Discovering Decision Trees

JERZY STEFANOWSKI Institute of Computing Science Poznań University of Technology

Lecture 5 SE Master Course, 2008/9 = revised 2010

Aims of this module

- The decision tree representation.
- The basic algorithm for inducing trees (Quinaln's ID3).
- Heuristic search (which is the best attribute):
 - Impurity measures, entropy, gini index...
- Handling real / imperfect data (extensions in C4.5).
 - · Multivalued attributes and binary trees
 - Continuous valued attributes
- Overfitting and pruning decision trees.
- Some examples.
- · Software implementations

he conta	ct lenses c	lata		
Age	Spectacle prescription	Astigmatism	Tear production rate	Recommended lenses
Young	Муоре	No	Reduced	None
Young	Муоре	No	Normal	Soft
Young	Муоре	Yes	Reduced	None
Young	Муоре	Yes	Normal	Hard
Young	Hypermetrope	No	Reduced	None
Young	Hypermetrope	No	Normal	Soft
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Муоре	No	Reduced	None
Pre-presbyopic	Муоре	No	Normal	Soft
Pre-presbyopic	Муоре	Yes	Reduced	None
Pre-presbyopic	Муоре	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	No	Reduced	None
Pre-presbyopic	Hypermetrope	No	Normal	Soft
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Муоре	No	Reduced	None
Presbyopic	Муоре	No	Normal	None
Presbyopic	Муоре	Yes	Reduced	None
Presbyopic	Муоре	Yes	Normal	Hard
Presbyopic	Hypermetrope	No	Reduced	None
Presbyopic	Hypermetrope	No	Normal	Soft
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

Induction of decision trees

Decision tree: a directed graph, where nodes corresponds to some tests on attributes, a branch represents an outcome of the test and a leaf corresponds to a class label.

A new case is classified by following a matching path to a leaf node.

The problem: given a learning set, induce automatically a tree

Age	Car Type	Risk
20	Combi	High
18	Sports	High
40	Sports	High
50	Family	Low
35	Minivan	Low
30	Combi	High
32	Family	Low
40	Combi	Low

General issues Basic algorithm: a greedy algorithm that constructs ٠ decision trees in a top-down recursive divide-and-conquer manner. TDIDT → Top Down Induction of Decision Trees. · Key issues: Splitting criterion: splitting examples in the node / how to choose attribute / test for this node. • Stopping criterion: when should one stop growing the branch of the tree. Pruning: avoiding overfitting of the tree and improving classification performance for the difficult data. Advantages: ٠ mature methodology, efficient learning and classification.

Search space

- All possible sequences of all possible tests
- Very large search space, e.g., if N binary attributes:
 - 1 null tree
 - N trees with 1 (root) test
 - $N^{*}(N-1)$ trees with 2 tests
 - N*(N-1)*(N-1) trees with 3 tests
 - and so on
- Size of search space is exponential in number of attributes
 - too big to search exhaustively!!!!

Weather Data: Play or not Play?

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

Note: All attributes are nominal

A criterion for attribute selection

Impurity functions:

- Given a random variable x with k discrete values, distributed according to P={p1,p2,...pk}, a impurity function Φ should satisfies:
 - Φ(P)≥0; Φ(P) is minimal if ∃i such that pi=1;
 Φ(P) is maximal if ∀i 1≤i ≤ k, pi=1/k
 Φ(P) is symmetrical and differentiable everywhere in its range
- The goodness of split is a reduction in impurity of the target concept after partitioning S.
- Popular function: information gain
 - Information gain increases with the average purity of the subsets that an attribute produces

Weather Data: Play or not Play?

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

Note: All attributes are nominal

Entropy Example from the Dataset

Information before split / no attributes, only decision class label distribution

In the Play dataset we had two target classes: *yes* and *no* Out of 14 instances, 9 classified *yes*, rest *no*

ID3 algorithm (Quinlan)

Informally:

- Determine the attribute with the highest information gain on the training set (node or its subset in sub-nodes).
- Use this attribute as the root, create a branch for each of the values the attribute can have.
- Split training examples to branches depending on their attribute value.
- For each branch (splitted subsets):
 - IF training examples are perfectly classified, THEN STOP and assign a class label to this leaf
 - **ELSE** repeat the process with subset of the training set that is assigned to that branch.

Other splitting criteria

- Gini index (CART, SPRINT)
 - · select attribute that minimize impurity of a split
- χ^2 contingency table statistics (CHAID)
 - measures correlation between each attribute and the class label
 - select attribute with maximal correlation
- Normalized Gain ratio (Quinlan 86, C4.5)
 - normalize different domains of attributes
- Distance normalized measures (Lopez de Mantaras)
 - define a distance metric between partitions of the data.
 - chose the one closest to the perfect partition
- Orthogonal (ORT) criterion
- AUC-splitting criteria (Ferri et at.)
- There are many other measures. Mingers'91 provides an experimental analysis of effectiveness of several selection measures over a variety of problems.
- Look also in a study by D.Malerba, ...

Gini Index – a solution from CART

• If a data set *T* contains examples from *n* classes, gini index, gini(*T*) is defined as $\min_{x \in T} (T) = 1 - \sum_{n=2}^{n} T^{2}$

$$qini(T) = 1 - \sum_{j=1}^{n} p_j^2$$

where p_i is the relative frequency of class *j* in *T*.

• If a data set *T* is split into two subsets T_1 and T_2 with sizes N_1 and N_2 respectively, the *gini* index of the split data contains examples from *n* classes, the *gini* index *gini*(*T*) is defined as

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

 The attribute provides the smallest gini_{split}(T) is chosen to split the node.

Occam's razor: prefer the simplest hypothesis that fits the data. Inductive bias \rightarrow Why simple trees should be preferred? 1. The number of simple hypotheses that may accidentally fit the data is small, so chances that simple hypothesis uncover some interesting knowledge about the data are larger. 2. A larger tree that fits data might be coincidence 3. Simpler trees have lower variance, they should not overfit the data that easily. 4. Simpler trees do not partition the feature space into too many small boxes, and thus may generalize better, while complex trees may end up with a separate box for each training data sample. Still, even if the tree is small ... for small datasets with many attributes several equivalent (from the accuracy point of view) descriptions may exist. one tree may not be sufficient, we need a forest of "healthy" => trees! (see the lecture on ensembles and ...)

athe	er	Data	with ID c	ode		
IC	D	Outlook	Temperature	Humidity	Windy	Play?
а		sunny	hot	high	false	No
b		sunny	hot	high	true	No
с		overcast	hot	high	false	Yes
d		rain	mild	high	false	Yes
e		rain	cool	normal	false	Yes
f		rain	cool	normal	true	No
g		overcast	cool	normal	true	Yes
h		sunny	mild	high	false	No
i		sunny	cool	normal	false	Yes
j		rain	mild	normal	false	Yes
k		sunny	mild	normal	true	Yes
1		overcast	mild	high	true	Yes
m	n	overcast	hot	normal	false	Yes
n		rain	mild	high	true	No

Gain Ratio and Intrinsic Info

• Intrinsic information (a kind of a correction factor): entropy of distribution of instances into branches

IntrinsicInfo(S,A) =
$$-\sum_{i=1}^{|S_i|} \log_2 \frac{|S_i|}{|S|}$$

• Gain ratio (Quinlan'86) normalizes info gain by:

$$GainRatio(S,A) = \frac{Gain(S,A)}{IntrinsicInfo(S,A)}$$

Weather	data -	numeric
---------	--------	---------

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes

If outlook = sunny and humidity > 83 then play = no If outlook = rainy and windy = true then play = no If outlook = overcast then play = yes If humidity < 85 then play = yes If none of the above then play = yes

Example

•	Split on temperature attribute:
---	---------------------------------

64 65 68 69 70 71 72 72 75 75 80 85 81 83 Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No E.g. temperature < 71.5: yes/4, no/2 ٠ temperature \geq 71.5: yes/5, no/3 Info([4,2],[5,3]) = 6/14 info([4,2]) + 8/14 info([5,3])= 0.939Place split points halfway between values Can evaluate all split points in one pass!

Summary for Continuous and Missing Values Sort the examples according to the continuous attribute A, then identify adjacent examples that differ in their target classification, generate a set of candidate thresholds, and select the one with the maximum gain. Extensible to split continuous attributes into multiple intervals. Assign missing attribute values either Assign the most common value of *A(x)*. Assign probability to each of the possible values of *A*. These probabilities are estimated based on the observed frequencies of the values of *A*. These probabilities are used in the information gain measure. More advanced approaches

A Problem of Weather Data Again ...

Outlook	Temperature	Humidity	Windy	Play?	
sunny	hot	high	false	No	
sunny	hot	high	true	No	Note:
overcast	hot	high	false	Yes	All example
rain	mild	high	false	Yes	consistent
rain	cool	normal	false	Yes	
rain	cool	normal	true	No	
overcast	cool	normal	true	Yes	
sunny	mild	high	false	No	
sunny	cool	normal	false	Yes	
rain	mild	normal	false	Yes	
sunny	mild	normal	true	Yes	
overcast	mild	high	true	Yes	
overcast	hot	normal	false	Yes	
rain	mild	high	true	No	

- Avoid overfitting the data by tree pruning.
- After pruning the classification accuracy on unseen data may increase!

•	The number of cases in the node is less than the given threshold.
•	The probability of predicting the strongest class in the node is sufficiently high.
•	The best splitting evaluation criterion (e.g. entropy) is not greater than a certain threshold.
•	The change of probability distribution is not significant.
	 Stop growing the tree when there is no statistically significant association between any attribute and the class at a particular node
	 Most popular test: chi-squared test
	 Only statistically significant attributes were allowed to be selected by information gain procedure

Classification and Massive Databases Classification is a classical problem extensively studied by statisticians Al, especially machine learning researchers Database researchers re-examined the problem in the context of large databases most previous studies used small size data, and most algorithms are memory resident Classifying data-sets with millions of examples and a few hundred even thousands attributes with reasonable speed recent data mining research contributes to Scalability Generalization-based classification Parallel and distributed processing

Scalable Decision Tree Methods

- Most algorithms assume data can fit in memory.
- Data mining research contributes to the scalability issue, especially for decision trees.
- Successful examples
 - SLIQ (EDBT'96 -- Mehta et al.'96)
 - SPRINT (VLDB96 -- J. Shafer et al.'96)
 - PUBLIC (VLDB98 -- Rastogi & Shim'98)
 - RainForest (VLDB98 -- Gehrke, et al.'98)

History of Decision Tree Research

- 1960's
 - 1966: Hunt, colleagues in psychology used full search decision tree methods to model human concept learning
- 1970's
 - 1977: Breiman, Friedman, colleagues in statistics develop simultaneous <u>Classification</u> <u>And Regression Trees (CART)</u>
 - 1979: Quinlan's first work with proto-ID3
- 1980's
 - 1984: first mass publication of CART software (now in many commercial codes)
 - 1986: Quinlan's landmark paper on ID3
 - Variety of improvements: coping with noise, continuous attributes, missing data, nonaxis-parallel DTs, etc.
- 1990's
 - 1993: Quinlan's updated algorithm, C4.5
 - More pruning, overfitting control heuristics (C5.0, etc.); combining DTs

C4.5 History

- ID3, CHAID 1960s
- C4.5 innovations (Quinlan):
 - permit numeric attributes
 - · deal sensibly with missing values
 - · pruning to deal with for noisy data
- C4.5 one of best-known and most widely-used learning algorithms
 - Last research version: C4.8, implemented in Weka as J4.8 (Java)
 - Commercial successor: C5.0 (available from Rulequest)

Software implementations

- ID3 and C4.5 was easier to get free (with source code in C)
 - J4.8 available in WEKA
 - The best version C5.0 is a commercial tool www.rulequest.com
- CART → was not so easy to get free
 - Commercialy distributed by Salford Systems
 - www.salford-systems.com
 - Basis versions available in typical statistical / data mining software as Statsoft, SAS, Clementine, SPSS, etc.
- Many others see W.Buntine IND2

MLC++: Machine Learning Library

- MLC++ (Ron Kohavi idea)
 - <u>http://www.sgi.com/Technology/mlc</u>
 - An object-oriented machine learning library
 - Contains a suite of inductive learning algorithms (including *ID3*)
 - Supports incorporation, reuse of other DT algorithms (C4.5, etc.)
 - · Automation of statistical evaluation, cross-validation
- Wrappers
 - · Optimization loops that iterate over inductive learning functions (inducers)
 - Used for performance tuning (finding subset of *relevant* attributes, etc.)
- Combiners
 - · Optimization loops that iterate over or interleave inductive learning functions
 - Used for performance tuning (finding subset of relevant attributes, etc.)
 - Examples: bagging, boosting of ID3, C4.5
- · Graphical Display of Structures
 - Visualization of DTs (AT&T dotty, SGI MineSet TreeViz)
 - General logic diagrams (projection visualization)

alford Systems - Windows Internet Explorer			- @×
🕞 👻 🌾 E:\zdjecial,materialyBreiman\products-cart	html	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	P-
k Edycja Widok Ulubione Narzędzia Pomoc			•
🖗 Salford Systems		🗟 • 🗟 - 🖶 • 🔂 Strona •	💮 Narzędzia 👻 "
Products Services Resource	es News & Events Support	Home - <u>Sitemap</u> - <u>More Info</u> - <u>Contact r</u> 	us - Help
Latest news	Home		
CART 6.0 ProEX New For 2008 Salford Tools Win 2007 DMA Challenge, PAKDD Competition	Salford Systems	rch	
User Group Case Study Presentations Now Available Announcing Salford Systems Success Stories TreeNet Wins Major Competition	Leads the business intelligence scientific discoveries into widely	and data mining industries by converting significar accessible, high performance software solutions.	ant new
Events	Check out how	our award-winning products such as CART®, MA	RS®,
Hands-On Training in San Diego: December 2008	your business t	<u>KandomPorests</u> can nep you predict the future NOW!	re or
Salford Systems Announces 2009 Conference Previous Conference Proceedings Now Available	Speak to our team of in-ho	use <u>consultants</u> to see how they can help you build practical data mining solutions.	4

Applications Treatment effectiveness Credit Approval Store location Target marketing Insurance company (fraud detection) Telecommunication company (client classification) Many others ...

More about applications - see

Applications of Machine Learning and Rule Induction

PAT LANGLEY⁵ Robotics Laboratory, Computer Science Dept. Stanford University, Stanford, CA 94305

HERBERT A. SIMON

Department of Psychology Carnegie Mellon University Pittsburgh, PA 15213

Abstract

An important area of application for machine learning is in automating the acquisition of knowledge bases required for expert systems. In this paper, we review the major paradigms for machine learning, including neural networks, instance-based methods, genetic learning, rule induction, and analytic approaches. We consider rule induction in greater detail and review some of its recent applications, in each case stating the problem, how rule induction was used, and the status of the resulting expert system. In closing, we identify the main stages in fielding an applied learning system and draw some lessons from successful applications.

Introduction

Machine learning is the study of computational methods for improving performance by mechanizing the acquisition of knowledge from experience. Expert performance requires much domain-• Plandley H Simon particular

P.Langley, H.Simon paper in Michalski, Bratko, Kubat book on Machine Learning and Data Mining

When to use decision trees

- One needs both symbolic representation and good classification performance.
- · Problem does not depend on many attributes
 - Modest subset of attributes contains relevant info
- Linear combinations of features not critical.
- Speed of learning is important.

Summary Points

- 1. Decision tree learning provides a practical method for classification learning.
- 2. ID3-like algorithms offer symbolic knowledge representation and good classifier performance.
- 3. The inductive bias of decision trees is preference (search) bias.
- 4. Overfitting the training data is an important issue in decision tree learning.
- 5. A large number of extensions of the decision tree algorithm have been proposed for overfitting avoidance, handling missing attributes, handling numerical attributes, etc.
- 6. There exists generalizations for mining massive data sets

References

- Mitchell, Tom. M. 1997. Machine Learning. New York: McGraw-Hill
- Quinlan, J. R. 1986. Induction of decision trees. Machine Learning
- Stuart Russell, Peter Norvig, 1995. *Artificial Intelligence: A Modern Approach*. New Jersey: Prantice Hall.
- L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth International Group, 1984.
- S. K. Murthy, Automatic Construction of Decision Trees from Data: A Multi-Diciplinary Survey, Data Mining and Knowledge Discovery 2(4): 345-389, 1998
- S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. Morgan Kaufman, 1991.

