Machine learning approach to cross-device identification of users

Mateusz Jukiewicz¹ Bartek Bogacki¹ Krzysztof Dembczyński²

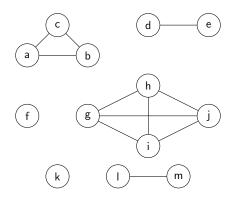
¹Rog.ad GmbH, Germany ²Poznan University of Technology, Poland

IT Research Workshop at WCC 2018, Poznań, September 21, 2018

Cross-identification of users

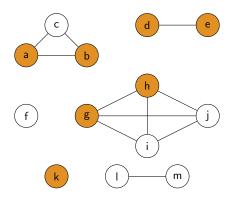
• Applications: Online advertising, content management and personalization, fraud detection.

Graph representation of users and devices



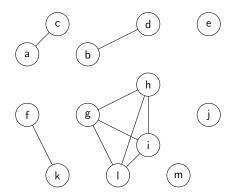
- nodes: devices (e.g., a, b, c, d, e, ...)
- cliques: users with their devices (e.g., (a,b,c))

Deterministic cross-device graphs

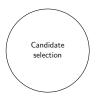


- Unique factors to identify a person, e.g., email address or login name
- Quality far beyond from being perfect!
- Used for training and evaluating probabilistic solutions

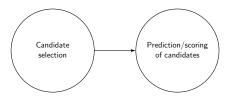
Probabilistic cross-device graphs



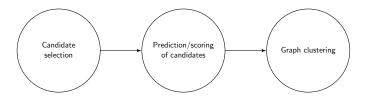
- Based on deep analysis of logs (behavior of devices in the Internet)
- Hand-made rule vs. Data-driven approach (\Rightarrow Machine learning)



• Candidate selection: reducing the number of possible pairs by filtering them by some initial premises

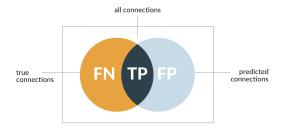


• Prediction/scoring: estimating the score for each candidate pair of devices



• Graph clustering: construction of the probabilistic graph

Measuring performance of cross-device solutions



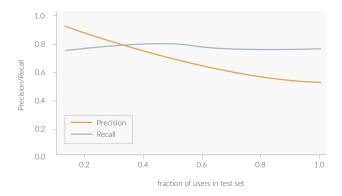
• Precision and recall:

$$\begin{aligned} \text{Recall} &= P(\hat{y} = 1 | y = 1) = \frac{P(y = 1, \hat{y} = 1)}{P(y = 1)} = \frac{\text{TP}}{\text{TP} + \text{FN}} \,, \\ \text{Precision} &= P(y = 1 | \hat{y} = 1) = \frac{P(y = 1, \hat{y} = 1)}{P(\hat{y} = 1)} = \frac{\text{TP}}{\text{TP} + \text{FP}} \,, \end{aligned}$$

where

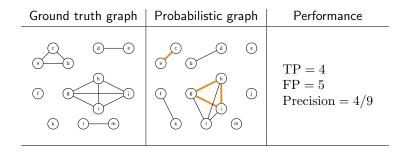
- ▶ $y = 1 \Rightarrow$ there exists a true connection between two devices,
- $\hat{y} = 1 \Rightarrow$ a connection has been predicted in the graph.

Pitfalls of the commonly used methodology

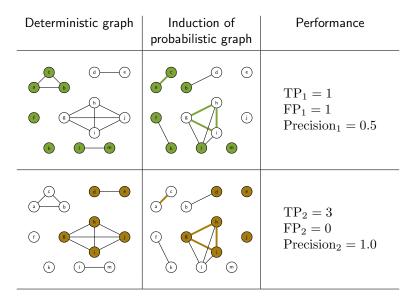


- Recall relatively stable with the size of deterministic graph
- Precision decreases with the size of deterministic graph (overestimation)!

Why precision decreases?



Why precision decreases?



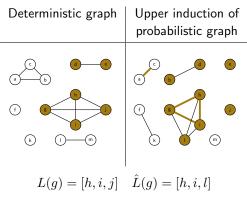
 $TP = 4 = TP_1 + TP_2$ $FP = 5 \neq FP_1 + FP_2$ Precision = 4/9

• Induction of probabilistic graph:

Deterministic graph	Lower induction of probabilistic graph	Upper induction of probabilistic graph

These two types of induction give the lower and upper bound of the value of precision.

- Device-based measures:
 - For each device $v \in V$ construct two lists:
 - L(v): list of devices connected with v in deterministic graph,
 - $\hat{L}(v)$: list of devices connected with v in probabilistic graph.



- Device-based measures:
 - ► The performance is then averaged over single devices:

$$M_V = \frac{1}{|V|} \sum_{v \in V} M_v(L(v), \hat{L}(v)).$$

- Device-based measures:
 - ► The performance is then averaged over single devices:

$$M_V = \frac{1}{|V|} \sum_{v \in V} M_v(L(v), \hat{L}(v)).$$

• M_v can be defined, for example, as a device-based recall and precision:

$$\begin{aligned} \operatorname{Recl}(L(v), \hat{L}(v)) &= \quad \frac{|L(v) \cap \hat{L}(v)|}{|L(v)|} \,, \\ \operatorname{Prec}(L(v), \hat{L}(v)) &= \quad \frac{|L(v) \cap \hat{L}(v)|}{|\hat{L}(v)|} \,. \end{aligned}$$

Summary

- Cross-device identification actual and challenging problem.
- Machine learning approach to cross-device identification.
- Measuring performance of cross-device identification solutions.

Summary

- Cross-device identification actual and challenging problem.
- Machine learning approach to cross-device identification.
- Measuring performance of cross-device identification solutions.

Thank you

Q&A