Fekete, Karlson

Pfannschmidt, Timo Klerx, and Eyke Hullermeier. 2016. Extreme F-measure
Maximization using Sparse Probability Estimates. In ICML 2016.

[5] Frederic Morin and Yoshua Bengio. 2005. Hierarchical Probabilistic Neural Net-
work Language Model. In Aistats 2005.

[6] Yashoteja Prahbu and Manik Varma. 2018. Parabel: Partitioned Label Trees for
Extreme Classification with Application to Dynamic Search Advertising. InWWW
2018.

Figure 1: Prediction time per example [ms] and maximal
memory used by the process of prediction with exact infer-
ence, with growing batch size, compared to prediction time
and memory consumption of beam search with different
window sizes for different tree structures.

10 30 100 300 600 1000 3000 6000
Batch size

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
pe

r e
xa

m
pl

e
[m

s]

beam 5
beam 10
beam 100
random
inorder
kmeans

(a) EUR-Lex time.

10 30 100 300 600 1000 3000 6000
Batch size

0

20000

40000

60000

80000

100000

M
ax

 re
sid

en
t s

et
 si

ze
 [k

B]

beam 5
beam 10
beam 100
random
inorder
kmeans

(b) EUR-Lex memory.

1000 3000 6000 10000 30000 60000
Batch size

0

2

4

6

8

10

12

14

Ti
m

e
pe

r e
xa

m
pl

e
[m

s]

beam 5
beam 10
beam 100
random
inorder
kmeans

(c) AmazonCat-13K time.

1000 3000 6000 10000 30000 60000
Batch size

0

1000000

2000000

3000000

4000000

M
ax

 re
sid

en
t s

et
 si

ze
 [k

B]

beam 5
beam 10
beam 100
random
inorder
kmeans

(d) AmazonCat-13K memory.

100 300 600 1000 3000 6000 10000
Batch size

0

5

10

15

20

Ti
m

e
pe

r e
xa

m
pl

e
[m

s]

beam 5
beam 10
beam 100
inorder
kmeans

(e) Wiki10-30K time.

100 300 600 1000 3000 6000 10000
Batch size

0

200000

400000

600000

800000

1000000

M
ax

 re
sid

en
t s

et
 si

ze
 [k

B]

beam 5
beam 10
beam 100
inorder
kmeans

(f) Wiki10-30K memory.

1000 3000 6000 10000 30000 60000 100000 300000 600000 1000000
Batch size

0

10

20

30

40

50

60

70

Ti
m

e
pe

r e
xa

m
pl

e
[m

s]

beam 5
beam 10
beam 100
kmeans

(g) WikiLSHTC time.

1000 3000 6000 10000 30000 60000 100000 300000 600000 1000000
Batch size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ax

 re
sid

en
t s

et
 si

ze
 [k

B]

1e7

beam 5
beam 10
beam 100
kmeans

(h) WikiLSHTC memory.

http://manikvarma.org/downloads/XC/XMLRepository.html
https://github.com/mwydmuch/extweme_wabbit
https://github.com/mwydmuch/extweme_wabbit

	Abstract
	1 Introduction
	2 Batch uniform-cost search
	3 Experiments
	References

