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Work context

Inductor
e.g. classifierInference Engine

Contents evaluation Performance evaluation

single rule attractiveness measures,
e.g. confirmation measures

classifier performance measures,
e.g. accuracy, sensitivity

Data
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if   (Hair = red) & (Eyes = blue)   then (Nationality = German)
if                Evidence                  then Hypothesis

E  H
binary domains

 The contingency table is a form used to calculate the value
of attractiveness measures (e.g. confirmation measures)

Height Hair Eyes Nationality
tall blond blue Swede

medium dark hazel German
medium blond blue Swede

tall blond blue German
short red blue German

medium dark hazel Swede

¬E ¬H
¬E H
¬E ¬H
¬E H
E H

¬E ¬H

H ¬ H
E a c

¬ E b d

a = sup(E,H) ≥ 0
b = sup(E,H) ≥ 0
c = sup(E,H) ≥ 0
d = sup(E,H) ≥ 0
n=a+b+c+d
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Work context – measuring single rule attractiveness

H ¬ H
E 1 0

¬ E 2 3



Confirmation measures

 An interestingness measure c(H,E) has the
property of confirmation (i.e. is a confirmation measure)
if is satisfies the following condition:

 Measures of confirmation quantify the strength of confirmation that

premise E gives to conclusion H

 „H is verified more often, when E is verified,

rather than when E is not verified”
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Popular confirmation measures 1/3

There are many alternative, non-equivalent measures of confirmation

(Carnap 1950/1962)

(Mortimer 1988)

(Christensen 1999)

(Nozick 1981)

(Carnap 1950/1962)

(Kemeny, Oppenheim 1952)

(Glass 2013)

 The values of all of the above measures range from −1 to +1
otherwise they are undefined, e.g. when a+c=0 measure D(H,E) is NaN.
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true ¬true

pred. a c

¬pred. b d

true ¬true

pred. 2 1

¬pred. 1 2

 A classifier predicts the desired class label
(out of two):

Nationality = Swede

 The confusion matrix (a special case of the contingency table) is a
form used to calculate the value of classifier performance measures
(e.g. accuracy, sensitivity)

Height Hair Eyes Nationality
tall blond blue Swede

medium dark hazel German
medium blond blue Swede

tall blond blue German
short red blue German

medium dark hazel Swede

predicted
label

true
label

Swede Swede
¬Swede ¬Swede
Swede Swede
Swede ¬Swede

¬Swede ¬Swede
¬Swede Swede

a =sup(pred.,true) ≥ 0
b =sup(pred.,true) ≥ 0
c =sup(pred.,true) ≥ 0
d =sup(pred.,true) ≥ 0
n=a+b+c+d

a ≡ TP
b ≡ FN
c ≡ FP
d ≡ TN

7

Work context – measuring classifier performance



Selected classifier performance measures

There are many alternative, non-equivalent classifier performance measures

(recall)
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 The values of all of the
above measures range
from 0 to +1,

 otherwise they are
undefined, e.g. when
a+c=0 precision is NaN.



Visualization of measures
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 Example:

• problem: in data sets with imbalanced classes (P(Cl1)  << P(Cl2))
the classification accuracy (CA) may be a misleading measure
since in general (for real life classifiers) CA  P(Cl1) and CA  P(Cl2),
so high values of CA are implied by high values of P(Cl2)

• solution: measures that take the class-imbalance into account
(G-mean, F1, Jaccard, ...) are often applied (also several at once)

• a small issue in the solution: do those measures differ (significantly)?

• if yes, then where (in the domain) and how much do they differ?

• if no, then why use several of them?

• a suggested remedy to the small issue in the solution: treat the measures
as functions of four arguments and examine the behaviour of these functions

• which may, but need not to, clarify the issue...

(non-visual) Motivation for visualization of measures
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 What is our most common working knowledge on the measures
(as functions of their arguments)?

• the formula of the form f(a,b,c,d)
(when defined analytically /most cases/)

• the domain, the value set

• existence of particular values

• minima/maxima

• undefined

• selected properties (continuity, monotonicity, periodicity, ...)

(non-visual) Motivation for visualization of measures
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 Exemplary questions:

• what are the domains of G-mean, F1 and CA?

• what are the value sets of G-mean, F1 and CA?

• what are the maxima/minima of G-mean, F1 and CA?

• where (in the domain) are the extrema situated?

• what are the undefined values of G-mean, F1 and CA?

• where (in the domain) are those values situated?

• does one (of G-mean, F1 and CA) significantly exceed the others?

• where (in the domain) are the regions of this phenomenon situated?

• what are the growth rates of G-mean, F1 and CA?

• where (in the domain) are the regions of high/low growth rate situated?

• ...

(non-visual) Motivation for visualization of measures



13

 The most popular way to get a good working knowledge of how
a function behaves throughout its domain:

charting its value set against its domain

• easy for 1D functions

• many, not all

• harder for nD functions

• although still possible when n is small

 This way we gain an insight into all areas of the domain that the
visualized measure can possibly occupy, and which could be omitted
and thus remain undiscovered while working on real-life data

(non-visual) Motivation for visualization of measures
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 The visualization technique that we propose aims at describing
(by the means of visualization) the measures as functions,
and thus helps

• users of the measures use those measures that
meet better their needs

• designers of the measures design such measures
that possess better properties

(non-visual) Motivation for visualization of measures
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 Given n > 0 (the total number of observations), the domain space
is generated as the set of all possible contingency tables satisfying
a + b + c + d = n

 The set is thus exhaustive and non-redundant
(i.e. it contains exactly one copy of each
contingency table satisfying the above condition)

4D domain

Height Hair Eyes Nationality
tall blond blue Swede

medium dark hazel German
medium blond blue Swede

tall blond blue German
short red blue German

medium dark hazel Swede

H ¬ H
E a c

¬ E b d

a b c d
0 0 0 6
0 0 1 5
0 0 2 4
0 0 3 3
0 0 4 2
0 0 5 1
0 0 6 0
0 0 5 1
0 1 0 5
0 1 1 4
0 1 2 3

… … … …

6 0 0 0



Visualization technique – barycentric coordinates

 Thus, our data set comprises t rows and 4 columns: a, b, c and d;
t=(n+1)(n+2)(n+3)/6

 In general, four independent columns correspond to four degrees of
freedom, visualization of such data in the form of a scatter-plot would
formally require four dimensions

 Owing to the condition a + b + c + d = n however, the number of
degrees of freedom is reduced to three, so it is possible to visualize
such data in three dimensions (3D) using tetrahedron-based
barycentric coordinates

 The tetrahedron is a 3D structure, so its every point may be assigned
3 values (3D coordinates).

 Simultaneously, its every point may be assigned 4 values (barycentric
coordinates) 16



Visualization technique – barycentric coordinates

17

 The proposed 3D view
of the tetrahedron,
has its four vertices
A, B, C and D
coinciding with points
of the following
[x, y, z] coordinates:

A: [1,1,1]
B: [-1,1,-1]
C: [-1,-1,1]
D: [1,-1,-1]



Visualization technique – barycentric coordinates

18

 the vertex A corresponds
to the (single)
contingency table
satisfying a=n and
b=c=d=0

a=n c=0
b=0 d=0
a=? c=?
b=? d=?



Visualization technique – barycentric coordinates
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 the edge AB corresponds
to the (multiple)
contingency tables
satisfying a+b=n and
c=d=0

a=n/2 c=0
b=n/2 d=0
a=2/3n c=0
b=1/3n d=0
a=5/8n c=0
b=3/8n d=0

a=n c=0
b=0 d=0

a=? c=?
b=? d=?



Visualization technique – barycentric coordinates

20

 the face ABC corresponds
to the (multiple)
contingency tables
satisfying a+b+c=n and
d=0

a=? c=?
b=? d=?
a=n c=0
b=0 d=0

a=0 c=0
b=n d=0
a=0 c=n
b=0 d=0

a=1/3n c=1/3n
b=1/3n d=0
a=5/8n c=3/8n
b=2/8n d=0
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 Given n > 0 (the total number of observations), the domain space
is generated as the set of all possible contingency tables satisfying
a + b + c + d = n

 The set contains only samples of the 4D domain,
however it is a uniform (regular) sampling,
thus the best possible

Visualization technique – 4D domain sampling

a b c d
0 0 0 6
0 0 1 5
0 0 2 4
0 0 3 3
0 0 4 2
0 0 5 1
0 0 6 0
0 0 5 1
0 1 0 5
0 1 1 4
0 1 2 3

… … … …

6 0 0 0
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 Example of poor sampling

Visualization technique – 4D domain sampling
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 Example of acceptable sampling

Visualization technique – 4D domain sampling
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 Example of uniform (regular) sampling

Visualization technique – 4D domain sampling



Visualization technique – colour map

 Because the individual points of the tetrahedron may be displayed in
colour, it is possible to visualize a function f(a,b,c,d) of the four
arguments (e.g. any measure)

 It is assumed that the value set of this function is a real interval [r,s],
with r < s, so that its values may be rendered using a pre-defined
colour map

25



Visualization technique – colour map

 For all the analysed confirmation measures the standard colour map
ranges from −1 to +1 (actually used: jet(16))

 The pink colour map is used for presenting functions ranging from 0 to
some positive value (e.g. classifier performance measures, variances
of groups of measures)

 Non-numeric values, i.e. +∞, NaN and -∞,
if generated by a particular function,
may be rendered as colours
not occurring in the map
or special characters (e.g., „*”)

26
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Visualization technique – exemplary external visualizations
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Visualization technique – exemplary external visualizations

 The standard view accompanied by the rotated view, designed to depict
the DAB face of the tetrahedron (not visible in the standard view)
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Visualization technique – exemplary internal visualizations
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 The capabilities of the visualization techniques include:

 regular views of any measure

 specialized views of a region of interest

 specialized views of any number of measures

• differences between two measures

• variances/means of a number of measures

Visualization technique – summary of the capabilities



Application of the visualization technique
to confirmation measures
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 The capabilities of the visualization techniques include:

 regular views of any measure

 specialized views of a region of interest

 specialized views of any number of measures

• differences between two measures

• variances/means of a number of measures

Visualization technique – summary of the capabilities
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 The regular views of the measures may be used to practically
compare their general configurations of values and gradient profiles

 Such visual analyses allow to tentatively conclude about
the ordinal equivalence of the visualized measures, an especially
important issue in evaluating rules with multiple measures

 In general, this kind of equivalence analysis may require an insight
into the interior of the tetrahedron

Regular views of confirmation measures
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Regular views of confirmation measures: S(H,E)
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Regular views of confirmation measures: F(H,E)



36

 In all faces measure S(H,E) manifests 'radial' gradients,
while measure F(H,E) is characterized by constant values (no
gradient) in two faces (ABD and BCD) and a 'radial' gradient
in the other two

 In the case of S(H,E) and F(H,E) the different gradient profiles in the
external areas of the corresponding tetrahedrons constitute
conclusive counterexamples to the ordinal equivalence of those
measures

Regular views of confirmation measures
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 The capabilities of the visualization techniques include:

 regular views of any measure

 specialized views of a region of interest

 specialized views of any number of measures

• differences between two meaures

• variances/means of a number of measures

Visualization techniques – summary of the capabilities
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 The specialized views of regions of interest are useful since they
allow to instantly detect and localize interesting characteristics of
the measures (extreme values, zeros, etc.), which would otherwise
have to be laboriously derived from the analytic definitions of the
measures

Specialized views of regions of interest



 Regions with neutral values of confirmation measures

 The grey colour map is used only to provide the necessary perspective;
the colours do not translate to values of the measure (which are constant in
this case)

39

Specialized views of regions of interest: c(H,E)=0



 Regions for which |C(H,E)|=0.5;  notice their full symmetry

 The grey colour map is used only to provide the necessary perspective;
the colours do not translate to values of the measure (which are constant in
this case)

40

Specialized views of regions of interest: C(H,E)=0.5



 Regions of extreme (−1 and +1)
and non-numeric values (NaN)
of measure N(H,E)

41

Specialized views of regions of interest: N(H,E)=min/max/NaN
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 The capabilities of the visualization techniques include:

 regular views of any measure

 specialized views of a region of interest

 specialized views of any number of measures

• differences between two measures

• variances/means of a number of measures

Visualization techniques – summary of the capabilities
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 Visualization of differences between measures or variances among
groups of measures allows to identify those arguments (i.e. values
of a, b, c and d) for which two given measures differ only
insignificantly (similarity of the measures) or differ considerably
(dissimilarity of the measures)

 Thus, it guides practitioners towards measures that suit them most

Specialized views – differences /variance among measures
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Specialized views-differences between measures: S(H,E)-N(H,E)

S(H,E)

N(H,E)



 The exterior view of S(H,E) - N(H,E)
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Specialized views-differences between measures: S(H,E)-N(H,E)



 The inner view of S(H,E) - N(H,E)
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Specialized views-differences between measures: S(H,E)-N(H,E)



 The inner view of S(H,E) - N(H,E)
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Specialized views-differences between measures: S(H,E)-N(H,E)
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 The capabilities of the visualization techniques include:

 regular views of any measure

 specialized views of a region of interest

 specialized views of any number of measures

• differences between two measures

• variances/means of a number of measures

Visualization techniques – summary of the capabilities



 The variance among measures: M(H,E), N(H,E), A(H,E), c2(H,E)

49

Specialized views - variance among likelihoodist measures



 The inner view of the variance among: M(H,E), N(H,E), A(H,E), c2(H,E)

50

Specialized views - variance among likelihoodist measures



 The inner view of the variance among: M(H,E), N(H,E), A(H,E), c2(H,E)
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Specialized views - variance among likelihoodist measures



Visual-based detection of properties



Properties of confirmation measures

The choice of a confirmation measure for a certain application
is a difficult problem

properties of confirmation measures, which reflect users’ expectations
towards the behaviour of measures in particular situations

need to analyze measures with respect to their properties

Motivation: Detect properties of measures
and compare measures easily through their visualizations

•the number of proposed measures is overwhelming
• there is no evidence which measure is the best
• the users’ expectations vary

• property of monotonicity M (Greco, Pawlak & Słowiński 2004)
• Ex1 property and its generalization to weak Ex1
• property of logicality L and its generalization to weak L

(Fitelson 2006; Crupi, Tentori & Gonzalez 2007
Greco, Słowiński & Szczęch 2012)

• …

53



Property of monotonicity M

 Desirable property of c(H,E) = f(a,b,c,d) : monotonicity (M)*

f should be non-decreasing with respect to a and d
and non-increasing with respect to b and c

 Interpretation of (M): (EH  if x is a raven, then x is black)

a) the more black ravens we observe, the more credible becomes EH

b) the more black non-ravens we observe, the less credible becomes EH

c) the more non-black ravens we observe, the less credible becomes EH
d) the more non-black non-ravens we observe, the more credible becomes EH

54

*S.Greco, Z.Pawlak, R.Słowiński: Can Bayesian confirmation measures be useful for rough set
decision rules? Engineering Applications of Artificial Intelligence, 17 (2004) no.4, 345-361

H ¬ H
E a c

¬ E b d



Property of monotonicity M

 Desirable property of c(H,E) = f(a,b,c,d) : monotonicity (M)

f should be non-decreasing with respect to a and d
and non-increasing with respect to b and c

 Visual-based detection:

 the „non-decreasing with a and d” condition should be reflected in the
visualization as colours changing towards dark brown (increase of
confirmation) around vertices A and D and

 the „non-increasing with b and c” condition should be reflected in the
visualization as colours changing towards dark blue (increase of
disconfirmation) around vertices B and C

 a thorough analysis with respect to property M requires an insight into the
tetrahedron as potential counterexamples to this property may be located
inside the shape 55

H ¬ H
E a c

¬ E b d
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Does measure M(H,E) possess the property of monotonicity?

Clearly, measure M(H,E) does not satisfy property M, as in the visualization the colour changes
from dark brown at vertex D to pale green at vertex A, violating the demands the of the non-
decrease with a.
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There are no observable counterexamples to property M in the external visualizations of
measure S(H,E) which, together with additional analysis of the shape’s inside, determines the
possession of the property M by S(H,E).

Does measure S(H,E) possess the property of monotonicity?



Property of weak L

 Desirable property of c(H,E): weak L*

c(H,E) is maximal when E entails H and ¬E entails ¬H

c(H,E) is minimal when E entails ¬H and ¬E entails H.

 Interpretation of maximality/minimality:

a measure obtains its maximum if c=b=0 and its minimum if a=d=0.

58

* S.Greco, R.Słowiński, I. Szczęch: Properties of rule interestingness measures and alternative
approaches to normalization of measures, Information Sciences 216, (2012) 1–16

H ¬ H
E a c

¬ E b d



Property of weak L

 Desirable property of c(H,E): weak L

c(H,E) is maximal if b=c=0 and c(H,E) is minimal if a=d=0.

 Visual-based detection:

 the dark brown (dark blue) colour must be found
on the whole AD (BC) edge of the tetrahedron

Let us observe that the AD (BC) edge contains all points for which b=c=0
(a=d=0), i.e., the points most distant from the vertices Band C (A and D)

 however, we do not demand that the dark brown (dark blue) points lie only
on AD (BC) edge, and thus we do not need any insight into the tetrahedron
as potential counterexamples to weak L cannot be located inside the shape

59

H ¬ H
E a c

¬ E b d
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Does measure D(H,E) possess the weak L property?

Clearly, measure D(H,E) does not satisfy weak L property, since there are points on the egde AD
(BC) that are not dark brown (dark blue).
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Does measure F(H,E) possess the weak L property?

Visual-based detection of weak L property reveals that measure F(H,E) does satisfy this
property. It is due to the fact that the points with maximal (minimal) values of F(H,E) cover the
whole AD (BC) edge. No additional analysis of the inside of the shape is required.



Property of hypothesis symmetry HS

 Desirable property of c(H,E): hypothesis symmetry (HS)*

c(H,E) = −c(¬H,E)

 Interpretation of (HS): (EH  if x is a square, then x is rectangle)

the strength with which

the premise (x is a square) confirms the conclusion (x is rectangle)

is the same as the strength with which

the premise disconfirms the negated conclsuion (x is not a rectangle).

62

*R. Carnap: Logical Foundations of Probability, second ed. University of Chicago Press, Chicago
(1962)

E. Eells, B. Fitelson: Symmetries and asymmetries in evidential support. Philosophical Studies,
107 (2) (2002), 129-142



Property of hypothesis symmetry HS

EH E¬H

 Desirable property of c(H,E): hypothesis symmetry (HS)

c(H,E) = −c(¬H,E)

 Visual-based detection:

 c(H,E)=f(a,b,c,d) = −c(¬H,E)= −f(a', b', c', d') = −f(c,d,a,b), reflecting the
exchange of columns in the contingency tables (a=c', b=d', c=a' d=b')

 two views must have the same gradient profile (i.e., the left view must be
just like the right one, provided the colour map is reversed)

 if the „recoloured” views are not the same, then the visualized measure does
not possess the hypothesis symmetry

 a thorough analysis with respect to HS requires an insight into the
tetrahedron as potential counterexamples to this property may be located
inside the shape

63

H ¬ H
E a c

¬ E b d

(¬H) ¬(¬H)=H

E a’=c c’=a

¬ E b’=d d’=b
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Does measure M(H,E) possess property HS?

Clearly, measure M(H,E) does not satisfy property HS since e.g., the BCD face has a gradient
profile that is characterized by straight lines, while the DAB face has a profile that is
characterized by curved lines.
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Does measure FS(H,E) possess property HS?

There are no observable counterexamples to property HS in the external visualizations of
measure FS(H,E) which, together with additional analysis of the shape’s inside, determines the
possession of the property by FS(H,E).
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 Our proposition starts with constructing an exhaustive and non-
redundant set of contingency tables, which are commonly used to
calculate the values of measures

 Using such a dataset, a 3-dimensional tetrahedron is built

 The position of points in the shape translates to corresponding
contingency tables and the colour of the points represents values of
the visualized measure

Summary
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 The visual analyses are especially useful since they allow to instantly
detect and localize interesting characteristics of the measures
(extreme values, zeros, etc.), which would otherwise have to be
laboriously derived from the analytic definitions of the measures

 Our visualization helps to determine e.g. if the visualized measures
are identical or similar in particular domain regions, or if they are
ordinally equivalent

Summary
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 The proposed visualization allows us to promptly detect distinct
properties of the measures and compare them, increasing the
general comprehension of the measures and helping the users
choose one for their particular application

 Such visual-based approach is advantageous, especially when time
constraints impede conducting in-depth, theoretical analyses of
large numbers of such measures (e.g., generated automatically)

 Clearly, the analyses can be generalized to a wider range of
measures or properties

Summary



The Quiz 
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???
What does f(a,b,c,d) = a/n look like?
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f(a,b,c,d) = a/n
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f(a,b,c,d) = b/n
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f(a,b,c,d) = c/n
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f(a,b,c,d) = d/n



75

???
What does f(a,b,c,d) = (a+b)/n look like?
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f(a,b,c,d) = (a+b)/n



77

f(a,b,c,d) = (a+c)/n
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f(a,b,c,d) = (a+d)/n
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f(a,b,c,d) = (a+d)/n  classification accuracy
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???
What does f(a,b,c,d) = (b+c+d)/n look like?
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f(a,b,c,d) = (b+c+d)/n
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f(a,b,c,d) = a/n
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???
What does f(a,b,c,d) = a/(a+b+c) look like?
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f(a,b,c,d) = a/(a+b+c)
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f(a,b,c,d) = a/(a+b+c)  Jaccard coefficient
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???
What does f(a,b,c,d) = a/(a+b) look like?
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f(a,b,c,d) = a/(a+b)
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f(a,b,c,d) = a/(a+b)  sensitivity, recall, true positive rate
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f(a,b,c,d) = d/(c+d)



90

f(a,b,c,d) = d/(c+d)  specificity, true negative rate
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f(a,b,c,d) = a/(a+c)
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f(a,b,c,d) = a/(a+c)  precision



The case of imbalanced data
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f(a,b,c,d) = (a+d)/n  classification accuracy
Why not useful for imbalanced data?
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Let us assume that we are interested in class represented by vertex A
(i.e. a in the contingency table)

 Aggregations of precision and recall:

 arithmetic means

 geometric means

 harmonic means

 Aggregations of specificity and recall:

 arithmetic means

 geometric means

 harmonic means

The case of imbalanced data
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The case of imbalanced data

a/(a+c)  precision

a/
(a

+
b)


re
ca

ll
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f(a,b,c,d) = amean(precision,recall) =
= (2a2 + ab + ac)/(a2 + ab + ac + bc)
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f(a,b,c,d) = amean(precision,recall) =
= (2a2 + ab + ac)/(a2 + ab + ac + bc)
 information content
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f(a,b,c,d) = gmean(precision,recall) =
= a/((a+b)(a+c))0.5
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f(a,b,c,d) = gmean(precision,recall) =
= a/((a+b)(a+c))0.5

 gmean(specificity,recall) = G-mean
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f(a,b,c,d) = hmean(precision,recall) =
= 2a/(2a+b+c)



102

f(a,b,c,d) = hmean(precision,recall) =
= 2a/(2a+b+c)
 F1-measure (F for  = 1)



103

f(a,b,c,d) = another-aggregation(precision,recall) =
= a/(a+b+c)
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f(a,b,c,d) = another-aggregation(precision,recall) =
= a/(a+b+c)
 Jaccard coefficient
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Thank you!


