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Abstract. Evaluating the interestingness of decision rules or trees is a 
challenging problem of knowledge discovery and data mining. In recent studies, 
the use of two interestingness measures at the same time was prevailing. 
Mining of Pareto– optimal borders according to support and confidence, or 
support and anti– support are examples of that approach. In this paper, we 
consider induction of “ if… , then… ”  association rules with a fixed conclusion. 
We investigate ways to limit the set of association rules non – dominated with 
respect to support and confidence on one hand and support and anti – support on 
the other hand, to a subset of truly interesting rules. Analytically, and through 
experiments on real life dataset, we show that both of the considered sets can be 
easily reduced by using the valuable semantic of confirmation measures.  

Keywords: Association rules, Induction, Support, Anti – support, Confirmation, 
Confidence, Pareto– optimal border. 

1. Introduction 

In data mining and knowledge discovery, the discovered knowledge patterns are often 
expressed in a form of “ if… , then… ”  rules. They are consequence relations 
representing correlation, association, causation etc. between independent and 
dependent attributes. When mining massive datasets, the number of the discovered 
patterns can easily exceed the capabilities of a human user to identify useful and 
interesting results. In order to increase the relevance and utility of selected rules and, 
thus, also limit the size of the resulting rule set, quantitative measures, also known as 
attractiveness or interestingness measures (metrics), have been proposed and studied 
(e.g. confidence and support, gain [10], conviction [3], lift [14]). Among widely 
studied interestingness measures, there is, moreover, a group of Bayesian 
confirmation measures, which quantify the degree to which a piece of evidence built 
of the independent attributes provides “evidence for or against”  or “support for or 
against”  the hypothesis built of the dependent attributes [9]. All the proposed 
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measures have been introduced to capture different characteristics of rules.  
One of the simplest and most intuitive ways to deal with the problem of too large 
number of generated rules, is to set an interestingness measure threshold. This way a 
decision maker filters out all the rules for which the calculated interestingness 
measure threshold was not exceeded. Nevertheless, the resulting set can still remain 
difficult to handle and analyze due to its large size. 

 
Another approach to evaluation of generated rules concentrates on the use of two 
different interestingness measures. In such a two dimensional perspective, the only 
objective information one can get about the quality of rules is the dominance relation 
in the set of rules. Non– dominated rules, also called Pareto– optimal, create a border 
in the two dimensional evaluation space. Valuable features of Pareto– optimal borders 
created with respect to many different interestingness measures have been widely 
studied in the literature. In particular, Bayardo and Agrawal [2] have proved that for a 
class of rules with fixed conclusion, the support– confidence Pareto– optimal border 
(i.e. the set of non– dominated rules with respect to both rule support and confidence) 
includes optimal rules according to several different interestingness measures, such as 
gain [10], conviction [3], an unnamed measure proposed by Piatetsky– Shapiro [16], 
etc. This practically useful result allows to identify the most interesting rules 
according to several interestingness measures by solving an optimized rule mining 
problem with respect to rule support and confidence only.  
Among other important two– dimensional presentations of rules there is one relying on 
the rule support and rule anti– support measures. It has been shown in [5] that for a 
class of rules with fixed conclusion, all rules with optimal values of any confirmation 
measure with some desirable properties, can be found on the support– anti– support 
Pareto– optimal border. It is a very general and valuable result. Moreover, it has been 
proved in [5] that the support– anti– support Pareto– optimal border includes (i.e. is the 
superset) the whole support– confidence Pareto– optimal border. Thus, the support–
anti– support Pareto optimal border expands the valuable features of support–
confidence Pareto– optimal border. The support– confidence Pareto– optimal border 
presents a smaller number of rules (more precisely, a not greater number of rules) 
than the support– anti– support Pareto– optimal border. However, it does not present all 
the rules maximizing a confirmation measure satisfying some desirable properties. 
Let us stress, nevertheless, that dominated rules are not without interest. It can be due 
to the fact that when inducing rules from data we are interested in a set of rules that 
characterize a given concept (conclusion), rather than in one rule being the best with 
respect to one or two interestingness measures. Thus, from the viewpoint of a good 
representation of a concept, the dominated rules may be found even more valuable 
than some non– dominated ones. Of course, the set of considered rules can de 
delimited by the thresholds set for the two interestingness measures, but still the 
resulting set of both dominated and non– dominated rules can exceed the capabilities 
to analyze it. Thus, a further reduction is desirable. 

 
In this paper, we show a way to limit the set of rules generated with respect to pairs of 
measures: support– confidence and support– anti– support, by filtering out the rules for 
which the premise does not confirm the conclusion. This proposition is based on 
imposing the confirmation perspective on the analyzed two– dimensional evaluations. 
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The paper is organized as follows. In the next section, there are preliminaries on 
decision rules and their quantitative description. In section 3, we investigate the idea 
and the advantages of mining only rules with positive confirmation from Pareto–
optimal border with respect to support and confidence. Section 4 concentrates on the 
proposal of limiting the set of rules generated with respect to support and anti–
support. Theoretical considerations are supported by experimental results. The paper 
ends with conclusions. 

2. Preliminaries 

Since discovering rules from data is the domain of inductive reasoning, its starting 
point is a sample of larger reality often given in a form of a data table. Formally, a 
data table is a pair S = (U, A), where U is a nonempty finite set of objects called 
universe, and A is a nonempty finite set of attributes such that a: U → Va for every 
a ∈ A. The set Va is a domain of a. Let us associate a formal language L of logical 
formulas with every subset of attributes. Formulas for a subset B⊆A are built up from 
attribute– value pairs (a,v), where a∈B and v∈Va, using logical connectives ¬ (not), ∧ 
(and), ∨ (or). A rule induced from S and expressed in L is denoted by φ→ψ (read as 
“ if φ, then ψ” ). It consists of antecedent φ and consequent ψ, being formulas 
expressed in L, called premise and conclusion, respectively, and therefore it can be 
seen as a consequence relation (see critical discussion about interpretation of rules as 
logical implications in [12]) between premise and conclusion. The rules mined from 
data may be either decision rules or association rules, depending on whether the 
division of A into condition and decision attributes has been fixed or not. 
In this paper, similarly to [2], we only consider rules with the same conclusion, which 
can be induced from a dataset. 

2.1. Complete Preorder on a Set of Rules in terms of an Interestingness 
Measure 

Let us denote by q any interestingness measure that quantifies the interestingness of a 
rule induced from an information table S. Application of q to a set of induced rules 
creates a complete preorder, denoted as  pq, on that set. Recall that a complete 
preorder on a set X is any binary relation R on X that is strongly complete, (i.e. for all 
x,y∈X, xRy or yRx) and transitive (i.e. for all x,y,z∈X, xRy and yRz imply xRz). In 
simple words, if the semantics of xRy is “x is at most as good as y” , then a complete 
preorder permits to order the elements of X from the best to the worst, with possible 
ex– aequo but without any incomparability. In other words, considering an 
interestingness measure q that induces a complete preorder on a set of rules X and two 
rules r1,r2∈X, rule r1 is preferred to rule r2 with respect to measure q if r1 fq r2 and, 
moreover, rule r1 is indifferent to rule r2 if r1 ∼q r2. 
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2.2.   Partial Preorder on Rules in terms of Two Interestingness Measures 

Let us denote by pqt a partial preorder given by a dominance relation on a set X of 
rules in terms of any two different interestingness measures q and t, i.e. for all r1,r2∈X 
r1pqt r2 if r1pq r2 and r1pt r2. Recall that a partial preorder on a set X is any binary 
relation R on X that is reflexive (i.e. for all x∈X, xRx) and transitive. In simple words, 
if the semantics of xRy is “x is at most as good as y” , then a complete preorder permits 
to order the elements of X from the best to the worst, with possible ex– aequo (i.e. 
cases of x,y∈X such that  xRy and yRx) and with possible incomparability (i.e. cases 
of x,y∈X such that not xRy and not yRx). The partial preorder pqt can be decomposed 
into its asymmetric part pqt and its symmetric part ∼qt in the following manner:  
given a set of rules X and two rules r1,r2∈X,  r1 pqt r2 if and only if 
 

),()()()(
or,)()()()(

2121
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rtrtrqrq
 rtrtrqrq

≤∧<
<∧≤

 
(1) 

 
moreover r1 ∼qt r2  if and only if 
 

).()()()( 2121 rtrtrqrq =∧=   (2) 

 
If for a rule r∈X there does not exist any rule r'∈X, such that r pqt r' then r is said to 
be non– dominated (i.e. Pareto– optimal) with respect to interestingness measures q 
and t. A set of all non– dominated rules with respect to q and t is also referred to as an 
q– t Pareto–optimal border. 

2.3. Monotonicity of a Function in its Argument 

Let x be an element of a set of rules X and let g(x) be a real function associated with 
this set, such that g:X→R. Assuming an ordering relation f in X, function g is said to 
be monotone (resp. anti– monotone) in x, if for any x,y∈X, relation x f y implies that 
g(x) ≥ g(y) (resp. g(x) ≤  g(y)). 

2.4. Support, Confidence and Anti– support Measures of Rules 

Among measures very commonly associated with rules induced from information 
table S, there are support and confidence. The support of condition φ, denoted as 
sup(φ), is equal to the number of objects in U having property φ. The support of rule 
φ→ψ, denoted as sup(φ→ψ), is equal to the number of objects in U having both 
property φ and ψ; for those objects, both premise φ and conclusion ψ evaluate to true. 
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The confidence of a rule (also called certainty), denoted as conf(φ→ψ), is defined as 
follows: 

( ) ( )
( )φ

ψ→φ
=ψ→φ

sup
supconf ,   sup(φ)>0 . 

(3) 

Note, that it can be regarded as a conditional probability Pr(ψ|φ) with which 
conclusion ψ evaluates to true, given that premise φ evaluates to true, however, 
expressed in terms of frequencies. 
 
Anti–support of a rule, denoted as anti–sup(φ→ψ), is equal to the number of objects 
in U having the property φ but not having the property ψ. Thus, anti– support is the 
number of counter– examples i.e. objects for which the premise φ evaluates to true but 
which fall into a class different than ψ. Note, that anti– support can also be regarded as 
sup(φ→¬ψ). 

2.5. Bayesian Confirmation Measures 

Bayesian confirmation measures constitute a group of interestingness measures that 
quantify the degree to which a premise φ provides “support for or against”  a 
conclusion ψ [8, 9]. In this context, a confirmation measure denoted by )( ψ→φc  is 
required to satisfy the following definition: 
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ψ=φψ=
ψ>φψ>
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Under the “closed world assumption”  adopted in inductive reasoning, and because U 
is a finite set, it is legitimate to express probabilities Pr(φ) and Pr(ψ) in terms of 
frequencies sup(φ)/|U| and sup(ψ)/|U|, respectively. In consequence, the conditional 
probability Pr(ψ|φ)=Pr(φ∧ψ)/Pr(φ) and can be regarded as the confidence measure 
conf(φ→ψ). Thus, the above definition can be re– written as: 
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(5) 

 
For the confirmation measures a desired property of monotonicity (M) was 

proposed in [12]. This monotonicity property says that, given an information system 
S, a confirmation measure is a function non– decreasing with respect to sup(φ→ψ) and 
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sup(¬φ→¬ψ), and non– increasing with respect to sup(¬φ→ψ) and sup(φ→¬ψ). The 
property of monotonicity (M) of )( ψ→φc with respect to )( ψ→φ sup (or, 
analogously, with respect to )( ψ¬→φ¬sup ) means that any evidence in which φ 
and ψ (or, analogously, neither φ nor ψ) hold together increases (or at least does not 
decrease) the credibility of the rule φ→ψ. On the other hand, the property of 
monotonicity of )( ψ→φc  with respect to )( ψ→φ¬ sup  (or, analogously, with 
respect to )( ψ¬→φsup ) means that any evidence in which φ does not hold and ψ 
holds (or, analogously, φ holds and ψ does not hold) decreases (or at least does not 
increase) the credibility of the rule φ→ψ. The arguments for monotonicity property 
(M) given in [12] are the following. Given a probability Pr, an evidence φ confirms a 
hypothesis ψ, if Pr(ψ|φ)>Pr(ψ|¬φ). Expressing the probability in terms of confidence, 
one can say that an evidence φ confirms a hypothesis ψ, if conf(ψ|φ)>conf(ψ|¬φ). 
Greco, Pawlak and Slowinski [12] proved that it is possible to pass from one situation 
in which evidence φ does not confirm a hypothesis ψ, i.e. conf(ψ|φ)<conf(ψ|¬φ), to a 
situation in which evidence φ confirms a hypothesis ψ, i.e. conf(ψ|φ)>conf(ψ|¬φ), 
when sup(φ→ψ) or sup(¬φ→¬ψ) increases or sup(¬φ→ψ) or sup(φ→¬ψ) decreases. 
Thus, it is reasonable to expect that a confirmation measure )( ψ→φc  is monotone 
with respect to sup(φ→ψ) and sup(¬φ→¬ψ)and anti-monotone with respect to 
sup(φ→¬ψ) and sup(¬φ→ψ).  

 
Among confirmation measures that have property (M) there are e.g. confirmation 
measure f [9] and confirmation measure s [6], defined as: 
 

)|Pr()|Pr(
)|Pr()|Pr()(

ψ¬φ+ψφ
ψ¬φ−ψφ

=ψ→φf  , 
(6) 

)|Pr()|Pr()( φ¬ψ−φψ=ψ→φs  . (7) 

2.6. Brief Description of a Dataset on which Experiments Were Conducted 

For the purpose of running experiments we have used a dataset called adult, created 
by Becker and Kohavi [15] from a census dataset. The number of instances that were 
analyzed reached 32 561. They were described by 9 nominal attributes with different 
sizes of value sets. During the experiments, missing values occurring in the dataset 
were substituted by the most frequently appearing value. The experiments were 
conducted in order to illustrate the theoretical results surveyed in this paper and to 
show their application on a real– life dataset. 
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3. Support– Confidence Pareto– optimal Border 

Bayardo and Agrawal in [2] have proposed evaluation of the set of rules induced from 
a dataset in terms of two popular interestingness measures being rule support and 
confidence. They have proved that for a class of rules with fixed conclusion, the 
support– confidence Pareto– optimal border includes optimal rules according to several 
different interestingness measures, such as gain [10], Laplace [7], lift [14], conviction 
[3], and unnamed measure proposed by Piatetsky– Shapiro [16]. Thus, by solving an 
optimized rule mining problem with respect to rule support and confidence one can 
identify a set of rules containing most interesting (optimal) rules according to several 
interestingness measures. 
 
Despite those valuable features of the support– confidence Pareto– optimal border, one 
cannot, in general, claim that the set of dominated rules is without interest. An expert 
analyzing the set of induced rules can be interested in some dominated rules even 
more than in non– dominated rules, e.g. due to the fact that in order to cover the 
analyzed concept one has to use both dominated and non– dominated rules. Of course, 
a user can set some thresholds both to rule support and confidence, but still taking 
under the consideration both dominated and non– dominated rules can result in a large, 
difficult to analyze set of rules. 
 
Hence, we pose a question whether there does not exist any way to limit the set of the 
analyzed rules. Are all the rules really worth analyzing? We will answer that question 
in the following paragraphs. 

3.1. The Confirmation Perspective on the Support– Confidence Evaluations 

The semantic utility of confidence in comparison with confirmation measures in 
general has been widely studied in [4, 5, 12]. It has been clearly shown that the utility 
of the scale of confirmation measures outranks the utility of confidence’s scale. 
Confidence can obtain values between 0 and 1 (where 1 is regarded as the best) 
whereas confirmation measures take values between – 1 and 1 (again 1 being the most 
desirable). The confidence measure, thus, has no means to show that the rule is 
useless when its premise disconfirms the conclusion. Such situation is expressed by a 
negative value of any confirmation measure. Thus, the rules for which the 
confirmation measures take negative values or, more generally, values below a non-
negative significance threshold, can be filtered out. Due to those important semantic 
features of the family of confirmation measures, we find it valuable to impose the 
confirmation perspective on the analyzed support– confidence evaluations and limit in 
this way the set of rules to be analyzed. 
 
It has been analytically proved in [5] that for a fixed value of rule support, confidence 
is monotone with respect to any confirmation measure )( ψ→φc  having the desired 
property of monotonicity (M) proposed in [12].  
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Let us observe that according to definition (5) of a confirmation measure )( ψ→φc , 
we have: 

U
supconfc )()(0)( ψ

>ψ→φ⇔>ψ→φ  . 
(8) 

 
Since, we limit our consideration to rules with the same conclusion, then |U| and 
sup(ψ) should be regarded as constant values. Thus, (8) shows that rules laying under 
a constant, expressing what percentage of the whole dataset is taken by the considered 
class ψ, are characterized by negative values of confirmation. For those rules ψ is 
satisfied less frequently when φ is satisfied rather than generically. Fig. 1 illustrates 
this point. 
It is also interesting to investigate a more general condition c(φ→ψ)≥k, k≥0, for some 
specific confirmation measures. In the following, we consider confirmation measure 
f(φ→ψ). 
 
Theorem 1.  
 

( ) ( ) ( )( )
( )( )ψ−−

+ψ
≥ψ→φ⇔≥ψ→φ

supUkU
ksupconfkf
2

1  . 
(9) 

 
Proof. For the simplicity of presentation, let us use the following notation: 

).(
),(
),(
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ψ¬→φ¬=
ψ¬→φ=
ψ→φ¬=

ψ→φ=

supd
 supc
 supb

 supa

 

The analysis concerns only a set of rules with the same conclusion, thus the values of 
dcbaU +++=  and basup +=ψ)( are constant.  

One can observe that a, b, c, and d can be transformed in the following way: 

).()(
)(

1)(

),()(
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1
),()(

),(

ψ→φ+ψ→φ
ψ→φ

−ψ=

ψ→φ−ψ→φ
ψ→φ

=

ψ→φ−ψ=
ψ→φ=

supsup
conf

sup-Ud

 supsup
conf

c

 supsupb
 supa

 

 
Thus, for given U and ψ, confirmation measure f(φ→ψ) can be written in terms of 
confidence and support of rule φ→ψ (effectively in terms of confidence only) as 
follows: 
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)()())(2(
)()(

)(
ψ+ψ→φψ−

ψ−ψ→φ
=ψ→φ

supconfsupU
supconfU

f  . 
(10) 

 
Considering inequality f(φ→ψ)≥k from (10) we obtain the thesis of the theorem. � 
 

 

Fig. 1 An example of a constant line representing confirmation measure c(φ→ψ)=0 in a 
support– confidence space. Rules laying under this constant line should be discarded from 
further analysis. 
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3.2. Experiments with Rule Induction with respect to Support and Confidence  

In this experiment, association rules were induced from an "adult" dataset. The 
induction proceeds in a two step Apriori-like framework: 
• firstly, all conjunctions of elementary conditions (i.e. itemsets) that exceeded the 

minimum rule support threshold (i.e. frequent itemsets) were found; 
• secondly, those frequent itemsets were used to generate association rules having 

confidence measure not smaller than the user's defined confidence threshold. 
 
The detailed description as well as the efficiency comparison of the applied 
algorithms (based on [1, 13]) can be found in [17]. Throughout the experiment the 
values of support was expressed as a relative value between 0 and 1 (where 1 means 
that all objects from the dataset support the particular rule). Support thresholds was 
introduced. During the frequent itemset generation phase, only itemsets that occurred 
in more than 15% of objects (i.e. exceeded 0.15 support threshold) were approved. No 
confidence thresholds were applied.  

 

 
Fig. 2 Rules generated for a conclusion workclass='Private' with positive (empty circles) 
and non– positive confirmation measure value (solid circles) in a support – confidence space. 

On Fig. 2 we have presented all the association rules generated, according to 
mentioned thresholds from the conclusion: workclass='Private'. This class contains 
information about people working in a private sector. Rules are presented in a 
support– confidence space. Rules for which the value of a confirmation measure is 
positive are marked by empty circles, whereas rules with non– positive confirmation 
measure are presented as solid circles. This experiment makes it evident that in 
practice even rules with high value of confidence (exceeding even 0.7) can be found 
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useless as their premise disconfirms the conclusion (those rules are marked by solid 
circles). It is therefore clear, that the semantic scale of the confidence measure is not 
enough and that confirmation measures are very much needed. Only, the information 
brought by the sign of the confirmation measures can point out which rules are not 
valuable. As shown on Fig. 3, sometimes even rules from the Pareto– optimal border 
need to be discarded from further analysis as their value of confirmation is non–
positive.  

 

 
Fig. 3 Support– confidence Pareto– optimal border formed by rules induced for the 
conclusion: workclass='Private'. Rules with positive confirmation are marked by empty circles 
and rules with non-positive confirmation are marked by solid circles.  

On Fig. 2 and Fig. 3 a constant line was placed separating the rules with positive 
confirmation (situated above the line) from those with non– positive confirmation 
(situated below the line). These figures visualize result (8) and say how big (in 
comparison to the whole dataset) is the considered class of rules for the analyzed 
conclusion workclass='Private'. This particular class is quite large, therefore the 
boundary line is quite high. For relatively smaller classes it was situated lower (see 
Fig. 4 for a class that constitutes less than 70% of the whole dataset). 
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Fig. 4 Rules generated for a conclusion sex='Male' with positive (empty circles) and non –
positive confirmation measure value (solid circles) in a support – confidence space. 

By imposing the confirmation perspective, the number of rules to be analyzed by the 
domain expert can be significantly reduced. For the conclusion being 
worklass='Private', 41 out of 84 rules had to be discarded for disconfirming the 
conclusion. Thus, the set of potentially interesting and valuable rules was reduced by 
almost 50%! Table 1 shows results for other conclusions that we have considered. 

Table 1. Information about the percentage of rules with non-positive confirmation in the set of 
all generated rules for different conclusions. 

Considered conclusion ψ No. of all 
rules 

No. of rules with  
non– positive confirmation 

Reduction 
percentage 

workclass='Private' 84 41 49% 
sex=Male 85 24 28% 

race=White 108 29 27% 
income<=50000USD 87 43 49% 
 

Table 2 shows how many rules with non– positive confirmation laid on the support–
confidence Pareto– optimal border for different considered conclusions. The result 
shows, that even Pareto– optimal borders, i.e. objectively the best sets of rules, contain 
rules that are misleading and should be discarded. In some cases, the support–
confidence Pareto– optimal border could be reduced by even 33%, like for the first 
considered conclusion being workclass='Private'. 
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Table 2. Information about the percentage of rules with non-positive confirmation laying on 
the support– confidence Pareto– optimal border for different conclusions. 

Considered  
conclusion ψ 

No. of all rules 
on the Pareto border 

No. of rules with  
non– positive 
confirmation 

Reduction 
percentage 

workclass='Private' 6 2 33% 
sex=Male 6 1 17% 

race=White 12 0 0% 
income<=50000USD 5 1 20% 

4. Support– Anti– support Pareto– optimal Border 

Presentation of association rules in dimensions of rule support and rule anti– support 
was proposed in [5]. The idea of combining those two dimensions came from a 
critical remark towards support– confidence Pareto– optimal border. In [5], it was 
proved that a rule maximizing a confirmation measure satisfying the property (M) is 
on the support– confidence Pareto– optimal border only if a specific condition is 
satisfied. This means that, in general, not all rules maximizing a confirmation measure 
satisfying the property (M) are on the support– confidence Pareto– optimal border. 
However, on the basis of the observation that a confirmation measure is more 
meaningful than confidence, mining all rules that maximize confirmation measures 
satisfying the property (M), without taking into account the rule confidence, became 
an interesting problem. The solution to it is support– anti– support Pareto– optimal 
border. It was proved in [5] that any confirmation measure, denoted by c, satisfying 
the property of monotonicity (M) is monotone (non– decreasing) with respect to rule 
support sup(φ→ψ) and anti– monotone (non– increasing) with respect to rule anti–
support anti– sup(φ→ψ). Therefore, the best rule according to any of these monotone 
confirmation measures must reside on the support– anti– support Pareto– optimal 
border being the set of rules such that there is no other rule having greater support and 
smaller anti– support.  
 
Moreover, it was pointed out in [5] that the Pareto– optimal border of support– anti–
support contains the support– confidence Pareto– optimal border. Thus, the support–
confidence Pareto– optimal border presents a not greater number of rules than the 
support– anti– support Pareto– optimal border. However, it does not present all the 
rules maximizing a confirmation measure satisfying the property (M). In fact, all the 
rules constituting the difference between those two Pareto– optimal sets maximize 
some confirmation measure which is not monotone with respect to support because it 
does not satisfy the conditions mentioned in [5]. 
 
Despite all good characteristics of the support– anti– support Pareto– optimal border, 
one can still remain interested in the set of dominated rules. It can, for example, be 
due to the fact that the dominated rules are necessary in order to cover the analyzed 
concept, i.e. all instances having property ψ. Thus, analyzing whether one can also 
impose a confirmation perspective to the support– anti– support evaluations, and this 
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way limit the area of the analyzed rules, by discarding those rules which do not 
confirm their conclusions, became an interesting task. 

4.1. The Confirmation Perspective on the Support– Anti– support Evaluations 

Without doubt, the semantic utility of the scale of confirmation measure outranks the 
utility of anti– support's scale. Anti– support, denoted as anti–sup(φ→ψ), is a measure 
showing cardinality of the set of rule counter– examples. 
 
It has been analytically proved in [5] that for a fixed value of rule support, any 
confirmation measure c(φ→ψ) having the desired property of monotonicity (M) is 
anti– monotone (i.e. non– decreasing) with respect to anti– support.  
 
Let us observe that a simple transformation of definition (5) of a confirmation 
measure )( ψ→φc expressed in terms of confidence leads to the following result: 
 

( ) ( ) ( ) ( ) 
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ψ
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sup
U

supsup-antic  . 
(11) 

 
It is also interesting to investigate a more general condition c(φ→ψ)≥k, k≥0, for some 
specific confirmation measures. In the following, we consider again the confirmation 
measure f(φ→ψ). 
Theorem 2.  
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Proof. For given U and ψ, confirmation measure f(φ→ψ) can be written in terms of support and 
anti-support of rule φ→ψ as follows: 
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Considering the inequality f(φ→ψ)≥k from (13), we obtain the thesis. � 
 
Having limited our consideration to rules with the same conclusion, |U| and sup(ψ) 
should be regarded as constant values. Thus, the result (11) shows that a simple linear 
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function bounds rules that are characterized by positive values of confirmation from 
those with non– positive confirmation values. 
 

 
Fig. 5 Three examples of linear functions representing confirmation measure c(φ→ψ)=0 in 
a support– anti– support space. Each line was drawn according to a set of rules for conclusions 
different in cardinality. Rules laying above these functions should be discarded from further 
analysis. 

4.2. Experiments with Rule Induction with respect to Support and Anti–
support  

In this experiment, association rules were again induced from an "adult" dataset. The 
induction proceed in a two step framework: 
• firstly, all conjunctions of elementary conditions (i.e. itemsets) that exceeded the 

minimum rule support threshold (i.e. frequent itemsets) were found; 
• secondly, those frequent itemsets were used to generate association rules having 

anti– support measure not greater than the user's defined confidence threshold. 
 
The detailed description of the applied algorithms (inspired by [1, 13]) can be found 
in [17]. Throughout the experiment the value of support was expressed as a relative 
value between 0 and 1 (where 1 means that all objects from the dataset support the 
particular rule). During the frequent itemset generation phase, only itemsets that 
exceeded 0.15 support threshold were approved. No threshold for anti– support was 
introduced. 
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Fig. 6 Rules generated for a conclusion workclass='Private' with positive (empty circles) 
and non– positive (solid circles) confirmation measure value in a support – anti– support space. 

On Fig. 6, we have presented all the association rules generated, according to 
mentioned threshold, for the conclusion: workclass='Private'. Rules are presented in a 
support– anti– support space. Rules for which the value of a confirmation measure is 
positive are marked by empty circles, whereas rules with non– positive confirmation 
measure are solid circles. This experiment makes it clear, that the semantic scale of 
anti– support is weaker than that of confirmation measures as it cannot show rules for 
which the premise disconfirms the conclusion. Therefore, despite the fact that the 
support– anti– support Pareto– optimal border contains all rules that are optimal 
according to any confirmation measure with the property of monotonicity (M), it is 
necessary to take under consideration also the information brought by the sign of the 
confirmation measures. In the set of both dominated and non– dominated rules, there 
can be examples of rules with negative values of confirmation (see Fig. 6). Fig. 7 
presents just the rules which form the support– anti– support Pareto– optimal border. It 
can be observed there that 4 out of 18 rules need to be discarded from further analysis 
as their value of confirmation is non– positive.  
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Fig. 7 Support– anti– support Pareto– optimal border formed by rules induced for the 
conclusion: workclass='Private'. Rules with positive confirmation are marked by empty circles 
and rules with non-positive confirmation are marked by solid circles.  

On Fig. 6 and Fig. 7, a linear function was placed separating the rules with positive 
confirmation (situated under the line) from those with non– positive confirmation 
(situated above the line). These figures visualize result (11). Table 3 presents the 
percentage of rules that should be discarded from the Pareto– optimal border with 
respect to support and anti– support, for different conclusions. The support– anti–
support Pareto– optimal border is, in general, larger (or precisely, not smaller) than the 
support– confidence Pareto– optimal set. The first set fully contains the latter, and 
therefore it is obvious that if there appeared some confirmation– negative rules on the 
support– confidence Pareto– optimal border then they would also be present on the 
support– anti– support Pareto– optimal border. But as it can be observed in Table 3, on 
the support– anti– support Pareto– optimal border there also came up other rules with 
non-positive confirmation values. In the conducted experiment the set of rules (from 
the support– anti– support Pareto– optimal border) to be analyzed could be reduced by 
e.g. about 22%, as it happened for the class workclass='Private'. 

Table 3. Information about the percentage of rules with non-positive confirmation laying on 
the support– anti– support Pareto– optimal border for different conclusions. 

Considered  
conclusion ψ 

No. of all rules 
on the Pareto 

border 

No. of rules with  
non– positive 
confirmation 

Reduction 
percentage 

workclass='Private' 18 4 22% 
sex=Male 8 3 38% 

race=White 19 1 5% 
income<=50000USD 15 4 27% 
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5. Conclusions 

Evaluation of induced rules with respect to two interestingness measures at the same 
time is an approach to measuring the relevance and utility of the induced rules. In this 
paper, we investigated rules induced for a fixed conclusion and evaluated in spaces of 
support– confidence and support– anti– support. The Pareto– optimal borders of those 
two– dimensional spaces are characterized by some valuable features. The support–
confidence Pareto– optimal border contains rules optimal with respect to many other 
popular interestingness measures [2]. The support– anti– support Pareto– optimal 
border was introduced in [5] for its valuable property of containing all the rules that 
maximize any confirmation measure with the desired property of monotonicity (M).  
 
However, these worthy features, do not assure that the number of induced rules would 
not exceed the human user capabilities to analyze them all. Inspired by the strength of 
the semantic scale of the family of confirmation measures, we show that it is 
reasonable to limit the set of rules to be presented to the domain expert, by 
eliminating those that are characterized by non– positive values of confirmation. We 
have shown analytically that a simple constant line imposed on the support–
confidence space bounds the rules with positive values of confirmation measure from 
those with non– positive confirmation values. This is a very practical result as it 
allows to discard from further analysis all the rules laying below that constant line and 
this way limit the set of analyzed rules only to those with positive confirmation 
values, without actually calculating the value of a particular confirmation measure for 
each of the induced rules. Moreover, we have presented results from experiments on a 
large dataset called "adult". They show how greatly a set of induced rules can be 
reduced by throwing away the rules with non– positive values of confirmation.  
 
Analogous analysis has been conducted for rules in support– anti– support space. We 
have shown that a simple linear function separates the rules with positive and non–
positive values of confirmation. Again, this is an easy approach to limit the set of 
analyzed rules without calculating a value of a particular confirmation measure for 
each of the induced rules. Experimental results show how big the reduction of the rule 
set could be. The percentage of discarded rules just for the analyzed Pareto– optimal 
borders has also been presented. 
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