
1

Cascading Style Sheets

Introduction to CSS (CSS2)

• A style sheet is a collection of formatting rules that can be
applied to multiple HTML documents

• it acts as a template, allows the same look for each
occurrence of a particular element;

• it can be contained in a separate file, referenced with a
<LINK REL=“stylesheet”> tag, or embedded within an
HTML document by using a <STYLE> tag

CSS Example
<HTML>
 <HEAD>
 <TITLE>CSS homepage</TITLE>
 <STYLE type="text/css">
 H1 { color: blue }
 BODY { font-family: "Gill Sans", sans-serif;
 font-size: 12pt;
 margin: 3em }
 </STYLE>
 </HEAD>
 <BODY>
 <H1>Cascading Style Sheets</H1>
 <H2>Preface</H2>
 <P> A CSS rule consists of two main parts: selector
 ('H1') and declaration ('color: blue'). The
 declaration has two parts: property ('color') and
 value ('blue'). </P>
 </BODY>
</HTML>

CSS Rules

• A CSS rule consists of two main parts: selector (e.g. 'H1')
and declaration (e.g. 'color: blue'); the declaration has
two parts: property (e.g. 'color') and value (e.g. 'blue')

• A selector is a chain of one or more simple selectors
separated by combinators; combinators are: whitespace,
">", and "+”; whitespace may appear between a
combinator and the simple selectors around it.

• If all conditions in the selector are true for a certain
element, the selector matches the element

2

Selector Grouping

• When several selectors share the same declarations, they
may be grouped into a comma-separated list; example:

– we condense three rules with identical declarations into one:

H1 { font-family: sans-serif }

H2 { font-family: sans-serif }

H3 { font-family: sans-serif }

– is equivalent to:

H1, H2, H3 { font-family: sans-serif }

Universal Selector and Type Selector

• The universal selector, written "*", matches the name of
any element type; it matches any single element in the
document tree

• If the universal selector is not the only component of a
simple selector, the "*" may be omitted; for example:
– *[LANG=fr] and [LANG=fr] are equivalent

– *.warning and .warning are equivalent

– *#myid and #myid are equivalent

• A type selector matches the name of a document language
element type; a type selector matches every instance of the
element type in the document tree; e.g. the following rule
matches all H1 elements in the document tree:
 H1 { font-family: sans-serif }

Descendant Selector

• To match an element that is the descendant of another
element in the document tree; made up of two or more
selectors separated by whitespace; a descendant selector of
the form "A B" matches when an element B is an arbitrary
descendant of some ancestor element A; e.g.:
 consider the following rules:

H1 { color: red }
EM { color: red }

 although the intention of these rules is to add emphasis to text by changing its color, the
effect will be lost in a case such as:

<H1>This headline is very important</H1>

 we address this case by supplementing the previous rules with a rule that sets the text
color to blue whenever an EM occurs anywhere within an H1:

H1 { color: red }
EM { color: red }
H1 EM { color: blue }

Child Selector and Adjacent Sibling
Selector

• A child selector matches when an element is the child of
some element; a child selector is made up of two or more
selectors separated by ">”; e.g. the following rule sets the
style of all P elements that are children of BODY:

 BODY > P { line-height: 1.3 }

• Adjacent sibling selectors have the syntax: E1 + E2,
where E2 is the subject of the selector; matches if E1 and
E2 share the same parent in the document tree and E1
immediately precedes E2, e.g. the following rule states that
when a P element immediately follows a MATH element, it
should not be indented:

 MATH + P { text-indent: 0 }

3

Attribute Selectors

• Attribute selectors allows authors to specify rules that
match attributes defined in the source document; may
match in four ways:
– [att] match when the element sets the "att" attribute, whatever the

value of the attribute

– [att=val] match when the element's "att" attribute value is exactly
"val"

– [att~=val] match when the element's "att" attribute value is a
space-separated list of "words", one of which is exactly "val"

– [att|=val] match when the element's "att" attribute value is a
hyphen-separated list of "words", beginning with "val"

Example, the selector matches all P elements whose ”align" attribute

has exactly the value ”center":

P[align=center] { color: blue }

Class Selectors

• For style sheets used with HTML, authors may use the dot (.) notation
as an alternative to the "~=" notation when matching on the "class"
attribute; e.g. the following assigns style to H1 elements with
class~="pastoral":

 H1.pastoral { color: green }

– given these rules, the first H1 instance below would not have green text,
while the second would:

 <H1>Not green</H1>

 <H1 class="pastoral">Very green</H1>

– to match a subset of "class" values, each value must be preceded by a ".",
in any order; e.g. the following rule matches any P element whose "class"
attribute has been assigned a list of space-separated values that includes
"pastoral" and "marine":

 P.pastoral.marine { color: green }
(This rule matches when class="pastoral blue aqua marine" but does not match for class="pastoral blue”)

ID Selectors

• For style sheets used with HTML, authors may use the (#)
notation as an alternative to the "=" notation when
matching on the ”id" attribute; e.g. the following ID
selector matches the H1 element whose ID attribute has
the value "chapter1":

 H1#chapter1 { text-align: center }

– the following ID selector matches the any element whose ID
attribute has the value "chapter1":

 *#chapter1 { text-align: center }

Pseudo Class Selectors - :first-child

• The :first-child pseudo-class matches an element that is the first child of
some other element; e.g. in the following example, the selector matches
any P element that is the first child of a DIV element (indentation for the
first paragraph of a DIV):

 DIV > P:first-child { text-indent: 0 }

this selector would match the P inside the DIV of the following fragment:
<P> The last P before the note.
<DIV class="note">
 <P> The first P inside the note.
</DIV>

but would not match the second P in the following fragment:

<P> The last P before the note.
<DIV class="note">
 <H2>Note</H2>
 <P> The first P inside the note.
</DIV>

4

Pseudo Class Selectors - :link and :visited

• The :link pseudo-class applies for links that have not yet been
visited

• The :visited pseudo-class applies once the link has been
visited by the user

– The document language determines which elements are hyperlink source
anchors; e.g. in HTML 4.0, the link pseudo-classes apply to A elements with an
"href" attribute; thus, the following two CSS2 declarations have similar effect:

A:link { color: red }

:link { color: red }

E.g. if the following link:

 external link

has been visited, this rule:

 A.external:visited { color: blue }

will cause it to be blue

Pseudo Class Selectors - :hover, :active,
:focus

• The :hover pseudo-class applies while the mouse pointer
hovers over a box generated by the element

• The :active pseudo-class applies while an element is being
activated by the user; e.g. between the times the user
presses the mouse button and releases it

• The :focus pseudo-class applies while an element has the
focus

• Examples:
A:hover { color: yellow }

A:active { color: lime }

A:focus { background: yellow }

A:focus:hover { background: white }

Pseudo Element Selectors - :first-line
and :first-letter

• The :first-line pseudo-element applies special styles to the
first formatted line of a paragraph; e.g.:

 P:first-line { text-transform: uppercase }

• The :first-letter pseudo-element may be used for "initial
caps" and "drop caps", which are common typographical
effects; e.g.:
P:first-letter { font-size: 200%; font-weight: bold; float: left }

Pseudo Element Selectors - :before
and :after

• The :before and :after pseudo-elements can be used to insert
generated content before or after an element's content; e.g.:

 H1:before {content: counter(chapno, upper-roman) ". "}

• When the :first-letter and :first-line pseudo-elements are combined with
:before and :after, they apply to the first letter or line of the element
including the inserted text; e.g.:

 P.special:before {content: "Special! "}

 P.special:first-letter {color: #ffd800}

(This will render the "S" of "Special!" in gold)

 Other examples:

– H1:before { content: "Chapter " counter(chapter) ". ";
 counter-increment: chapter; /* Add 1 to chapter */
 counter-reset: section; /* Set section to 0 */ }

– P.note:before { content: "Note: " }

5

Selector Matching Summary

– * matches any element

– E matches any E element (i.e., an element of type E)

– E F matches any F element that is a descendant of an E element

– E > F matches any F element that is a child of an element E

– E:first-child matches element E when E is the first child of its parent

– E:link and E:visited matches element E if E is the source anchor of a hyperlink of which the
target is not yet visited (:link) or already visited (:visited)

– E:active, E:hover, and E:focus matches E during certain user actions

– E:lang(c) matches element of type E if it is in (human) language c (the document language
specifies how language is determined)

– E + F matches any F element immediately preceded by an element E

– E[foo] matches any E element with the "foo" attribute set (whatever the value)

– E[foo="warning"] matches any E element whose "foo" attribute value is exactly equal to
"warning”

– E[foo~="warning"] matches any E element whose "foo" attribute value is a list of space-
separated values, one of which is exactly equal to "warning”

– E[lang|="en"] matches any E element whose "lang" attribute has a hyphen-separated list of
values beginning (from the left) with "en".

– DIV.warning is the same as DIV[class~="warning"].

– E#myid matches any E element ID equal to "myid".

Calculating a Selector’s Specificity

• When many rules match the same element, a selector's
specificity is calculated as follows:
– count the number of ID attributes in the selector (= a)

– count the number of other attributes and pseudo-classes in the
selector (= b)

– count the number of element names in the selector (= c)

– ignore pseudo-elements.

 concatenating the three numbers a-b-c gives the specificity; the rule
with maximal specificity wins; examples:

* {} /* a=0 b=0 c=0 -> specificity = 0 */
LI {} /* a=0 b=0 c=1 -> specificity = 1 */
UL LI {} /* a=0 b=0 c=2 -> specificity = 2 */
UL OL+LI {} /* a=0 b=0 c=3 -> specificity = 3 */
H1 + *[REL=up]{} /* a=0 b=1 c=1 -> specificity = 11 */
UL OL LI.red {} /* a=0 b=1 c=3 -> specificity = 13 */
LI.red.level {} /* a=0 b=2 c=1 -> specificity = 21 */
#x34y {} /* a=1 b=0 c=0 -> specificity = 100 */

CSS Example

<HTML>

 <HEAD>
 <TITLE>CSS homepage</TITLE>

 <LINK REL="stylesheet" HREF="demo.css">

 </HEAD>
 <BODY>

 <P>This example uses bold characters.</P>
 <P>This example shows how <I>italic</I>

 characters are displayed.</P>

 <P>What about <I>bold italic</I>?</P>
 <P>Now, let's have a look at class attribute uses:</P>

 <P CLASS="mystyle1">This is my first visual style.</P>
 <P CLASS="mystyle2">This one is called "mystyle2".</P>

 <P>You can put the CLASS attribute inside another tag, e.g.

 <B CLASS="mystyle1">bold here</P>
 </BODY>

</HTML>

B {color: red}
I {text-decoration: underline; color: green}
B I {text-decoration: none; color: blue}
*.mystyle1 {font-family: sans-serif; font-variant: small-caps; font-weight: bolder}
*.mystyle2 {font-family: monospace; text-transform: capitalize}
SPAN.mystyle2 {background: lightgrey}

DEMO.CSS file

CSS Descriptors

• Box model

• Visual formatting model

• Visual effects

• Generated content, automatic numbering, lists

• Colors and backgrounds

• Fonts

• Text

• Tables

• User interface

6

CSS Box Model

• The CSS box model describes the rectangular boxes that
are generated for elements in the document tree and laid
out according to the visual formatting model

• Each box has a content area (e.g., text, an image, etc.)
and optional surrounding padding, border, and margin
areas

CSS Box Model: Margins

• Margin properties: margin-top, margin-right, margin-
bottom, margin-left, margin; example:

 BODY { margin: 2em } /* all margins set to 2em */

 BODY { margin: 1em 2em } /* top & bottom = 1em, right & left = 2em */

 BODY { margin: 1em 2em 3em } /* top=1em, right=2em, bottom=3em, left=2em */

 the last rule of the example above is equivalent to the example below:

 BODY {

 margin-top: 1em;

 margin-right: 2em;

 margin-bottom: 3em;

 margin-left: 2em;

 }

Note: ‘1em’ is equal to the size of the font in use

CSS Box Model: Padding

• Padding properties: padding-top, padding-right,
padding-bottom, padding-left, and padding; example:

H1 {

 background: white;

 padding: 1em 2em;

}

 The example above specifies a '1em' vertical padding (padding-top and padding-
bottom) and a '2em' horizontal padding (padding-right and padding-left)

CSS Box Model: Border

• Border width properties: border-top-width, border-
right-width, border-bottom-width, border-left-
width, and border-width; values: thin, medium, thick,
or explicit thickness value; e.g. H1 {border-width: thin}

• Border color properties: border-top-color, border-right-
color, border-bottom-color, border-left-color, and
border-color; e.g. H1 {border-color: red}

• Border style properties: border-top-style, border-right-
style, border-bottom-style, border-left-style, and
border-style; values: none, dotted, dashed, solid,
double, groove, ridge, inset, outset; e.g. H1 {border-
style: solid dotted}

7

Box Positioning Schemes

• Normal flow

• Floats - in the float model, a box is first laid out according
to the normal flow, then taken out of the flow and shifted
to the left or right as far as possible; content may flow
along the side of a float.

• Absolute positioning - in the absolute positioning model,
a box is removed from the normal flow entirely (it has no
impact on later siblings) and assigned a position with
respect to a containing block

Choosing a Positioning Scheme

• Box positioning property: position; values:relative,
absolute

• Box offset property: top, right, bottom, and left

• Float positioning property: float; values: left, right, and
none

• Controlling flow next to floats: clear property; values: left,
right, both, and none

Positioning Schemes: Example

<P class=one> First paragraph box. First paragraph box. First
paragraph box </P>
<P class=two> Second paragraph box. Second paragraph box. Second
paragraph box </P>

P {border-width: thin;
 border-style: solid;
 padding: 10}

P {border-width: thin;
 border-style: solid;
 padding: 10}
P.two
 {position: absolute;
 left: 75;
 top: 100}

P {border-width: thin;
 border-style: solid;
 padding: 10}
P.two
 {position: relative;
 left: 75;
 top: 50}

P {border-width: thin;
 border-style: solid;
 padding: 10}

 P.one
 {float: left;
 width: 80 }

Font Specification

• font-family property; values: serif, sans-serif, cursive,

fantasy, monospace, or any other font family name

• font-style property; values: normal, italic, oblique

• font-variant property; values: normal, small-caps

• font-weight property; values: normal, bold, bolder, lighter,

100, 200, 300, 400, 500, 600, 700, 800, 900

• font-stretch property; values:ultra-condensed, extra-

condensed, condensed, semi-condensed, normal, semi-
expanded, expanded, extra-expanded, ultra-expanded

• font-size property; values: xx-small, x-small, small,

medium, large, x-large, xx-large, larger, smaller, absolute font
size, percentage (relative font size)

8

Text Properties

• Indentation property: text-indent; e.g. P {text-indent: 3em}

• Alignment property: text-align; values: left, right,
center, justify; e.g. P {text-align: center}

• Decoration property: text-decoration; values: none,
underline, overline, line-through, blink; e.g. P {text-
decoration: line-through}

• Text shadow property: text-shadow; e.g. H1 {text-shadow:
0.2em 0.2em}

• Letter and word spacing properties: letter-spacing and
word-spacing; e.g. H1 {letter-spacing: 0.1em; word-spacing: 1em}

• Capitalization property: text-transform; values:
capitalize, uppercase, lowercase, and none

Colors and Backgrounds

• Foreground color property: color; e.g.:
EM { color: red } /* predefined color name */

EM { color: rgb(255,0,0) } /* RGB range 0-255 */

• Background properties: background-color, background-
image, background-repeat, background-attachment,
background-position, and background; e.g.:
H1 { background-color: #F00 }

BODY { background-image: url("marble.gif") }

BODY { background: white url("pendant.gif"); background-repeat:
repeat-y; background-position: center;}

BODY {
 background: red url("pendant.gif"); background-repeat: repeat-y;

background-attachment: fixed;}

CSS - References

• www.w3.org/TR/REC-CSS1-961217.html

• www.w3.org/TR/REC-CSS2

