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Inspiracje 

Niektóre ze slajdów wykorzystjące pomysły z wykładów: 
q  Mining High Speed Data Streams, talk by P. Domingos, G. Hulten, 

SIGKDD 2000. 
q  State of the art in data streams mining, talk by M.Gaber and 

J.Gama, ECML 2007. 
q  J.Han slides for a lecture on Mining Data Streams – związanek z 

jego podręcznikiem Data Mining 
q  Myra Spiliopoulou, Frank Höppner, Mirko Böttcher - Knowledge 

Discovery from Evolving Data / tutorial at ECML 2008 
q  Indre Zliobaite – niektóre rysunki z jej publikacji 
 
Inne pomysły współpracownicy (D.Brzeziński, M.Deckert) + mój cykl 

wykładów pt Ensemble Classifiers for Data Streams  with Concept 
Drift → wykłady dla szkół doktoranckich 

Powyższe → slajdy w języku angielskim 



Motivation 

q  Real world data 
§  In many applications available in a form of data streams 
§  New computational requirement for processing them 

q  The task of supervised classification – more difficult 
§  Data comes from complex environments that evolve over time 
§  Concept drift = underlying distribution of data is changing 

q  Concept drifts – categorization and detection 
q  Algorithms need to adapt to changes quickly and 

accurately 
q  Survey learning algorithms 

 



Outline of the talk – part 1 

1.  Introductory remarks 

2.  Previous incremental classifiers 

3.  General processing framework 

4.  Concept drifts 

5.  Data managements and forgetting mechanisms 

6.  Evaluation of streaming classifiers 

7.  Taxonomy of classifiers 
→ Single classifiers 

→  Decision trees and others 

→  What will be in the part 2 – drift detectors and 
ensembles 



Data Streams - definition 
q  “A data stream is a potentially unbounded, ordered 

sequence of data items, which arrive continuously at 
high-speeds” 

Springer Encyclopedia of Machine Leaning 

q  “It is impossible to control the order in which items arrive, 
nor is it feasible to locally store a stream in its entirety”  

q  Other definitions see → 
	+	Ph.D	Thesis	of	D.	Brzeziński	(see	his	WWW)	



Data stream characteristic 

q  Continuous	flow	–	the	data	elements	arrive	online	one	after	
another	
§  Time	intervals	between	element	may	vary	
§  Each	example	can	be	processed	only	once	(single	scan)	
§  The	system	has	not	control	over	the	order	of	arriving	elements	

q  Huge	volumes	of	data	(potentially	unbounded	in	size)	
q  Data	arrive	at	a	rapid	rate	

•  With	respect	to	the	computational	abilities	of	the	processing	system	
(time	is	costly)	

q  Data	streams	may	evolve	over	time	
§  Different	types	of	concept	drifts	 		

	



New requirements for data stream algorithms 

q  Process	incrementally	an	example	
§  Inspect	it	usually	only	once	

q  Use	a	limited	amount	of	memory	
§  Streams	are	often	too	large	to	be	processed	

	as	a	whole	
q  Work	in	limited	time	

§  Examples	arrive	rapidly		
q  Be	ready	to	predict	at	any	time	
q  Deal	with	concept	drift	

§  When	data	streams	evolve	over	time 	 		

	 New		algorithms	than	ones	known	from	static	classification	!	
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Data streams vs. time series 
Both incremental and time dependent 
However, there are strong differences 
q  Multi-dimensional attributes vs. focus on the main among them 
q  Different predictions 

§  See the classification task / further elements of this lecture 
q  No typical auto-correlations and similar assumptions 
q  Other view of seasonal changes 
q  Non-stationary and concept-drifting characteristics 
q  Computational requirements 
q  and … Timestamp Puis. A 

(kW) Puis. R 
(kVAR) U 1 (V) I 1 (A) 

… … … … … 
16/12/2006-17:26 5,374 0,498 233,29 23 
16/12/2006-17:27 5,388 0,502 233,74 23 
16/12/2006-17:28 3,666 0,528 235,68 15,8 
16/12/2006-17:29 3,52 0,522 235,02 15 

… … … … … 



Previous research efforts 

q  Incremental learning vs. batch  
§  Neural networks (although repeated over epochs) 
§  Generalizations of k-NN (Aha’s IBL) 
§  Incremental Naïve Bayes 

q  Incremental versions of symbolic knowledge 
reconstruction 
§  Decision trees ID5 (Utgoff) 
§  Rule learning (AQ15PM) 
§  Clustering – COBWEB (D.Fisher) 

q  Specific sampling for larger data 
§  Windowing for trees (Quinlan C4.5; Catlett) 
§  Sampling for k-means or other clustering algorithms 

 

Review of some incremental learners: V.Lemaire et al. A survey on supervised 
classification on data streams 2015 



However, … 
q  Many of these solutions are just simple incremental learners 

§  e.g., neural networks need several passes through data (epochs), 
time demanding tuning parameters, .. 

q  Not useful for processing streams: 
§  Massive data streams 
§  Computational demands (with limited memory, time,..) 
§  Adapting to changes in data (non-stationary environments)  

 

 V.Lemaire et al. A survey on supervised classification on data streams 2015 



Block	processing	(data	chunks)	
 
 
 
 

Different processing schemes 

Online	processing	(instances)	

Completely	labeled	examples	or	partly	…?	

Data	stream	S	is	a	sequence	of	labeled	examples	zt=(xt,yt) (t=1,2, …, T); 
may be considered in blocks 
	



Labeling frameworks 

q  Complete supervised 
§  Relatively immediate access to class labels for each 

incoming example 
§  Labels could be used to evaluate and update the 

classifier 

q  Learning with delayed labeling 

q  Semi-supervised learning 

q  Unsupervised (initially labeled  
examples) 

Fig: Bifet MOA Tutorial 



Stationary vs. non-stationary data 

ML/DM typical assumption:  
Instances are independent and coming from stationary 
distribution 

 
Is it valid for data streams and changes? 

 



Stationary vs. non-stationary streams 

Generally two models of streams: 
q  Stationary – examples drawn from fixed (albeit 

unknown) probability distribution 
q  Non-stationary – data evolve over time 

Concept drift 
§  Recommendations “interesting literature“ -- from novice 

to expert 
§  “spam email” – new versions arrive 
§  Changes in controlling the manufacturing process 



Classification in Changing Environments 

Concept drift - means that the concept about which data 
is obtained may shift from time to time, each time after 
some minimum permanence (def. J.Gama). 
q  Reasons – hidden context / not available for the learning 

algorithm in observed attributes (Widmer,Kubat) 
q  These are not seasonal changes as in time series 
q  Concept drifts are reflected in the incoming instances and 

deteriorate predictions of classifiers 



Experiences with FLORA rule learning [Widmer,Kubat] 

Sudden change → STAGGER problem (synthetic data) 



More real life examples 
q  Analysing customer preferences 
q  Approving bank loans 

§  Financial market changes 

q  Filtering information  
§  What is an interesting book, movie 

q  Medical decision aiding (disease progression changes 
in response to med. treatment) 

q  Predicting estate prices, or other goods 



Concept drift applications 

See: Indre Zliobaite, Mykola Pechenizkiy, and Joao Gama:  An overview of concept drift applications. 
Chapter 4 in N.Japkowicz and J.Stefanowski (Eds), Big Data Analysis: New Algorithms for a New 
Society, Springer (2016). -> see authors’ web pages 



What can change 

q  A data stream S – a sequence xtyt (t=1,2, …, T)  
→ Consider a supervised classification.  A class label yt of this 
example is available (after some time) and can be used for 
learning a classifier C 

§  Joint probability distribution pt(x,y) at time t 

q  For two distinct points in time t and t+Δ, exist x such 
that pt(x,y)≠pt+Δ (x,y) 
§  Component probabilities may change but which ones are the 

most important? 



What can change 

q  Concept drift - for two distinct points in time t and t+Δ, 
exist x such that pt(x,y)≠pt+Δ (x,y) 

q  Real drift (supervised classification) 

§  posterior probability of classes p(y|x) changes 

q  Virtual drift → changes in incoming data, e.g. p(x), not 
affecting p(y|x), also drifting priori probabilities 
§  May be used in novelty detection or semi-supervised settings 



Real vs. virtual drift 

Fig: Dariusz Brzeziński: Block-based and online ensembles for concept drifting 
data streams. PhD Thesis, Poznań University of Technology, 2015.  



L. Kuncheva’s examples (virtual vs. real) 

q  Changes of prior probabilities p(y) – is it concept drift or rare cases / 
data shift? 

q  Changes of posterior prob. p(y|x) 



Types of drifts 
Stream S = <S1,S2,S3,…,Sn>, where subset Si 

generated by a stationary distribution Di 

 → transition between Sj and Sj+1   

Hidden context of changes 

Different types of drifts 
q  A sudden (abrupt) drift - Sj is suddenly 

replaced by a different distribution  
in Sj+1 (Dj≠Dj+1) 

q  Gradual drifts - a slower rate of changes 
§  Transition phase where examples from  

two different distributions are mixed 
Incremental – many smaller changes 

q  Reoccurring concepts  

Not react to blips  

Robustness against noise  
Distinguish noise from slowly changing context 

Figures - I.Zliobaite 



Four basic drifts 

Fig: Ammar Shaker: Novel methods for mining and learning from  
data streams. PhD Thesis, Paderborn University, 2016.  

Sudden 
drift 



More on Types of Concept Drifts 

Better distinguish types of drifts 
q   Real concept drift 

§  Complete or sub-concept drifts 
§  Drift severity (magnitude) – drift change between some time 

points  

q   Drift reoccurrence 
§  Cyclical drifts – concepts reoccur in a specific order  

[Tsymbal 2004];    → fixed or varying periodicity 
§  Non-cyclical drifts 

q   Covariance drift (a part of virtual drift) 

  pt(x)≠pt+Δ (x) 
q   Novel class appearance [Masud et al. 2011] 

  pt(y=Cl)=0 for t and pt+Δ (y=Cl)>0 
  



Is the previously learned classifier still valid? 

Figure by I.Zliobaite 



Data management and forgetting mechanisms 

q  Necessary to meet time and memory requirements 

q  Support reaction to changes by eliminating examples 
from an old concept (forgetting) 

 

Characterize the information stored in memory to maintain 
a classifier consistent with the actual state of the nature 
Different strategies: 
q  Full vs. partial memory 
q  No memory – include information about examples  

in the learned model 
 

Fig Gama 



Partial memory - windows 

q  Store in memory only some examples 
q  Sliding windows – limit training examples to the most 

recent ones and consequently discard  the oldest ones 
(FIFO) 

q  At each time step the learning model induces / updates a 
classifiers using only the examples that are included in the window 



Sliding windows – Forgetting old concepts 
Retrain examples with selected examples (but computational costly) 
 
 
 
 
 
 
 
 
 
 

Sliding windows typical for online instance processing 
Block (chunk) based mode – more natural dividing a stream in portions. 
The algorithm may be focused on the recent or latest blocks! 



Sliding windows 

q  How to select the appropriate window size: 
§  Too small window 

•  A fast adaptation in moments of concept changes 
•  Affecting too much computational aspects, in more stable 

periods 

§  Large windows 
•  Can not react sufficiently quickly to changes 
•  Work well in stable periods 

q  Fixed vs. adaptive size windows 
§  Fixed – simple and may be a baseline 
§  Varying the size – usually used with a classifier or a 

special drift detector 
•  Attempt to decrease when changes and increasing in 

stable periods. 



ADWIN adjusting a window size 

Bifet – adapting sliding window algorithm, also a drift detector  
§  The main idea: to  compare basic statistics (averages) over 

two sliding sub windows in main window W 
•  Whenever two “large enough” sub windows W0 and W1 show 

distinct enough averages, there is difference and the older 
part of the windows is dropped 

§  How to compare averages 
•  Either a statistical test or a special bound for |µW0-µW1| < εcut 

§  A specific variant of Hoeffding bound 

§  The number of cut splatting points should be reduced – extended 
ADWIN2; also block growing W too much in stable periods 

εcut =
1
2m

ln
4W
δ

m =
1

1
W0

+
1
W1

Bifet A., Avalda R., Kalman filters and adaptive windows for learning in data 
streams. In Proc. of the 9th int. conf. on Discovery Science, DS. 29–40, 2006. 



Selecting examples in a different way 

q  FISH algorithms [Zliobaite] – consider similarities both in 
time and attribute space to create a window. 

q  The distance between xi and xj is aggregated in space ds 
and in time dt (with weight coefficients a) 

   
 

FISH 1 – fixed sized window 
For a new example xt+1 is builds a window (past examples 
sorted with Dit+1) 
FISH 2 – using internal leave-one-out classification tune s - the 
size the window 
FISH 3 – also search for coefficients in an aggregated  
Simple sizes of windows vs. costly optimization 

Indre Zliobaite: Combining time and space similarity for small size learning under concept 
drift. ISMIS Conf. 2009; More in her PhD Thesis on Adaptive training set formation 2010. 

Dij = a1 ⋅dij
s + a2 ⋅dij

t



Weighting Examples 

q  Time forgetting 
§  Weighting examples (full vs. partial memory) 

•  Full – store in memory sufficient statistics over all examples 
•  Partial – weighted windows 

§  Weighting the examples accordingly to their age 
§  Oldest examples are less important 

q  Basic schema [Gama] 
§  Assume, the observed statistics S and aggregation function G(X;S) 
§  At step t, available new example Xt 

§  the new value of St=G(Xt;w(t)S(Xt-1)) where w[0,1] is the fading (decay) 
function 

 

Exponential fading function 



Weighting Examples 

The role of the oldest examples is decreased by a decay 
function assigning a weight to each example, e.g. 
 

  w1(t) = e-λt,  λ>0 
  w2(t) = t-α,   α>0 
  w3(t) = 1 – t/|W| 

 

where t refers to the “age” of the example 
 
 
 
 
 
 
Fading may concerns blocks 



How to adapt = more 

q  Window forgetting = rather blind adaptation 
§  There is no direct change detection 
§  Do not provide information about the moment of change 

and dynamics of the process 

q  Alternative option – to apply a change detection 
method and trigger re-training the classifier based on 
the recent examples 

q  Wait till drift detectors 



Evaluation of streaming classifiers 

Main issues 

§  Evaluation measures 

§  Estimation techniques 

§  Comparing classifiers 

§  Others – synthetic data for adaptability to drifts 



Evaluation measures 

Basic error / classification accuracy 
Easy to calculate also in an online way  

 
 
Specialized (imbalanced classes) 

§  Sensitivity (Recall) – minority class 
§  G-mean 
§  Kappa statistic 
§  Generalized Kappa (M) 
§  Prequential AUC (ROC) 

 
 
Combined computational costs (memory-time) 

κ =
p0 − pC
1− pC

p0 - accuracy of the classifier 
pC –probability that a chance 
classifier makes a correct 
 prediction 

 
Original 

Predicted  
+ - 

+ TP FN 
- FP TN 

FNTP
TPySensitivit
+

=

FPTN
TNySpecificit
+

=



How to estimate measures 

q  Standard ML/DM: 
 – independent train and test sets (the same distribution) 

Hold-out and cross validation variants 

q  Cross validation does not apply in streams 

Two alternatives: 
§  Special hold-out if data is stationary 
§  Sequential test-and-train 

For each example 
1: make a prediction 
2:  update the classifier, whenever target value is available 

The prequential approach over time windows or fading 



q  Holdout	
					[Kirkby	2007]	

q  Interleaved	Test-then-train	
						

q  Block-based	evaluation	
					[Brzezinski	&	Stefanowski	2010]	

q  Prequential	with	forgetting	
						[Gama	et	al.	2013]	

	

Main estimation techniques 



Prequential Evaluation 

Basic cumulative (all examples) variant: 
q  The prequential error, computed at time i, is an 

accumulated sum of a loss between the prediction and 
target) 

 
q  Provides a single number at each time stamp – easy for 

a learning curve 
q  The pessimistic estimator of accuracy 
q  Problematic – influenced by first examples used to 

train examples / and for evolving data 

Pe(i) =
1
i

L(yk, ŷk )k=1

i
∑ =

1
i

ekk=1

i
∑



Prequential with forgetting 

Exploit latest examples to estimate 
q  The prequential error, computed at time i, over a 

sliding window of size w is: 

 
q  A version with fading function α (0<< α <1) is: 

PW (i) =
1
W

L(yk, ŷk )k=i−W+1

i
∑ =

1
W

ekk=1i−W+1

i
∑

Pα (i) =
α i−kL(yk ŷk )k=1

i
∑

α i−k

k=1

i
∑

=
α i−kekk=1

i
∑

α i−k

k=1

i
∑



Prequential with fading factors 

Similar (but easier) forgetting mechanism: 
The prequential error, could be ei=Si/n where S1=L1 and Si=Li+α*Si-1 
but use correction for larger n 

where n1=1 and α is close to 1 (for example 0.9) 

Ei =
Si
Ni

=
L1 +α ⋅Si−1
1+α ⋅Ni−1



Evaluation of dealing with concept drifts 

Drift detection and dynamics / classifier deterioration + recovery 
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Evaluating reactions to drifts 

Limited access to real-world data sets with know drifts 
(and their localizations), e.g. SPAM datasets 
q  Synthetic data generators (see MOA), e.g. 

§  SEA – sudden concept 
§  STAGGER 
§  Rotating hyperplane (gradual) 
§  RBF  

§  Minku’s problems (not in MOA) 

q  Advanced scenarios, e.g. 
§  Recovery analysis [Shaker and Hüllermeier] join 2 real 

stationary streams into a new with controlled drifts 
§  Controlled permutations [Zliobaite] 



Generic scheme of online adaptive learning  

Recall general requirements 
§  Detect or adapt to drifts asap., 
§  while distinguishing between drift and noise,  
§  doing so in less time than the arrival of the next instance 
§  without requiring more than a fixed amount of (memory 

for) storage. 

Fig. Gama 



Categorization of algorithms 
q  Solutions for stationary or non-stationary streams 
 

q  In case of evolving data / non-stationary streams 
§  Active (drift triggers) vs. passive (no drift detection but  

adaptive one) 

q  Single vs. multiple classifiers  
(ensembles) 

 

q  Different modes of processing examples 
§  Online instance by instances vs. block / chunk bases ones 



Categorization of learning algorithms  

Bifet A., Gama. J., Pechenizky M., Zliobaite I.: Handling concept drift. Importance, 
challenges and solutions. PAKDD Tutorial (2011) 

Detectors Forgetting 

Contextual Adaptive 
ensemble 

Triggering Evolving 

Single 
classifiers 

Multiple 
classifiers 



Learning algorithms with respect to changes 

Bifet A., Gama. J., Pechenizky M., Zliobaite I.: Handling concept drift. Importance, 
challenges and solutions. PAKDD Tutorial (2011) 

Detectors Forgetting 

Contextual Dynamic 
ensemble 

Triggering Evolving 

Single 
classifiers 

Multiple 
classifiers 

Change detect 
Re-train 

Windowing 
Fading 

Adapt in 
some points 

Maintain 
Some memory 

Adaptive 
combination 

Exploit many models 

No or partial 
 memory 

Swap between 
models 



Triggers – the use of drift detectors 

Statistical Process Control 
DDM, EWMA,… 

Sequential Analysis 
Cumulative Sum Test, Page-Hinkley test 

Monitoring distributions over windows 
ADWIN 

Context approaches 
 
More: J.Gama, I.Zliobaite, M.Pechenizkiy, A. Bouchachia: A Survey on Concept Drift 
Adaptation. ACM Compt. 2013 
Wait to the next lecture – a brief review of popular methods 

Online classifier Data Drift  
detector 

Alarm / warnings 



Single classifiers 

[Lemaire et al. 2015] 
q  Decision tress (Hoeffding bounds → VFDT) 
q  Decision rules (VFDR,FACIL, RILL) 
q  Naive Bayes 
q  Lazy learning with K-NN, e.g. IBLStreams 
q  Incremental SVM 
q  Online ANN perceptrons 

Main versions – for stationary streams 



Incremental tress - challenges 

q  Classic decision tree algorithms assume all training 
data can be simultaneously stored in main memory 

q  Disk-based algorithms repeatedly read training 
data from disk sequentially 
•  Prohibitively expensive when learning complex trees 

q  Goal: design decision tree learners that read 
incrementally each example at most once, and use 
a small constant time to process it 



Stream context → Hoeffding trees 

P. Domingos and G. Hulten: “Mining high-speed data streams” KDD’2000 
 
Very influential paper! 
q  Very Fast induction of Decision Trees, a.k.a. Hoeffding trees 

(extended) 
q  Algorithm for efficient inducing trees from massive data streams 

§  Reasonable time and memory costs 

q  With high probability will incrementally construct a tree as good as 
one generated by static (greedy) algorithms from all examples 

q  Does not store examples - memory independent of data size 
q  Does not deal with time change! 
 



Stream context of inducing trees 
P. Domingos and G. Hulten: “Mining high-speed data streams” KDD’2000 

 

Decision trees for streams: 
When to make a split with an attribute? 
 

Basic idea: A small sample of the stream can often be enough to 
choose the optimal splitting attribute 

 
§  Collect sufficient statistics from a small set of examples 
§  Estimate the merit of each attribute 

•  Use Hoeffding bound to guarantee that the best attribute is 
really the best 

•  Statistical evidence that it is better than the second best 



Hoeffding bound (inequality) 

§  A result in probability theory that gives an upper bound on the 
probability for the sum of random variables to deviate from its 
expected value [V.Hoeffding 1963] 

§  Hoeffding Bound (Additive Chernoff Bound) 
Given: n independent observations of a real valued random variable 

r, with range of R (must be bounded) 
It states with probability 1 - δ (where δ is user-specified) that the 

true mean of r (µr) will not differ from the estimated value  by 
more than ε, i.e. 

n
R
2

)/1ln(2 δ
ε =

( ) δεµ −≥≤− 1rrP



Hoeffding inequality in trees over streams 

q  Let G() be the measure for choosing the split attribute in a tree 
node, e.g. information gain 

q  Assume G is to be maximized, and let A1 be the first attribute 
with highest observed G after seeing n examples, and A2 be the 
second-best attribute. Let 

 be the difference between their observed heuristic values. 
Then, given a desired δ, the Hoeffding bound guarantees that 
A1 is the correct choice with probability 1− δ if n examples have 
been seen at this node and D(G) > ε. 

q  The current sample size is enough to decide on attributes, 
otherwise the sample size its not enough to make a stable 
decision 

q  With R and δ fixed, the only variable to change ε is n 

0)()( 21 ≥−=Δ AGAGG



Hoeffding tree basic algorithm 

δ - desired probability level 
T := Root leaf with empty statistics- counts nijk; 
For i = 1,2; … do HTGrow(T,xi ) / for each example in a stream 
 
HTGrow(T,xi ) 

 Propagate example through tree T till a leaf L 
 Update statistics nijk at  leaf L 
 if examples seen so far at L are not all of the same class 
 then Compute G for each attribute  
  if G(Best Attr.)- G(2ndBest) > ε then 
   Split leaf L on the best attribute A1 
   For each expanded branch start a new leaf and statistics 

n
R
2

)/1ln(2 δ
ε =



Hoeffding Tree: Strengths and Weaknesses 

q  Strengths  

§  Scales better than traditional methods 
•  Sublinear with sampling 
•  Very small memory utilization 

§  Incremental 
•  Make class predictions, if necessary 
•  New examples are added as they come 

§  No need for pruning; 
•  Decisions with statistical support; 

§  Low overfitting: 
q  Weakness 

§  Could spend a lot of time with ties 
§  Memory used with tree expansion 
§  Number of candidate attributes 



VFDT (Very Fast Decision Tree) 

q Modifications to Hoeffding Tree 
§  Near-ties, when two best attributes have similar high evaluation 

G, broken more aggressively G(Best Attr.)- G(2ndBest) < τ 
§  G computed every nmin 

§  Deactivates least promising nodes to save memory 
§  Poor attributes dropped 
§  New initialization (helps learning curve) 

q  Compare to Hoeffding Tree: Better time and memory 
q  Compare to traditional decision tree 

§  Similar accuracy 
§  Better runtime with 1.61 million examples 

•  21 minutes for VFDT 
•  24 hours for C4.5 

q  Still does not handle concept drift 



Prediction accuracy vs. # examples 



Experimental analysis of a tree size 

Different versions of VFDT (2 special initilization) 



Extensions of VFDT 

IADEM [G. Ramos, J. del Campo, R. Morales-Bueno 2006] 
§  Better splitting and expanding criteria 

VFDTc [J. Gama, R. Fernandes, R. Rocha 2006], UFFT [J. 
Gama, P. Medas 2005] 
§  Dealing with continuous attributes by special Btrees or 

Univariate Quadratic Discriminant (UFFT) 
§  Naive Bayes at inner nodes and leaves 
§  Short term memory window for detecting concept drift 
§  Different splitting and expanding criteria 

CVFDT [G. Hulten, L. Spencer, P. Domingos 2001] 

The adaptation of Hoeffding bound – some criticism, see L. Rutkowski et al. 



CVFDT 
q  Concept-adapting VFDT   

§  Mining Time-Changing Data Streams. Hulten, Spencer, Domingos, KDD 2001 

q  Goal 
§  Classifying concept-drifting data streams 

q  Approach 
§  Incorporate “windowing” 
§  Monitor changes of information gain for attributes. 
§  If change reaches threshold, generate alternate subtree with new 

“best” attribute, but keep on background. 
§  Replace if new subtree becomes more accurate. 

q  There are alternative approaches 
§  Adaptive Trees [Bifet]  

•  Replace frequency statistics counters by estimators  don’t need a window  
•  change the way of checking the substitution of alternate subtrees, using a change 

detector (ADWIN) 

§  Gama et al. – comparing distributions 



Next inspirations 

Regression (Model Trees): 
§  E. Ikonomovska, J. Gama, S. Dzeroski: Learning model 

trees from evolving data streams. Data Min. Knowl. 
Discov. 2011 

Rules (VFDR): 
§  J. Gama, P. Kosina: Learning Decision Rules from Data 

Streams, IJCAI 2011 

Multiple classifiers: 
§  A. Bifet, E. Frank, G. Holmes, B. Pfahringer: Ensembles 

of Restricted Hoeffding Trees. ACM TIST; 2012 

Other … 



Very Fast Decision Rules [Kosina, Gama] 

q  Rules potentially more comprehensive than larger trees 
q  Generic scheme of specialization rules + Hoeffding bound 

q  AVFDR – extra pruning of rules with drift detectors 



Other rule learning algorithms 

FLORA Family 
§  Gerhard Widmer, M.Kubat,Learning in the presence of concept 

drift and hidden contexts, Machine Learning, 1996. 

FACIL 
§  Francisco J. Ferrer-Troyano,Jesús S. Aguilar-Ruiz,José 

Cristóbal Riquelme Santos, Discovering decision rules from 
numerical data streams, Proc. ACM Symp. Applied Computing, 
2004. 

RILL 
§  Magdalena Deckert, Jerzy Stefanowski, RILL: algorithm for 

learning rules from streaming data with concept drift, Proc. 
ISMIS 2014. 



Looking for software support 

Fig. D.Brzezinski Not real streams 



Do we have software support? 



Look at MOA Web page 

moa 





MOA – an open source framework for massive data and data streams 

See more at Waikato Univeristy web page 
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End of part 1, … 

 
 

What you will hear – mainly streaming  
adaptive ensembles 


