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Aims of this module

» The decision tree representation.
» The basic algorithm for inducing trees (Quinaln’s ID3).
» Heuristic search (which is the best attribute):
» Impurity measures, entropy, gini index...
+ Handling real / imperfect data (extensions in C4.5).
» Multivalued attributes and binary trees
+ Continuous valued attributes
+ Overfitting and pruning decision trees.

* Some examples.

» Software implementations (g




The contact lenses data d!i

Age Spectacle prescription Astigmatism Tear production rate Recommended
lenses
Young Myope No Reduced None
Young Myope No Normal Soft
Young Myope Yes Reduced None
Young Myope Yes Normal Hard
Young Hypermetrope No Reduced None
Young Hypermetrope No Normal Soft
Young Hypermetrope Yes Reduced None
Young Hypermetrope Yes Normal hard
Pre-presbyopic Myope No Reduced None
Pre-presbyopic Myope No Normal Soft
Pre-presbyopic Myope Yes Reduced None
Pre-presbyopic Myope Yes Normal Hard
Pre-presbyopic Hypermetrope No Reduced None
Pre-presbyopic Hypermetrope No Normal Soft
Pre-presbyopic Hypermetrope Yes Reduced None
Pre-presbyopic Hypermetrope Yes Normal None
Presbyopic Myope No Reduced None
Presbyopic Myope No Normal None
Presbyopic Myope Yes Reduced None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope No Reduced None
Presbyopic Hypermetrope No Normal Soft
Presbyopic Hypermetrope Yes Reduced None
Presbyopic Hypermetrope Yes Normal None

A decision tree for this problem

reduced normal

myope hypermetrope

none
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Induction of decision trees

Decision tree: a directed graph, where nodes corresponds to some
tests on attributes, a branch represents an outcome of the test and a
leaf corresponds to a class label.

A new case is classified by following a matching path to a leaf node.

The problem: given a learning set, induce automatically a tree

Age Car Type Risk Age <31
20 Combi High

18 Sports High / \ Car Type

40 Sports High o

: @) is sports
50 Family Low
35 Minivan Low -High / \
30 Combi High o O
32 Family Low
40 Combi Low ‘ High ‘ ‘ Low ‘

General issues

+ Basic algorithm: a greedy algorithm that constructs
decision trees in a top-down recursive divide-and-conquer
manner.

» TDIDT — Top Down Induction of Decision Trees.
* Key issues:

» Splitting criterion: splitting examples in the node / how to
choose attribute / test for this node.

» Stopping criterion: when should one stop growing the
branch of the tree.

* Pruning: avoiding overfitting of the tree and improving
classification performance for the difficult data.

* Advantages:

* mature methodology, efficient learning and classification.




Search space

» All possible sequences of all possible tests

» Very large search space, e.g., if N binary attributes:

— 1 null tree

— N trees with 1 (root) test

— N*(N-1) trees with 2 tests

— N*(N-1)*(N-1) trees with 3 tests
—and soon

» Size of search space is exponential in number of attributes

* too big to search exhaustively!!!!

Weather Data: Play or not Play?

Outiook | Temperature  Humidity ~ Windy | Play?
sunny hot high false No
sunny hot high true No
overcast hot high false Yes
rain mild high false Yes
rain cool normal false Yes
rain cool normal true No
overcast cool normal true Yes
sunny mild high false No
sunny cool normal false Yes
rain mild normal false Yes
sunny mild normal true Yes
overcast mild high true Yes
overcast hot normal false Yes
rain mild high true No

Note:
All attributes
are nominal




Example Tree for “Play?”

sunny rain
overcast
Yes
AN \
high normal true false
Yes Yes

J.Ross Quinlan

ick 1o LOOK INSIDE!

Ross Quinlan completed a PhD in Computer Science at the University of Washington in 1968.
He has developed several algorithms used in machine learning and data mining such as ID3,
C4.5, FOIL, and more recent commercial systems such as See5 and Cubist. He has held
permanent appointments at the University of Sydney, University of Technology Sydney, Rand
Corporation, and visiting appointments at Carnegie-Mellon University, MIT, GTE, and Stanford
University. He currently heads a small data mining tools company and is an Adjunct Professor
at the University of New South Wales. He is a Fellow of the American Association for

Atrtificial Intelligence and the Australian Computer Society.

* More of his papers — have a look at http://www.rulequest.com/Personal/
» See also http://en.wikipedia.org/wiki/Ross_Quinlan




Basic TDIDT algorithm (simplified Quinlan’s ID3)

o At start, all training examples S are at the root.

+ If all examples from S belong to the same class Kj
then label the root with K]
else

» select the ,best” attribute A

 divide Sinto S1, ..., Sn according
to values v1, ..., vn of attribute A

» Recursively build subtrees
T1, ..., Tnfor S1, ...,Sn

(A
T
A

@

Which attribute is the best?

[29+,35-] A2=" L
P, and P_are a priori

class probabilities in the
node S, test divides the
+,30-] [18+,33-]  [11+,2-] S set into St and Sf.

» The attribute that is most useful for classifying examples.

* We need a goodness / (im)purity function — measuring
how well a given attribute separates the learning
examples according to their classification.

e Heuristic: prefer the attribute that produces the “purest”
sub-nodes and leads to the smallest tree.




A criterion for attribute selection

Impurity functions:

» Given a random variable x with k discrete values, distributed
according to P={p1,p2,...pk}, a impurity function ® should satisfies:

* ®(P)=0; ®(P) is minimal if 3i such that pi=1;
®(P) is maximal if Vi 1<i <k, pi=1/k
®(P) is symmetrical and differentiable everywhere in its range

* The goodness of split is a reduction in impurity of the target concept
after partitioning S.

e Popular function: information gain

¢ Information gain increases with the average purity of the
subsets that an attribute produces

Computing information entropy

» Entropy information (originated from Shannon)

¢ Given a probability distribution, the info required to predict an event is the
distribution’s entropy

¢ Entropy gives the information required in bits (this can involve fractions of
bits!)

» The amount of information, needed to decide if an arbitrary example in S
belongs to class Kj (pj - prob. it belongs to Kj).

» Basic formula for computing the entropy for examples in S:
entropy(S) = —pilogp| — pylogp, ... - p,logp,

» A conditional entropy for splitting examples S into subsets Si by using
an attribute A:

i

S
entropy(S | A) = Zﬁla -entropy(S,)

* Choose the attribute A with the maximal info gain:

entropy(S) —entropy(S | A)




Entropy interpretation

+ Binary classification problem
E(S)= P+ 10g2 Py —P- 10g2 P-

» The entropy function relative to a
Boolean classification, as the
proportion p+ of positive examples

varies between 0 and 1

» Entropy of “pure” nodes (examples
from one class) is 0;

EntrspndS i

+ Max. entropy is for a node with mixed Plot of Ent(S)
samples P=1/2. for P,=1-P_

Weather Data: Play or not Play?

Outiook | Temperature  Humidity ~ Windy | Play?

sunny hot high false No

sunny hot high true No NOte-'

overcast  hot high false Yes All attributes

rain mild high false Yes are nominal

rain cool normal false Yes

rain cool normal true No

overcast cool normal true Yes

sunny mild high false No

sunny cool normal false Yes

rain mild normal false Yes

sunny mild normal true Yes

overcast mild high true Yes

overcast hot normal false Yes

rain mild high true No




Entropy Example from the Dataset

Information before split / no attributes, only decision class label
distribution

In the Play dataset we had two target classes: yes and no

Out of 14 instances, 9 classified yes, rest no

9 9 Outiook. Temp. Humidity Windy Play Outlook Temp. Humidity ‘Windy play
DPres =—| = |log, | = |=0.41
yes 14)7°2(14 S T O I T T e
Sunny Hot High True No Sunny Cool Normal Fals Yes
5 5
Pro :_[ﬁ log, 7 =0.53 own | o | W | e | e vy | owe | wema | e | v
Rainy LU High Fai Ve Sunny Mild Normal T Ye
E(S)=Pyes+ Do =0.94 Ry | oo | womat | e | e ol o | | -
Raloy Cool Nomal K h Overcast Hot Normal Fal Ye

Which attribute to select?

overcast rainy normal

sunny

yes

witten&eibe




Example: attribute “Outlook”

e "Outlook” = “Sunny”:
info([2,3]) = entropy(2/5,3/5) =-2/5log(2/5) —3/5log(3/5)=0.971

e “Outlook” = “"QOvercast”: @ Note: log(0) is

, not defined, but
info([4,0]) = entropy(1,0) =—1log(1) —0log(0) =0 we evaluate

*
e “"Outlook” = "Rainy”: 0¥log(0) as zero
info([3,2]) = entropy(3/5,2/5) =-3/5log(3/5)—2/5log(2/5)=0.971
e Expected information for attribute:

info([3,21,[4,01,[3,2]) = (5/14)x 0.971 +(4/14)x 0+ (5/14)x 0.971
=0.693

Computing the information gain

e |nformation gain:

(information before split) — (information after split)
gain("Outlook") = info([9,5]) - info([2,3],[4,0],[3,2]) = 0.940 - 0.693
=0.247

e Information gain for attributes from weather data:
gain("Outlook") = 0.247
gain("Temperatue") =0.029
gain("Humidity") = 0.152
gain("Windy") = 0.048




Continuing to split

sunny

gain("Humidity") = 0.971
gain("Temperatue") =0.571

gain(" Windy") = 0.020

The final decision tree

overcast rainy

sunny

What we have used - it is R.Quinlan’s ID3 algorithm!




ID3 algorithm (Quinlan)

Informally:

» Determine the attribute with the highest information gain on
the training set (node or its subset in sub-nodes).

» Use this attribute as the root, create a branch for each of the
values the attribute can have.

+ Split training examples to branches depending on their
attribute value.

» For each branch (splitted subsets):
« IF training examples are perfectly classified, THEN STOP and
assign a class label to this leaf

» ELSE repeat the process with subset of the training set that is
assigned to that branch.

Real examples of decision trees

Medicine - Predicting C-Section Risk
+ Learned from Medical Records of 1000 Women
* Negative Examples are Cesarean Sections

* Prior distribution: [833+, 167-] 0.83+, 0.17-
Fetal-Presentation = 1: [822+, 167-] 0.88+, 0.12-
* Previous-C-Section = 0: [767+, 81-] 0.90+, 0.10-
— Primiparous = 0: [399+, 13-] 0.97+, 0.03-
— Primiparous = 1: [368+, 68-] 0.84+, 0.16-
* Fetal-Distress = 0: [334+, 47-] 0.88+, 0.12-
— Birth-Weight < 3349 0.95+, 0.05-
— Birth-Weight > 3347 0.78+, 0.22-
* Fetal-Distress = 1: [34+, 21-] 0.62+, 0.38-
* Previous-C-Section = 1: [55+, 35-] 0.61+, 0.39-

* Fetal-Presentation = 2: [3+, 29-]0.11+, 0.89-
* Fetal-Presentation = 3: [8+, 22-]0.27+, 0.73-




Japanese credit data

W przyktadzie wykorzystano dane dotyczace 125 osob
ubiegajacych sie o kredyty konsumpcyjne w pewnym
banku w Japonii (archiwum Univ. Irvine).

Osoby scharakteryzowane za pomoca 10 cech
jakosciowych i ilosciowych, np. sytuacja zawodowa,
przeznaczenie kredytu, pteé, stan cywilny, wiek, zarobki,
stan konta, deklarowane raty, staz pracy w zaktadzie
(lata), ...

Klienci byli podzielenie na dwie grupy: dobrych (mogq
uzyskac kredyt) i ryzykownych.

Cel analizy: identyfikacja regut decyzji kredytowych,
poszukiwanie profilu klientéw ktérzy nie powinni otrzymac
kredytu

Final tree for credit data
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Other splitting criteria

+ Giniindex (CART, SPRINT)
+ select attribute that minimize impurity of a split
» y2 contingency table statistics (CHAID)
* measures correlation between each attribute and the class label
+ select attribute with maximal correlation
* Normalized Gain ratio (Quinlan 86, C4.5)
* normalize different domains of attributes

» Distance normalized measures (Lopez de Mantaras)
« define a distance metric between partitions of the data.
» chose the one closest to the perfect partition

* Orthogonal (ORT) criterion
» AUC-splitting criteria (Ferri et at.)

* There are many other measures. Mingers’91 provides an
experimental analysis of effectiveness of several selection
measures over a variety of problems.

* Look also in a study by D.Malerba, ...

Gini Index — a solution from CART

+ If a data set T contains examples from n classes, gini index,
gini(T) is defined as . n
(1) gznz(T)zl—lei.
i

where p; is the relative frequency of claésj inT.

+ If a data set T is split into two subsets T, and T, with sizes
N, and N, respectively, the gini index of the split data
contains examples from n classes, the gini index gini(T) is
defined as

gini,, (1) = 2L gini(T)+ D2 gini(T)

* The attribute provides the smallest ginig,(T) is chosen to
split the node.




Extracting Classification Rules from Decision Trees

» The knowledge represented in decision trees can be
extracted and represented in the form of
classification IF-THEN rules.

* One rule is created for each path from the root to a
leaf node.

» Each attribute-value pair along a given path forms a
conjunction in the rule antecedent; the leaf node
holds the class prediction, forming the rule
consequent.

Extracting Classification Rules from Decision Trees

An example for the Weather nominal dataset:

If outlook = sunny and humidity = high then play = no
If outlook = rainy and windy = true then play = no
If outlook = overcast then play = yes

If humidity = normal then play

yes

If none of the above then play yes

However:
* Dropping redundant conditions in rules and rule post-pruning
* Classification strategies with rule sets are necessary




Occam’s razor: prefer the simplest hypothesis that fits the data.

-

* Inductive bias - Why simple trees should be preferred?

1. The number of simple hypotheses that may accidentally fit the data
is small, so chances that simple hypothesis uncover some
interesting knowledge about the data are larger.

A larger tree that fits data might be coincidence

3.  Simpler trees have lower variance, they should not overfit the
data that easily.

4.  Simpler trees do not partition the feature space into too many
small boxes, and thus may generalize better, while complex
trees may end up with a separate box for each training data
sample.

Still, even if the tree is small ...

for small datasets with many attributes several equivalent
(from the accuracy point of view) descriptions may exist.

=> one tree may not be sufficient, we need a forest of ,healthy”
trees! (see the lecture on ensembles and ...)

Occam’s Razor

14t Century Franciscan friar; William of Occam.

The principle states that "Entities should not be
multiplied unnecessarily."
+ People often reinvented Occam's Razor

— Newton - "We are to admit no more causes of natural
things than such as are both true and sufficient to
explain their appearances.”

+ To most scientist the razor 1s:

— "when vou have two competing theories which make
exactly the same predictions, the one that is simpler is
the better."

CSI661 - Data Mining. The 22
Classificaiton Task - Decision Trees




Using decision trees for real data

+ Some issues:

» Highly branching attributes,

» Handling continuous and missing attribute values
Overfitting

* Noise and inconsistent examples

P
k¢

» Thus, several extension of tree induction algorithms,
see e.g. Quinlan C4.5, CART, CHAID, Assistant86,

Highly-branching attributes

e Problematic: attributes with a large number of values
(extreme case: ID code)

e Subsets are more likely to be pure if there is a large
number of values

=Information gain is biased towards choosing attributes with
a large number of values

=This may result in overfitting (selection of an attribute that is
non-optimal for prediction)




Weather Data with ID code

ID | Outlook | Temperature Humidity Windy | Play?
a sunny hot high false No
b sunny hot high true No
c overcast  hot high false Yes
d rain mild high false Yes
e rain cool normal false Yes
f rain cool normal true No
g overcast  cool normal true Yes
h sunny mild high false No
i sunny cool normal false Yes
j rain mild normal false Yes
k sunny mild normal true Yes
| overcast  mild high true Yes
m | overcast  hot normal false Yes
n rain mild high true No

Split for ID Code Attribute

no no

Entropy of split = 0 (since each leaf node is “pure”, having only

one casc.

yes

yes

Information gain is maximal for ID code




Gain ratio

e Gain ratio: a modification of the information gain that
reduces its bias on high-branch attributes.

¢ Gain ratio takes number and size of branches into
account when choosing an attribute.

¢ |t corrects the information gain by taking the intrinsic
information of a split into account (i.e. how much info do we
need to tell which branch an instance belongs to).

Gain Ratio and Intrinsic Info

e Intrinsic information (a kind of a correction factor):
entropy of distribution of instances into branches

S. S.
IntrinsicInfo(S,A)= _Z‘\S\|10g2 ||Sl|
e Gain ratio (Quinlan’86) normalizes info gain by:

Gain(S, A)
IntrinsicInfo(S,A)

GainRatio(S,A)=




Binary Tree Building

» Sometimes it leads to smaller trees or better
classifiers.

» The form of the split used to partition the data
depends on the type of the attribute used in the split:

e for a continuous attribute A, splits are of the form
value(A)<x where x is a value in the domain of A.

e for a categorical attribute A, splits are of the form
value(A)eX where Xcdomain(A)

Binary tree (Qumlan s C4 5 output)

" pruned decision tree:
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* Crx (Credit Data) UCI ML Repository




Continuous valued attributes

* The real life data often contains numeric information or
mixtures of different type attributes.

* |t should properly handled (remind problems with highly
valued attributes).

* Two general solutions:

* The discretization in a pre-processing step (transforming
numeric values into ordinal ones by finding sub-intervals)

» Adaptation of algorithms — binary tree, new splitting
conditions (A <1),...
» While evaluating attributes for splitting condition in trees,

dynamically define new discrete-valued attributes that partition the
continuous attribute value into a discrete set of intervals.

Weather data - numeric

Outlook Temperature Humidity Windy Play
Sunny 85 85 False No
Sunny 80 90 True No

Overcast 83 86 False Yes
Rainy 75 80 False Yes

If outlook = sunny and humidity > 83 then play = no
If outlook = rainy and windy = true then play = no
If outlook = overcast then play = yes

If humidity < 85 then play = yes

If none of the above then play = yes




Example

*  Split on temperature attribute:

64 65 68 69 70 (71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

+ E.g. temperature < 71.5: yes/4, no/2
temperature > 71.5: yes/5, no/3

. Info([4,2],[5,3])
= 6/14 info([4,2]) + 8/14 info([5,3])
=0.939

*  Place split points halfway between values

+ Can evaluate all split points in one pass!

Speeding up

» Entropy only needs to be evaluated between
points of different classes (Fayyad & Irani,
1992)

64
value Yes
class

65
No

68 69 70

Yes Yes Yes

71 72 (72 75 75

No No AYes Yes Yes

80
No

81 83

Yes Yes|

85
No

[72]

Potential optimal breakpoint

Breakpoints between values of the same class cannot
be optimal




Graphical interpretation — decision boundaries

Hierarchical partitioning of feature space into hyper-rectangles.
Example: Iris flowers data, with 4 features; displayed in 2-D.
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Summary for Continuous and Missing Values

» Sort the examples according to the continuous attribute A,
then identify adjacent examples that differ in their target
classification, generate a set of candidate thresholds, and
select the one with the maximum gain.

+ Extensible to split continuous attributes into multiple
intervals.

* Assign missing attribute values either
+ Assign the most common value of A(x).

» Assign probability to each of the possible values of A.
These probabilities are estimated based on the observed
frequencies of the values of A. These probabilities are used in
the information gain measure.

* More advanced approaches ....




Missing values — advanced (C4.5 solution)

Split instances with missing values into pieces

* A piece going down a branch receives a weight
proportional to the popularity of the branch

* weights sum to 1
* Info gain works with fractional instances
» use sums of weights instead of counts

» During classification, split the instance into pieces
in the same way

* Merge probability distribution using weights

Handling noise and imperfect examples

Sources of imperfection.
» Random errors (noise) in training examples
* erroneous attribute values.
* erroneous classification.
* Too sparse training examples.
 Inappropriate / insufficient set of attributes.

* Missing attribute values.




A Problem of Weather Data Again ...

Outiook | Temperature  Humidity ~ Windy | Play?

sunny hot high false No

sunny hot high true No NOte-'
overcast  hot high false Yes All examples are
rain mild high false Yes consistent
rain cool normal false Yes

rain cool normal true No

overcast cool normal true Yes

sunny mild high false No

sunny cool normal false Yes

rain mild normal false Yes

sunny mild normal true Yes

overcast mild high true Yes

overcast hot normal false Yes

rain mild high true No

Inconsistent examples and overfitting

* Noisy training instances. Consider an noisy training example:
Outlook = Sunny, Temperature = Cool; Humidity = Normal; Wind = False; PlayTennis = No

sunny overcast rainy

high normal false true

add new test




Reasons for Overfitting

* Small number of instances are associated with leaf nodes. In
this case it is possible that for coincidental regularities to occur
that are unrelated to the actual target concept.

area with probably
- | + wrong predictions

Overfitting the Data

» The basic algorithm — grows each branch of the tree just
deeply enough to sufficiently classify the training examples.

* Reasonable for perfect data and a descriptive perspective
of KDD; However, ...

» Occam razor and generality abilities

* When there is ,noise” in the dataset or the data is not
representative sample of the true target function ...

» The tree may overfit the learning examples

» Definition: The tree / classifier h is said to overfit the training
data, if there exists some alternative tree h’, such that it has a
smaller error than h over the entire distribution of instances
(although h may has smaller error than h’ on the training
data).




Overfitting in Decision Tree Construction

» Accuracy as a
function of the

0.85 | "

number of tree o

0.8
nodes: on the —

075 4

training data it may . _ff
gI'OW up tO 100%, 0.65 |

but the final results | e
may be worse than  "°[
for the majority
classifier!

Tree pruning

 Avoid overfitting the data by tree pruning.

« After pruning the classification accuracy on unseen
data may increase!




Avoid Overfitting in Classification
- Pruning

+ Two approaches to avoid overfitting:

* (Stop earlier / Forward pruning): Stop growing the
tree earlier — extra stopping conditions, e.g.

1. Stop splitting the nodes if the number of samples is too small
to make reliable decisions.

2. Stop if the proportion of samples from a single class (node
purity) is larger than a given threshold - forward pruning

* (Post-pruning): Allow overfit and then post-prune

the tree.

« Estimation of errors and tree size to decide which sub-
tree should be pruned.

Remarks on pre-pruning

* The number of cases in the node is less than the given
threshold.

* The probability of predicting the strongest class in the
node is sufficiently high.

* The best splitting evaluation criterion (e.g. entropy) is not
greater than a certain threshold.

» The change of probability distribution is not significant.

« Stop growing the tree when there is no statistically
significant association between any attribute and the class
at a particular node

» Most popular test: chi-squared test

* Only statistically significant attributes were allowed to be
selected by information gain procedure




Remarks on pre-pruning (2)

It seems to be right but remember about ...

» hard to properly evaluate node split without seeing what
splits would follow it (use a lookahead technique?)

« some attributes useful only in combination with other

attributes
On the other hand

It is less computationally expensive than post-pruning!

Reduced Error Post-pruning

Split data into training and validation

sets.

Pruning a decision node d consists

1.
2.
3.

of:
removing the subtree rooted at d.
making d a leaf node.

assigning d the most common
classification of the training
instances associated with d.

Do until further pruning is harmful:

1.

Evaluate impact on validation set of
pruning each possible node (plus
those below it).

Greedily remove the one that most
improves validation set accuracy.

sunny overcast rainy

Humiy

high normal false true

\




Reduced-Error Pruning — REP method

Post-Pruning, Cross-Validation Approach

Split Data into Training and Validation Sets

Function Prune(T, node) 1
* Remove the subtree rooted at node
* Make node a leaf (with majority label of associated examples) &

Algorithm Reduced-Error-Pruning (D)
» Partition D into D,;, (training / “growing”), D, 4jisation (Validation / “pruning”)
» Build complete tree T using /D3 on D,

» UNTIL accuracy on D, iyaiion decreases DO
FOR each non-leaf node candidate in T
Templ[candidate] < Prune (T, candidate)
Accuracy[candidate] < Test (Temp[candidate], D, jigation)
T < T’ e Temp with best value of Accuracy (best increase; greedy)

* RETURN (pruned) T

Post-pruning

*  Bottom-up

+ Consider replacing a tree
only after considering all its
subtrees

+ Ex: labor negotiations

none




wage increase 1st year

Subtree
replacement

*  Bottom-up

» Consider replacing a
tree only after
considering all its
subtrees
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Cost-complexity approach

» Consider both size and error estimate of the tree.
a-R(t)+e(r)

+ where t —the current tree, R(f) — size of the tree, e(t) — estimation of
the error while classifying objects, « - technical coefficient.

e Try to minimize it!
» A strategy to look through a family of reduced trees.

* More advanced version in CART

* MDL principle - ...




Remarks to post-pruning

» Approaches to determine the correct final tree size:
« Different approaches to error estimates
» Separate training and testing sets or use cross-validation.

» Use all the data for training, but apply a statistical test to estimate
whether expanding or pruning a node may improve over entire
distribution.

* Rule post-pruning (C4.5): converting to rules before pruning.
* C4.5 method — estimate of pessimistic error

+ Derive confidence interval from training data

* Use a heuristic limit, derived from this, for pruning

» Shaky statistical assumptions (based on training data)

* Seems to work OK in practice

» Option ¢ parameter — default value 0,25:
the smaller value, the stronger pruning!

Reduced post-pruning

» Separate training and testing sets or use an extra
validation (pruning one).

0.9 T T T T T T

S 4
3
< i
0.6 - On training data —— b
On test data ———
055 - On test data (during pruning) ----- i
O:’, 1 Il 1 Il 1 Il 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)




Classification: Train, Validation, Test split

Results Known

i .| =/ Training set quel
— Builder
: |
Evaluate
Model Builder
Predictions
| n
= [
Validation set -]
(4]
El ,:_\ _| Final Evaluation
oy +
Final Test Set Final Model -]

From trees to rules (C4.5rule)

+ Simple way: one rule for each leaf

» C4.5rules: greedily prune conditions from each rule if this reduces
its estimated error

» Can produce duplicate rules

» Check for this at the end
» Then

* look at each class in turn

+ consider the rules for that class

» find a “good” subset (guided by MDL)
» Then rank the subsets to avoid conflicts

» Finally, remove rules (greedily) if this decreases error on the
training data




*Complexity of tree induction

* Assume
* m attributes
* n training instances
 tree depth O (log n)
* Building a tree
* Subtree replacement

* Subtree raising

O (m nlog n)
O (n)
O (n (log n)?)

* Every instance may have to be redistributed at every
node between its leaf and the root

+ Cost for redistribution (on average): O (log n)

» Total cost: O (mnlog n) + O (n (log n)?)

witten & eibe

A real life example of tree pruning [U.Lubljana]

Location of primary tumor

+ 339 examples

+ 228 for learning, 111 for testing

- induce decision tree accuracy: unpruned: 41%, pestpruned: 45%
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Classification and Massive Databases

+ Classification is a classical problem extensively studied by
« statisticians
» Al, especially machine learning researchers

+ Database researchers re-examined the problem in the context of
large databases

» most previous studies used small size data, and most algorithms
are memory resident

» Classifying data-sets with millions of examples and a few hundred
even thousands attributes with reasonable speed

* recent data mining research contributes to
+ Scalability
» Generalization-based classification

+ Parallel and distributed processing

Scalable Decision Tree Methods

» Most algorithms assume data can fit in memory.

+ Data mining research contributes to the
scalability issue, especially for decision trees.

* Successful examples
« SLIQ (EDBT’96 -- Mehta et al.’96)
* SPRINT (VLDB96 -- J. Shafer et al.’96)
« PUBLIC (VLDB98 -- Rastogi & Shim’98)
* RainForest (VLDB98 -- Gehrke, et al.’98)




Previous Efforts on Scalability

* Incremental tree construction (Quinlan’86)
* using partial data to build a tree.

+ testing other examples and those mis-classified ones are used
to rebuild the tree interactively.

+ Data reduction (Cattlet'91)
* reducing data size by sampling and discretization.
+ still a main memory algorithm.
+ Data partition and merge (Chan and Stolfo’91)
* partitioning data and building trees for each partition.
* merging multiple trees into a combined tree.

+ experiment results indicated reduced classification accuracy.

Oblique trees

Univariate, or

IR /\ monothetic trees,

G /\ mult-variate, or

/\ oblique trees
AN /\

W W wy

/\
/\

R, Figure from
Duda, Hart & Stork,
Chap. 8




History of Decision Tree Research

1960’s

* 1966: Hunt, colleagues in psychology used full search decision tree methods to model
human concept learning

1970’s

» 1977: Breiman, Friedman, colleagues in statistics develop simultaneous Classification
And Regression Trees (CART)

* 1979: Quinlan’s first work with proto-/D3

1980’s
* 1984: first mass publication of CART software (now in many commercial codes)
* 1986: Quinlan’s landmark paper on /D3

» Variety of improvements: coping with noise, continuous attributes, missing data, non-
axis-parallel DTs, etc.

1990’s
* 1993: Quinlan’s updated algorithm, C4.5

* More pruning, overfitting control heuristics (C5.0, etc.); combining DTs

i e LOOI INSIDE!

C4.5 History

» ID3, CHAID - 1960s
+ CA4.5 innovations (Quinlan):

* permit numeric attributes
+ deal sensibly with missing values
* pruning to deal with for noisy data

* C4.5 - one of best-known and most widely-used learning
algorithms

» Last research version: C4.8, implemented in Weka as J4.8
(Java)

» Commercial successor: C5.0 (available from Rulequest)




CART — Classification And Regression Tree

* Developed 1974-1984 by 4 statistics professors

» Leo Breiman (Berkeley), Jerome Friedman (Stanford),
Charles Stone (Berkeley), Richard Olshen (Stanford)

* Focused on accurate assessment when data is
noisy

* Currently distributed by Salford Systems

Software implementations

+ |ID3 and C4.5 was easier to get free (with source code in C)
* J4.8 available in WEKA
* The best version C5.0 is a commercial tool www.rulequest.com
+ CART — was not so easy to get free

» Commercialy distributed by Salford Systems
+ www.salford-systems.com

+ Basis versions available in typical statistical / data mining
software as Statsoft, SAS, Clementine, SPSS, etc.

* Many others — see W.Buntine IND2




C4.5 code + our PP interface

* You can use it during lab classes
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WEKA — Machine Learning and Data Mining Workbench

“# Weka GUI Chooser -10 il
Waikatn Environment for J4.8 - JaVa lmplemel’ltatlon

Knowledge Analysis
of C4.8

(i) 1999 - 2003
University of Waikato
MNew Zealand

Many more decision-tree and
other machine learning methods

GU
" Simple CLI Euxplorer

[ Exgerimerier KnowtedgeFlow




MLC++: Machine Learning Library

* MLC++ (Ron Kohavi idea)
» http://www.sgi.com/Technology/mlic
* An object-oriented machine learning library
» Contains a suite of inductive learning algorithms (including /D3)
» Supports incorporation, reuse of other DT algorithms (C4.5, etc.)
» Automation of statistical evaluation, cross-validation
* Wrappers
» Optimization loops that iterate over inductive learning functions (inducers)
» Used for performance tuning (finding subset of relevant attributes, etc.)
» Combiners
» Optimization loops that iterate over or interleave inductive learning functions
» Used for performance tuning (finding subset of relevant attributes, etc.)
« Examples: bagging, boosting of ID3, C4.5
» Graphical Display of Structures
» Visualization of DTs (AT&T dotty, SGI MineSet TreeViz)
» General logic diagrams (projection visualization)

CART from Salford Systems

o d Systems - Windows Infernet Explarer
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Latest news
Home

+ CART 6.0 ProFX-- New For 2008 Salford Systems
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User Group Case Study

Announcing Salford Systems
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Other tools for visualisation
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Presentation of Classification Results

I+ dbminer




Visualization of a Decision Tree in SGI/MineSet 3.0
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Applications

+ Treatment effectiveness

» Credit Approval

 Store location

» Target marketing

» Insurance company (fraud detection)

« Telecommunication company (client classification)

* Many others ...




More about applications - see

Applications of Machine Learning and Rule Induction

PaT LANCLEY®

HERRERT A. Snaon

|)P[r: rtment cf Peychology

rexpert syst

learning, including neural networks, instance-based methods, genetic learn
analytic approaches, We consider
applications, in each case stati

resulting expert system. In

rule induction, and
induction in greater detail and review some of its recent
he problem, how rule i

jon was used, and the status of the

wing, we identify the main stages in fielding an applied learning

systern and draw some lessons from successful applications.
Introduction

lfuu!lr learning is the study of o nl]m'\tlcl 1al methods for m]m\ |j,p¢'n‘.¢| ance by nl
ing the acquisition of knowledge from eqperience. Bxpert pecfor » rexquires much dor

. P.Langley, H.Slmon paper in Michalski, Bratko, Kubat
book on Machine Learning and Data Mining

When to use decision trees

* One needs both symbolic representation and
good classification performance.
* Problem does not depend on many attributes
« Modest subset of attributes contains relevant info
 Linear combinations of features not critical.

Speed of learning is important.




Summary Points

1. Decision tree learning provides a practical method for
classification learning.

2. ID3-like  algorithms  offer symbolic  knowledge
representation and good classifier performance.

3. The inductive bias of decision trees is preference (search)
bias.

4. Opverfitting the training data is an important issue in
decision tree learning.

5. A large number of extensions of the decision tree algorithm
have been proposed for overfitting avoidance, handling
missing attributes, handling numerical attributes, etc.

6. There exists generalizations for mining massive data sets
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Any questions, remarks?




