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Poznań University of Technology, Poland
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Alan Turing, 1912 births, 1954 deaths
20th-century mathematicians, 20th-century philosophers
Academics of the University of Manchester Institute of Science and Technology
Alumni of King’s College, Cambridge Artificial intelligence researchers
Atheist philosophers, Bayesian statisticians, British cryptographers, British logicians
British long-distance runners, British male athletes, British people of World War II
Computability theorists, Computer designers, English atheists
English computer scientists, English inventors, English logicians
English long-distance runners, English mathematicians
English people of Scottish descent, English philosophers, Former Protestants
Fellows of the Royal Society, Gay men
Government Communications Headquarters people, History of artificial intelligence
Inventors who committed suicide, LGBT scientists
LGBT scientists from the United Kingdom, Male long-distance runners
Mathematicians who committed suicide, Officers of the Order of the British Empire
People associated with Bletchley Park, People educated at Sherborne School
People from Maida Vale, People from Wilmslow
People prosecuted under anti-homosexuality laws, Philosophers of mind
Philosophers who committed suicide, Princeton University alumni, 1930-39
Programmers who committed suicide, People who have received posthumous pardons
Recipients of British royal pardons, Academics of the University of Manchester
Suicides by cyanide poisoning, Suicides in England, Theoretical computer scientists
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Setting

• Multi-class classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y ∈ {1, . . . ,m}

x1 x2 . . . xd y

x 4.0 2.5 -1.5 5

• Multi-label classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y = (y1, y2, . . . , ym) ∈ {0, 1}m

x1 x2 . . . xd y1 y2 . . . ym

x 4.0 2.5 -1.5 1 1 0
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Setting

• Multi-class classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y ∈ {1, . . . ,m}

The problem can be expressed as estimation of the distribution:

P (y |x) such that
∑
y

P (y |x) = 1

• Multi-label classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y = (y1, y2, . . . , ym) ∈ {0, 1}m

The problem can be expressed as estimation of the distribution:

P (yj = 1 |x) such that
∑

z∈{0,1}

P (yj = z |x) = 1, j = 1, . . . ,m
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Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:

I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

6 / 50



Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:

I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

6 / 50



Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F

I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

6 / 50



Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m

I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

6 / 50



Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged

I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

6 / 50



Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning

I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

6 / 50



Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

6 / 50



Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

6 / 50



Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:
I time vs. space

I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

6 / 50



Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:
I time vs. space
I #examples vs. #features vs. #labels

I training vs. validation vs. prediction

6 / 50



Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:
I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

6 / 50



Extreme classification: Growing subfield of research

• Many papers published at main ML conference like ICML and NIPS.

• Workshops, seminars and tutorials:

I Past events: NIPS 2013, 2015, 2016 and ICML 2015,
I NIPS 2017 Workshop (organizers: Manik Varma, Marius Kloft, and

Krzysztof Dembczyński),
I WWW 2018 Workshop (organizers: Akshay Soni, Robert Busa-Fekete,

Krzysztof Dembczyński, Aasish Pappu),
I ECIR 2018 Tutorial (authors: Rohit Babbar, Krzysztof Dembczyski),
I Dagstuhl Seminar 2018 (organizers: Manik Varma, Samy Bengio, Thorsten

Joachims, Marius Kloft, Krzysztof Dembczyński).
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I WWW 2018 Workshop (organizers: Akshay Soni, Robert Busa-Fekete,
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Extreme classification: Algorithms

• Smart 1-vs-all approaches,

• Embeddings methods,

• Label filtering,

• Tree-based method: decision trees and label trees.
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Decision trees vs. label trees

• Decision trees:

I Partition of the feature space to small subregions:

I Fast prediction: logarithmic in n
I Training can be expensive: computation of split criterion
I Two new algorithms: LomTree1 and FastXML2

1 Anna Choromanska and John Langford. Logarithmic time online multiclass prediction. In NIPS
29, 2015

2 Yashoteja Prabhu and Manik Varma. Fastxml: A fast, accurate and stable tree-classifier for
extreme multi-label learning. In KDD, pages 263–272. ACM, 2014
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Decision trees vs. label trees

• Label trees:

I Organize classifiers in a tree structure (one leaf ⇔ one label):

0

1

3

y1

4

y2

2

5

y3

6

y4

I Fast prediction: almost logarithmic in m
I Different training and test procedures for multi-class and multi-label
I Popular instances: Conditional probability trees3, Hierarchical softmax4,

Label embedding trees 5, FastText6, Probabilistic label trees7

3 A. Beygelzimer, J. Langford, Y. Lifshits, G. B. Sorkin, and A. L. Strehl. Conditional probability
tree estimation analysis and algorithms. In UAI, pages 51–58, 2009

4 F Morin and Y. Bengio. Hierarchical probabilistic neural network language model. In AISTATS,
2005

5 S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In
NIPS, pages 163–171. Curran Associates, Inc., 2010

6 Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient
text classification. CoRR, abs/1607.01759, 2016

7 K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hüllermeier.
Extreme F-measure maximization using sparse probability estimates. In ICML, 2016
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Probabilistic label trees (PLT)8

• PLT are based on b-ary label trees.

σ(w0 · x)

σ(w1 · x)

σ(w3 · x)

y1

σ(w4 · x)

y2

σ(w2 · x)

σ(w5 · x)

y3

σ(w6 · x)

y4

• Probabilistic classifiers in all nodes of the tree.

• Internal node classifier decides whether to go down the tree.

• A test example may follow many paths from the root to leaves.

• Batch and online learning possible.

8 K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hüllermeier.
Extreme F-measure maximization using sparse probability estimates. In ICML, 2016
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Probabilistic label trees

• Class probability estimators in nodes for estimating P (yj = 1 |x).

P (y1 ∨ y2 ∨ y3 ∨ y4 |x)

P (

zt︷ ︸︸ ︷
y1 ∨ y2 |

zpa(t)︷ ︸︸ ︷
y1 ∨ y2 ∨ y3 ∨ y4=1,x)

P (y1 | y1 ∨ y2=1,x)

y1

P (y2 | y1 ∨ y2=1,x)

y2

P (y3 ∨ y4 | y1 ∨ y2 ∨ y3 ∨ y4 = 1,x)

P (y3 | y3 ∨ y4=1,x)

y3

P (y4 | y3 ∨ y4=1,x)

y4

• Using the chain rule of probability

P (yj = 1 |x) = ηj(x) =
∏

t∈Path(j)

η(x, t) ,

where η(x, t) =

{
P (zt = 1 |x) if t is root,
P (zt = 1 | zpa(t) = 1,x) otherwise.
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y3
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• Training: reduced complexity by the conditions used in the nodes.

• Prediction: priority queue search or branch and bound.
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PLT vs. HSM/CPET

• Hierarchical softmax (HSM) and conditional probability estimation
trees (CPET) are only for multi-class problems.

• FastText (also based on HSM) randomly picks one of the labels
and treats the problem as multi-class.

• PLT generalizes HSM: PLT trained on multi-class data gets the
same model as HSM:

P (y1 ∨ y2 ∨ y3 ∨ y4 |x)

P (

zl︷ ︸︸ ︷
y1 ∨ y2 |

zpa(l)︷ ︸︸ ︷
y1 ∨ y2 ∨ y3 ∨ y4=1,x) P (

zr︷ ︸︸ ︷
y3 ∨ y4 |

zpa(r)︷ ︸︸ ︷
y1 ∨ y2 ∨ y3 ∨ y4 = 1,x)

zl = 1− zr and zpa(l) = zpa(r)
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Experimental results

#labels #features #test #train inst./lab. lab./inst.

RCV1 2456 47236 155962 623847 1218.56 4.79
AmazonCat 13330 203882 306782 1186239 448.57 5.04
Wiki10 30938 101938 6616 14146 8.52 18.64
Delicious 205443 782585 100095 196606 72.29 75.54
WikiLSHTC 325056 1617899 587084 1778351 17.46 3.19
Amazon 670091 135909 153025 490449 3.99 5.45

Table: Datasets from the Extreme Classification repository.9

9
http://manikvarma.org/downloads/XC/XMLRepository.html
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Experimental results

PLT FastXML

P@1 P@3 P@5 P@1 P@3 P@5

RCV1 90.46 72.4 51.86 91.13 73.35 52.67
AmazonCat 91.47 75.84 61.02 92.95 77.5 62.51
Wiki10 84.34 72.34 62.72 81.71 66.67 56.70
Delicious 45.37 38.94 35.88 42.81 38.76 36.34
WikiLSHTC 45.67 29.13 21.95 49.35 32.69 24.03
Amazon 36.65 32.12 28.85 34.24 29.3 26.12
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Tree-structure learning in label trees

• Clustering,

• Huffman trees,

• Online tree learning (CPET).
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Tree-structure learning in PLT

• Till now we used random and Huffman trees.

• Two new ideas:
I Online PLT,
I Greedy Batch PLT.
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Outline

1 Extreme multi-label classification

2 Probabilistic label trees (PLT)

3 Online PLT

4 FastPLT: Greedy batch training

5 Summary
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Learning of Probabilistic Label Tree

• How to train a PLT with no prior knowledge of the label set?
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Learning of Probabilistic Label Tree

• How to train a PLT with no prior knowledge of the label set
in fully online fashion?
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Online learning tree building

• To allow expansion of the tree structure, additional temporary
classifiers t are maintained for certain classifiers h.
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Online learning tree building

• To allow expansion of the tree structure, additional temporary
classifiers t are maintained for certain classifiers h.

• When the algorithm observes an example (x, y) with a new unseen
label, it uses tree expansion method.
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Online learning tree building

• To allow expansion of the tree structure, additional temporary
classifiers t are maintained for certain classifiers h.

• When the algorithm observes an example (x, y) with a new unseen
label, it uses tree expansion method.

• Method ensures that proper conditional probabilities are learned by
the estimators in the tree structure.
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Online learning tree building methods

• Online tree structure learning in HSM/CPET10,

• OnlinePLT with Leaf Expansion11,

• OnlinePLT with Root Expansion.

10 A. Beygelzimer, J. Langford, Y. Lifshits, G. B. Sorkin, and A. L. Strehl. Conditional probability
tree estimation analysis and algorithms. In UAI, pages 51–58, 2009

11 Kalina Jasinska and Krzysztof Dembczyński. Probabilistic label tree classifiers for extreme
multi-label classification, 2016. Poster
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CPET – online label tree building

example: (x1, a)
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CPET – online label tree building

example: (x2, b)
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CPET – online label tree building

example: (x3, c)

24 / 50



CPET – online label tree building

example: (x3, c)

24 / 50



CPET – online label tree building

example: (x3, c)

24 / 50



CPET – online label tree building

example: (x3, c)
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CPET – online label tree building

example: (x4, d)
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OnlinePLT with Leaf Expansion

example: (x1, a)
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OnlinePLT with Leaf Expansion

example: (x2, b)
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OnlinePLT with Leaf Expansion
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OnlinePLT with Leaf Expansion

example: (x3, c)
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OnlinePLT with Leaf Expansion

example: (x4, d)
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OnlinePLT with Root Expansion

• Additional temporary classifiers required:
OPLT-LE: from m to tree size
OPLT-RE: from 1 to dlogb(m)e

• Label placement:
OPLT-LE: Labels that came early end positioned at the opposite sides
of the tree structure.
OPLT-RE: Placing the labels in order of their expected prior
probability.
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OnlinePLT – real world datasets

Dataset P@k PLT OPLT-LE OPLT-RE

AmazonCat
P@1 91.47 91.24 91.71
P@3 75.84 74.81 76.14
P@5 61.02 58.79 61.41

Wiki10
P@1 84.34 83.57 84.07
P@3 72.34 72.00 72.59
P@5 62.72 62.80 62.94

Delicious
P@1 45.37 44.60 45.50
P@3 38.94 39.22 39.69
P@5 35.88 36.51 36.88

WikiLSHTC
P@1 45.67 42.93 44.49
P@3 29.13 26.39 29.21
P@5 21.95 18.55 22.21

Amazon
P@1 36.65 29.77 33.05
P@3 32.12 26.44 29.44
P@5 28.85 23.82 26.82
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Outline

1 Extreme multi-label classification

2 Probabilistic label trees (PLT)

3 Online PLT

4 FastPLT: Greedy batch training

5 Summary
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Learning of Probabilistic Label Tree

How to learn the tree structure of a PLT in a batch setting?
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Learning of Probabilistic Label Tree

How to train a PLT in a top-down manner?
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FastXML12 – multi-label decision tree

• Problems to address:
I How to train a decision tree in extreme multi-label setting?
I How to divide examples among the node’s children?
I How to optimize precision@k in decision tree learning?

• Optimize in each node:

min
w,δ,r

‖w‖1 + F (δ, Llog(w, X)) +G(δ, LNDCG@K(r, Y )

• Efficient optimization via alternate optimization with respect to model
weights w, left and right label rankings r and example assignment δ.

12
https://www.youtube.com/watch?v=1X71fTx1LKA
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FastXML – multi-label decision tree
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FastXML – multi-label decision tree
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FastXML – multi-label decision tree
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FastXML – multi-label decision tree
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FastXML – multi-label decision tree
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FastXML – multi-label decision tree
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FastXML – multi-label decision tree
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FastXML – multi-label decision tree
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FastPLT

How to apply this idea to PLT?
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FastPLT

• Main differences:
I a label tree instead of a decision tree,
I assign labels instead of examples,
I train two models instead of one.
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FastPLT

• Build tree top-down.

• In each (parent) node optimize:

min
wl,wr,δ

Llog(zl(δ), ẑl(wl)) + Llog(zr(δ), ẑr(wr))

• Optimize the child nodes model weights (prediction) and label
assignment (ground truth).

41 / 50



FastPLT – top-down tree building

• Build tree top-down.

w0

a, b, c, d, e, f, g, h
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FastPLT – top-down tree building

• Build tree top-down.

w0

w1

w3

w7

a

w8
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c

w10

d

w2

w5

w11

e

w12

h

w6

w13

g
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FastPLT

• In each node optimize:

min
wl,wr,δ

Llog(zl(δ), ẑl(wl)) + Llog(zr(δ), ẑr(wr))

• Optimization with respect to
I model weights wl,wr – solving two logistic regression problems with

ground truth determined by the label assignment δ,
I label assignment δ – move labels left/right until there is a label

which results in lower loss when moved.

• The optimization algorithm can be shown to guarantee
convergence to a local minimum.
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FastPLT – a node prototype
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FastPLT – a node prototype
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FastPLT – a multi-class example
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FastPLT – a multi-class example
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FastPLT – a multi-class example
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FastPLT – real world datasets

• FastPLT is a PLT implementation supporting batch learning,

• Implemented based on FastXML and LIBLINEAR,

• FastPLT was tested on benchmark datasets13

• Compared FastPLT tree building policies:
I in order,
I random,
I fastplt with in order initialization,
I fastplt with random initialization.

13
http://manikvarma.org/downloads/XC/XMLRepository.html
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FastPLT – real world datasets

Dataset
FastPLT

PLT random
fastplt
random

sorted
fastplt
sorted

RCV1x-2K 90.46 88.37 88.57 88.35 88.76
AmazonCat-13K 91.47 89.83 89.85 90.06 90.17
AmazonCat-14K 84.83 85.47 84.88 85.53 –
Wiki10-31K 84.34 83.71 83.57 83.80 –
Delicious-200K 45.37 45.52
WikiLSHTC-325K 45.67 42.52
Amazon-670K 36.65 32.38

Table: Precision@1 FastPLT with L1 regularization
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Outline

1 Extreme multi-label classification

2 Probabilistic label trees (PLT)

3 Online PLT

4 FastPLT: Greedy batch training

5 Summary
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Summary

• PLT generalizes HSM/CPET to multi-label problems.

• Tree structure learning:
I Online PLT,
I FastPLT.

• Promising results on benchmark datasets.
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