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Intelligent Decision Support Systems Laboratory (IDSS)
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Alan Turing, 1912 births, 1954 deaths
20th-century mathematicians, 20th-century philosophers
Academics of the University of Manchester Institute of Science and Technology
Alumni of King’s College, Cambridge Artificial intelligence researchers
Atheist philosophers, Bayesian statisticians, British cryptographers, British logicians
British long-distance runners, British male athletes, British people of World War II
Computability theorists, Computer designers, English atheists
English computer scientists, English inventors, English logicians
English long-distance runners, English mathematicians
English people of Scottish descent, English philosophers, Former Protestants
Fellows of the Royal Society, Gay men
Government Communications Headquarters people, History of artificial intelligence
Inventors who committed suicide, LGBT scientists
LGBT scientists from the United Kingdom, Male long-distance runners
Mathematicians who committed suicide, Officers of the Order of the British Empire
People associated with Bletchley Park, People educated at Sherborne School
People from Maida Vale, People from Wilmslow
People prosecuted under anti-homosexuality laws, Philosophers of mind
Philosophers who committed suicide, Princeton University alumni, 1930-39
Programmers who committed suicide, People who have received posthumous pardons
Recipients of British royal pardons, Academics of the University of Manchester
Suicides by cyanide poisoning, Suicides in England, Theoretical computer scientists
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Setting

• Multi-class classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y ∈ {1, . . . ,m}

x1 x2 . . . xd y

x 4.0 2.5 -1.5 5

• Multi-label classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y = (y1, y2, . . . , ym) ∈ {0, 1}m

x1 x2 . . . xd y1 y2 . . . ym

x 4.0 2.5 -1.5 1 1 0

4 / 49



Setting

• Multi-class classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y ∈ {1, . . . ,m}

x1 x2 . . . xd y

x 4.0 2.5 -1.5 5

• Multi-label classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y = (y1, y2, . . . , ym) ∈ {0, 1}m

x1 x2 . . . xd y1 y2 . . . ym

x 4.0 2.5 -1.5 1 1 0

4 / 49



Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:

I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Performance measures: Hamming loss, prec@k, NDCG@k, F-score
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction
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Statistical challenges

• Learning theory for an extremely large number of labels:

I Statistical guarantees for the error rate that do not depend, or
depend very weakly (sublinearly), on the total number of labels.

I The bound on the error rate could be expressed in terms of the
average number of positive labels (which is certainly much less than
the total number of labels).

I Particular performance guarantees depend on the considered loss
function.

I Different theoretical settings: statistical learning theory, learning
reductions, online learning.

6 / 49



Statistical challenges

• Learning theory for an extremely large number of labels:
I Statistical guarantees for the error rate that do not depend, or

depend very weakly (sublinearly), on the total number of labels.

I The bound on the error rate could be expressed in terms of the
average number of positive labels (which is certainly much less than
the total number of labels).

I Particular performance guarantees depend on the considered loss
function.

I Different theoretical settings: statistical learning theory, learning
reductions, online learning.

6 / 49



Statistical challenges

• Learning theory for an extremely large number of labels:
I Statistical guarantees for the error rate that do not depend, or

depend very weakly (sublinearly), on the total number of labels.
I The bound on the error rate could be expressed in terms of the

average number of positive labels (which is certainly much less than
the total number of labels).

I Particular performance guarantees depend on the considered loss
function.

I Different theoretical settings: statistical learning theory, learning
reductions, online learning.

6 / 49



Statistical challenges

• Learning theory for an extremely large number of labels:
I Statistical guarantees for the error rate that do not depend, or

depend very weakly (sublinearly), on the total number of labels.
I The bound on the error rate could be expressed in terms of the

average number of positive labels (which is certainly much less than
the total number of labels).

I Particular performance guarantees depend on the considered loss
function.

I Different theoretical settings: statistical learning theory, learning
reductions, online learning.

6 / 49



Statistical challenges

• Learning theory for an extremely large number of labels:
I Statistical guarantees for the error rate that do not depend, or

depend very weakly (sublinearly), on the total number of labels.
I The bound on the error rate could be expressed in terms of the

average number of positive labels (which is certainly much less than
the total number of labels).

I Particular performance guarantees depend on the considered loss
function.

I Different theoretical settings: statistical learning theory, learning
reductions, online learning.

6 / 49



Statistical challenges

• Training and prediction under limited time and space budget:

I Restricted computational resources (time and space) for both
training and prediction.

I A trade-off between computational (time and space) complexity and
the predictive performance.

I By imposing hard constraints on time and space budget, the challenge
is then to optimize the predictive performance of an algorithm under
these constraints.
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Statistical challenges

• Unreliable learning information:

I We cannot expect that all labels will be properly checked and
assigned to training examples.

I Therefore we often deal with a problem of learning with missing labels
or learning from positive and unlabeled examples.
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Statistical challenges

• Performance measures:

I Typical performance measures such as 0/1 or Hamming loss do not
fit well to the extreme setting.

I Other measures are often used such as precision@k or the F-measure.
I However, it remains an open question how to design loss functions

suitable for extreme classification.
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Statistical challenges

• Long-tail label distributions and zero-shot learning:

I A close relation to the problem of estimating distributions over
large alphabets.

I The distribution of label frequencies is often characterized by a
long-tail for which proper smoothing (like add-constant or
Good-Turing estimates) or calibration techniques (like isotonic
regression or domain adaptation) have to be used.

I In practical applications, learning algorithms run in rapidly changing
environments: new labels may appear during testing/prediction
phase (⇒ zero-shot learning)
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Statistical challenges

• Long-tail label distributions and zero-shot learning:
I Frequency of labels in the WikiLSHTC dataset:1
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I Many labels with only few examples (⇒ one-shot learning).
1

http://research.microsoft.com/en-us/um/people/manik/downloads/XC/

XMLRepository.html
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Statistical challenges

• Long-tail label distributions and zero-shot learning:
I Frequency of frequencies for the WikiLSHTC dataset:
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I The missing mass obtained by the Good-Turing estimate: 0.014.
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Computational challenges: naive solution

• Size of the problem:

I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):

XTW = Ŷ

I Train time complexity: > 1017

I Space complexity: > 1011

I Test time complexity: > 1011
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Computational challenges: naive solution

• It does not have to be so hard:

I Large data −→ sparse data (sparse features and labels)
I Fast learning algorithms for standard learning problems exist!
I High performance computing resources available!
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Figure: Vowpal Wabbit2 at a lecture of John Langford3

2 Vowpal Wabbit, http://hunch.net/~vw
3

http://cilvr.cs.nyu.edu/doku.php?id=courses:bigdata:slides:start
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Fast binary classification4

• Data set: RCV1

• Predicted category: CCAT

• # training examples: 781 265

• # features: 60M

• Size: 1.1 GB

• Command line: time vw -sgd rcv1.train.txt -c

• Learning time: 1-3 secs on a laptop.

4
http://cilvr.cs.nyu.edu/doku.php?id=courses:bigdata:slides:start

16 / 49

http://cilvr.cs.nyu.edu/doku.php?id=courses:bigdata:slides:start


Computational challenges

How can we reduce computational (time and space) costs
of the naive solution?
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Linear models

• Fast training by least squares:5

W = (XTX)−1XTY

• Works well in low dimensional feature spaces.

• Does not realy improve space and test time complexity.

5 T. Hastie, R. Tibshirani, and J.H. Friedman. Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, second edition, 2009
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Linear models

• Training time complexity:

I Stochastic gradient descent6 or coordinate gradient descent7

I Sparse feature vectors (e.g., sparse updates in SGD8)
I Negative sampling.9

• Space complexity:

I Proper regularization: L1 vs L2.
I Feature hashing.10

I Removing small weights.11

6 L. Bottou. Large-scale machine learning with stochastic gradient descent. In Yves Lechevallier
and Gilbert Saporta, editors, COMPSTAT, pages 177–187, Paris, France, August 2010. Springer

7 R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for
large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008

8 John Duchi and Yoram Singer. Efficient online and batch learning using forward backward
splitting. JMLR, 10:2899–2934, 2009

9 Ronan Collobert and Jason Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In ICML, pages 160–167, 2008

10 K.Q. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for
large scale multitask learning. In ICML, pages 1113–1120. ACM, 2009

11 Rohit Babbar and Bernhard Schölkopf. Dismec - distributed sparse machines for extreme multi-
label classification. CoRR, 2016
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Linear models

• Low-dimensional representation of X, W, Y:

Y = U†VX

I feature space: PCA on X.
I label space: PCA on Y,12 compressed sensing,13 etc.
I both spaces: CCA on both X and Y,14 etc.
I matrix factorization of W.15

I A kind of lossy compression/embedding methods.

12 F. Tai and H.-T. Lin. Multi-label classification with principal label space transformation. In
Neural Computat., volume 9, pages 2508–2542, 2012

13 D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing.
In NIPS, 2009

14 Yao-Nan Chen and Hsuan-Tien Lin. Feature-aware label space dimension reduction for multi-
label classification. In NIPS, pages 1529–1537. Curran Associates, Inc., 2012

15 Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and Inderjit S. Dhillon. Large-scale Multi-label
Learning with Missing Labels. In ICML, 2014
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Computational challenges

• Prediction time is still linear in the number of labels!

How to reduce the test time complexity?
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Test time complexity for linear models

• Classification of a test example in case of linear models can be
formulated as:

i∗ = arg max
i∈{1,...,m}

wix ,

i.e., the problem of maximum inner product search (MIPS).

• Exact solution: the threshold algorithm16

16 Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware.
In PODS ’01, pages 102–113. ACM, New York, NY, USA, 2001
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MIPS vs. nearest neighbors

• MIPS is similar, but not the same, to nearest neighbor search under
the square or cosine distance:

i∗ = arg min
i∈{1,...,m}

‖wi − x‖22 = arg max
i∈{1,...,m}

wix−
‖wi‖22

2

i∗ = arg max
i∈{1,...,m}

wix

‖wi‖‖x‖
= arg max

i∈{1,...,m}

wix

‖wi‖

• Some tricks are used to treat MIPS as nearest neighbor search.17

17 A. Shrivastava and P. Li. Improved asymmetric locality sensitive hashing (ALSH) for maximum
inner product search (mips). In UAI, 2015

Sudheendra Vijayanarasimhan, Jonathon Shlens, Rajat Monga, and Jay Yagnik. Deep networks
with large output spaces. CoRR, abs/1412.7479, 2014

J. Yagnik, D. Strelow, D. A. Ross, and R. s. Lin. The power of comparative reasoning. In
International Conference on Computer Vision, pages 2431–2438, Nov 2011
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Decision trees

• Fast prediction: logarithmic in n

• Training can be expensive: computation of split criterion

• Two new algorithms: LomTree18 and FastXML19

18 Anna Choromanska and John Langford. Logarithmic time online multiclass prediction. In NIPS
29, 2015

19 Yashoteja Prabhu and Manik Varma. Fastxml: A fast, accurate and stable tree-classifier for
extreme multi-label learning. In KDD, pages 263–272. ACM, 2014
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FastXML

• Uses an ensemble of standard decision trees.

• Sparse linear classifiers trained in internal nodes.

• Very efficient training procedure.

• Empirical distributions in leaves.

• A test example passes one path from the root to a leaf.

w1 · x ≥ 0

w2 · x ≥ 0

w4 · x ≥ 0

η(x, 1)=0.6
η(x, 12)=0.45
. . .

η(x, 44)=0.46
η(x, 3)=0.15
η(x, 102)=0.05
. . .

η(x, 45)=0.45
η(x, 2)=0.4
. . .

w3 · x ≥ 0

η(x, 3)=0.46
η(x, 1)=0.15
. . .

η(x, 34)=0.8
η(x, 45)=0.45
η5(x)=0.15
. . .
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Label trees

• Organize classifiers in a tree structure (one leaf ⇔ one label).20

0

1

3

y1
4

y2

2

5

y3
6

y4

• Structure of the tree can be given or trained.

• Different training and test procedures for multi-class and multi-label
classification.

20 S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In
NIPS, pages 163–171. Curran Associates, Inc., 2010
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Probabilistic label trees (PLT)21

• PLT are based on b-ary label trees.

w0 · x ≥ 0

w1 · x ≥ 0

w3 · x ≥ 0

y1

w4 · x ≥ 0

y2

w2 · x ≥ 0

w5 · x ≥ 0

y3

w6 · x ≥ 0

y4

• Probabilistic classifiers in all nodes of the tree.

• Internal node classifier decides whether to go down the tree.

• A test example may follow many paths from the root to leaves.

21 K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hüllermeier.
Extreme F-measure maximization using sparse probability estimates. In ICML, 2016
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Probabilistic label trees

• Class probability estimators in nodes for estimating P(yi = 1 |x).

P(y1 ∨ y2 ∨ y3 ∨ y4 |x)

P(

zt︷ ︸︸ ︷
y1 ∨ y2 |

zpa(t)︷ ︸︸ ︷
y1 ∨ y2 ∨ y3 ∨ y4=1,x)

P(y1 | y1 ∨ y2=1,x)

y1

P(y2 | y1 ∨ y2=1,x)

y2

P(y3 ∨ y4 | y1 ∨ y2 ∨ y3 ∨ y4 = 1,x)

P(y3 | y3 ∨ y4=1,x)

y3

P(y4 | y3 ∨ y4=1,x)

y4

• Using the chain rule of probability

P(yi = 1 |x) = η(x, i) =
∏

t∈Path(i)

ηT (x, t) ,

where ηT (x, t) =

{
P(zt = 1 |x) if t is root,
P(zt = 1 | zpa(t) = 1,x) otherwise.
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• Training: reduced complexity by the conditions used in the nodes.

• Prediction: priority queue search or branch and bound.
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Probabilistic label trees

• The same idea under different names:
I Conditional probability trees22

I Probabilistic classifier chains23

I Hierarchical softmax24

I Homer25

I Nested dichotomies26

I Multi-stage classification27

22 A. Beygelzimer, J. Langford, Y. Lifshits, G. B. Sorkin, and A. L. Strehl. Conditional probability
tree estimation analysis and algorithms. In UAI, pages 51–58, 2009

23 K. Dembczyński, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classification via
probabilistic classifier chains. In ICML, pages 279–286. Omnipress, 2010

24 Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model.
In AISTATS, pages 246–252, 2005

25 G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective and efficient multilabel classification
in domains with large number of labels. In Proc. ECML/PKDD 2008 Workshop on Mining
Multidimensional Data, 2008

26 J. Fox. Applied regression analysis, linear models, and related methods. Sage, 1997
27 Marek Kurzynski. On the multistage bayes classifier. Pattern Recognition, 21(4):355–365, 1988
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FastXML vs. PLT

FastXML PLT

tree structure X X
structure learning X ×
number of trees ≥ 1 1
number of leaves linear in # examples m
internal nodes models linear linear
leaves models empirical distribution linear
visited paths during prediction 1 per tree several
sparse probability estimation X X
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Experimental results

#labels #features #test #train inst./lab. lab./inst.

RCV1 2456 47236 155962 623847 1218.56 4.79
AmazonCat 13330 203882 306782 1186239 448.57 5.04
Wiki10 30938 101938 6616 14146 8.52 18.64
Delicious 205443 782585 100095 196606 72.29 75.54
WikiLSHTC 325056 1617899 587084 1778351 17.46 3.19
Amazon 670091 135909 153025 490449 3.99 5.45

Table: Datasets from the Extreme Classification repository.28

28
http://research.microsoft.com/en-us/um/people/manik/downloads/XC/

XMLRepository.html
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Experimental results

PLT FastXML

P@1 P@3 P@5 P@1 P@3 P@5

RCV1 90.46 72.4 51.86 91.13 73.35 52.67
AmazonCat 91.47 75.84 61.02 92.95 77.5 62.51
Wiki10 84.34 72.34 62.72 81.71 66.67 56.70
Delicious 45.37 38.94 35.88 42.81 38.76 36.34
WikiLSHTC 45.67 29.13 21.95 49.35 32.69 24.03
Amazon 36.65 32.12 28.85 34.24 29.3 26.12
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Experimental results

PLT FastXML

train test b depth #calls train test depth #calls
[min] [ms] [min] [ms]

RCV1 64 0.22 32 2,25 43,46 78 0.96 14.95 747
AmazonCat 96 0.17 16 3,43 54,39 561 1.14 17.44 871
Wiki10 290 2.66 32 2,98 121,98 16 3.00 10.83 541
Delicious 1327 32.97 2 17,69 11779,65 458 4.01 14.79 739
WikiLSHTC 653 3.00 32 3,66 622,27 724 1.17 18.01 900
Amazon 54 0.99 8 6,45 374,30 422 1.39 15.92 796
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Reduction to structured output prediction29

• Reduce extreme classification to structured output prediction:

I encode labels by sequences of bits,
I choose a proper dependence structure between bits,
I use appropriate training and inference methods.

• Enables to work under limited time and space budget.

29 Joint work with Kalina Jasinska and Nikos Karampatziakis
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LTLS

start

c(y)1 = 1

c(y)1 = 0

c(y)2 = 1

c(y)2 = 0

c(y)3 = 1

c(y)3 = 0

c(y)4 = 1

c(y)4 = 0

end

stop

e(1,1,·)

e(1,0,·)

e(2,1,1)

e(2,0,1)

e(2,1,0)

e(2,0,0)

e(3,stop,1)

e(3,1,1)

e(3,0,1)

e(3,1,0)

e(3,0,0)

e(4,stop,1)

e(4,1,1)

e(4,0,1)

e(4,1,0)

e(4,0,0)

1

1

1

• LTLS30 encodes labels as paths in a trellis of width 2.

• Each path corresponds to one and only one label.

• Training concerns models on edges.

• Prediction of the most probable labels corresponds to finding the
most probable paths.

30 Kalina Jasinska and Nikos Karampatziakis. Log-time and log-space extreme classication. In
Extreme Classification workshop at NIPS, 2016
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LTLS

• Can be trained with logistic loss or a variant of structured hinge loss31

• Can work with any number of labels (not only the powers of 2).

• The number of edges is upperbounded by 5dlog2me+ 1

• The inference can be efficiently performed by the Viterbi algorithm.

• Therefore, the space and time complexity of training and testing is
logarithmic in the number of labels.

31 Ian En-Hsu Yen, Xiangru Huang, Pradeep Ravikumar, Kai Zhong, and Inderjit Dhillon. Pd-
sparse : A primal and dual sparse approach to extreme multiclass and multilabel classification.
In International Conference on Machine Learning, 2016
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Experimental results

LTLS-LR PLT LOMtree FastXML

sector
P@1 0.8616 0.8730 0.8210 0.8490
model size 12.06 16.00 17.00 7.00

aloi.bin
P@1 0.8128 0.9088 0.8947 0.9550
model size 209 128 106 992

Dmoz
P@1 0.2082 0.3263 0.2127 0.3840
model size 397 2048 1800 1500

LSHTC1
precision@1 0.0950 0.1524 0.1056 0.2166
model size 525 1024 744 308
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Extreme Zero-Shot Learning32

• In traditional setting the target variable is a binary indicator.

• We replace the binary indicator by a richer representation.

• We use a textual description of a label.

32 Joint work with Marcin Elantkowski and Moustapha Cisse
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Extreme Zero-Shot Learning

• Consider a multi-label dataset with n training examples and m labels
of the form

{(xi,Yi)}ni=1

• Yi = {`i1, `i2, . . . , `iki} is a set of labels relevant for the i-th example,

with 0 ≤ ki ≤ m and `ij ∈ Ys, where Ys = {1, 2, . . . ,m} is a set of all
labels in the training data.

• Ȳi = Ys \ Yi is a set of labels irrelevant for the i-th example.

• xi is a sparse vector of features (e.g., word indices) from a set VX ,
represented as a sequence of features

xi = {xi1, xi2, . . . , xidi}, xij ∈ VX ,

where di denotes the number of non-zero features for the i-th
example (e.g., a number of words in a document).
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Extreme Zero-Shot Learning

• At test time, we are given a set of m′ additional labels

Yu = {m+ 1,m+ 2, . . . ,m+m′}

that can be assigned to test examples.

• These labels have not been observed during training, i.e. Ys ∩Yu = ∅.
• Additionally, for each label ` ∈ {1, 2, . . . ,m+m′} we are given its

description (e.g., textual description from a dictionary) of the form

t` = {t`1, t`2, . . . , t`m`
}, t`j ∈ VY ,

where VY is a separate feature space describing labels, possibly
different from VX .
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Extreme Zero-Shot Learning

• We are interested in finding a scoring function

f : (xi, `)→ R ,

such that f(xi, `) > f(xi, ˆ̀) for all ` ∈ Yi, ˆ̀∈ Ȳi.

• To leverage the provided label description we use:

f : (xi, t`)→ R ,

i.e., the label descriptions instead of raw labels.
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Extreme Zero-Shot Learning

• To obtain the scoring function we learn a mapping of both:

I feature spaces and
I label descriptions

into a common embedding space, in which the dot product between
both representations is maximized.

• While these mappings are different, they are learned jointly to
optimize the loss function of choice:

I logistic loss (like in FastText33) or
I WARP loss (like in Wsabie34)

33 Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient
text classification. CoRR, abs/1607.01759, 2016

34 Jason Weston, Samy Bengio, and Nicolas Usunier. Wsabie: Scaling up to large vocabulary
image annotation. In IJCAI, pages 2764–2770, 2011
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Extreme Zero-Shot Learning

xi1

xi2

...

xidi

t`1

t`2

...

t`m`

WX

WY

f(xi, t`)
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Extreme Zero-Shot Learning

• More formally, we define

φX (xi) : R|VX | → Rp φY(t`) : R|VY | → Rp ,

and consider scoring function f(·) of the form:

f(xi, t`) = φX (xi)
>φY(t`) .

• To obtain representation φ(·) we use a weight matrix W ∈ R|V|×p
which acts as a look-up table over the features (e.g., words).

• Embedding of an example or a label is then obtained by averaging
representations of individual features within it.

• We maintain two separate weight matrices, WX and WY , for φX (·)
and φY(·), respectively.
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Extreme Zero-Shot Learning

• Learning in the extreme setting:
I Negative sampling

• Testing in the extreme setting:
I Fast nearest neighbor search in the embedding space

• Problems with unseen labels:
I Labels can be described by features not seen during training.
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XZSL – Experimental results

• We compare the above approach against:
I k-NN in TF-IDF space
I Label name in example.
I fastText35

I All-in-Text36

I FastXML37

35 Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient
text classification. CoRR, abs/1607.01759, 2016

36 Jinseok Nam, Eneldo Loza Menćıa, and Johannes Fürnkranz. All-in text: Learning document,
label, and word representations jointly. In AAAI Conference on Artificial Intelligence, pages
1948–1954, 2016

37 Yashoteja Prabhu and Manik Varma. Fastxml: A fast, accurate and stable tree-classifier for
extreme multi-label learning. In KDD, pages 263–272. ACM, 2014
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XZSL – Experimental results

• Statistics of the BioASQ dataset

# of train instances 6,792,815
# of test instances 4,912,719
# of seen labels 23,669
# of unseen label 2,435
# of avg. cardinality 10.83
# of words in documents 528,156
# of words in descriptions 39,958
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XZSL – Experimental results

TF-IDF Label in Exp FastText All in Text XZSL

P@1 0.143 0.050 0.875 0.74 0.812
rank loss 0.278 0.50 0.012 0.035 0.013
avg. prec. 0.040 0.017 0.461 0.327 0.37
P@1 (zsl) 0.084 0.048 - 0.013 0.046
rank loss (zsl) 0.217 0.299 - 0.216 0.095
avg. prec. (zsl) 0.142 0.083 - 0.026 0.1
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Conclusions

• Take-away message:

I Extreme classification: #examples, #features, #labels
I Complexity: time vs. space, training vs. validation vs. prediction
I Statistical challenges:

• Is learning possible in the extreme setting?
• Training and prediction under limited time and space budged.
• Performance measures,
• Unreliable learning information,
• Long-tail label distributions,
• Zero-shot learning.

I For more check:

• http://www.cs.put.poznan.pl/kdembczynski
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