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n Aim and scope of the thesis
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Rule induction

PatternsInference EngineData
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Decision rules Association rules

If symptom s1 is present 
and symptom s1 is absent

then disease d1

If bread was bought
then butter and milk were bought



Rule induction

n Patterns in form of rules are induced from a data table

n S=〈U, A〉 –data table,  where U and A are finite, non-empty sets 
U – universe;    A – set of attributes

n S=〈U, C, D〉 – decision table,  where C – set of condition attributes,
D – set of decision attributes, C∩D=∅
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n Decision rule or association rule induced from S

is a consequence relation:  φ→ψ read as  if φ then ψ
where φ and ψ are condition and conclusion formulas 
built from attribute-value pairs (q,v)

n If the division into independent and dependent attributes is fixed, then 
rules are regarded as decision rules, otherwise as association rules.



Rule induction
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n E.g. decision rules induced from „characterization of nationalities”:

1) If (Height=tall), then (Nationality=Swede)

2) If (Height=medium) & (Hair=dark), then (Nationality=German)

C D



Attractiveness measures

n To measure the relevance and utility of rules, quantitative measures

called attractiveness or interestingness measures, have been proposed

(e.g. support, confidence, lift, gain, conviction, Piatetsky-Shapiro,… )

n Unfortunately, there is no evidence which measure(s) is (are) the best
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n Notation:

n is the number of all objects from U, having property °

e.g.              ,

)(osup
)(φsup )(ψsup



Basic quantitative characteristics of rules

n Basic quantitative characteristics of rules

n Support of rule φ→ψ in S:

n Confidence (called also certainty factor) of rule φ→ψ in S:

)ψ()ψ( ∧φ=→φ supsup
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n Anti-support of rule φ→ψ in S:

anti-sup

( ) ( )
( )φ

ψ→φ
=ψ→φ

sup
supconf

)ψ()ψ( ¬∧φ=→φ sup



Confirmation measure f and s

n Confirmation measure f (Good 1984, Heckerman 1988, Pearl 1988, Fitelson 2001)

n Confirmation measure s (Christensen 1999)

( ) ( ) ( )
( ) ( )φ→ψ¬+φ→ψ

φ→ψ¬−φ→ψ
=ψ→φ

confconf
confconff

( ) ( ) ( )ψ→φ¬−ψ→φ=ψ→φ confconfs
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n Gain measure (Fukuda et al. 1996)

n Rule Interest Function (Piatetsky-Shapiro 1991)

n Dependency Factor (Pawlak 2002, Popper 1959)

n ...

( ) ( ) ( )ψ→φ¬−ψ→φ=ψ→φ confconfs



Bayesian confirmation property

n An attractiveness c measure has the property of confirmation if is 

satisfies the following condition:

( )
( ) ( )
( ) ( )
( ) ( )

 
PrPr if  
PrPr if  
PrPr if  

 c








ψ<φψ<

ψ=φψ=

ψ>φψ>

ψφ

0

0

0

,
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n Measures of confirmation quantify the strength of confirmation that 

premise φ gives to conclusion ψ

n „ψ is verified more often, when φ is verified, rather than when φ
is not verified”





Property M

n Property M (Greco, Pawlak, Słowiń ski 2004)

n An attractiveness measure I(a, b, c, d)  has the property M

if it is a function non-decreasing with respect to a and d

and non-increasing with respect to b and c

where:
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where:

a=sup(φ→ψ) 
the number of objects in U for which φ and ψ hold together 

b=sup(¬φ→ψ), 
c=sup (φ→¬ψ), 

d=sup(¬φ→¬ψ)



Property M - interpretation

n E.g. (Hempel) consider rule φ→ψ : 

if x is a raven then x is black

n φ is the property to be a raven, ψ is the property to be black

n a – the number of objects in U which are black ravens

//the more black ravens we observe, the more credible becomes the rule
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n b – the no. of objects in U which are black non-ravens

n c – the no. of objects in U which are non-black ravens

n d – the no. of objects in U which are non-black non-ravens



Properties of symmetry

n Properties of symmetry (Carnap 1962, Eells & Fitelson 2000):

n Evidence symmetry: 

n Commutativity symmetry:

n Hypothesis symmetry:

( ) ( )ψ→φ¬=ψ→φ -II

( ) ( )φ→ψ=ψ→φ II

( ) ( )ψ¬→φ=ψ→φ -II
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n Total symmetry:

n Only hypothesis symmetry is desirable

( ) ( )ψ¬→φ¬=ψ→φ -II



Property of hypothesis symmetry

n Property of hypothesis symmetry (HS) (Carnap ‘62, Eells, Fitelson ’02)

n An interestingness measure I(φ→ψ) has the property HS if

( ) ( )ψ¬→φ=ψ→φ -II
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n Interpretation: the impact of φ on ψ should be of the same 

strength, but of the opposite sign as the impact of φ on ¬ψ

n Example: Let us consider a rule φ→ψ : 

if x is  then x is

φ is conclusive for ψ and negatively conclusive for ¬ψ



Multicriteria rule evaluation

A single measure is often an insufficient indicator of the quality of 
rules, so there arises a natural need for a multicriteria evaluation.

Support–confidence evaluation space (Bayardo & Agrawal 1999)

semantic meaning of confidence does not allow
to distinguish rules for which 
the premise disconfirms the conclusion
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need to search for substituting evaluation spaces that would include

• confirmation measures
• measures with property M



General aim of the thesis

Analysis of properties and relationships 

between popular rule attractiveness measures 

and proposition of multicriteria rule evaluation space 

in which the set of non-dominated rules 
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in which the set of non-dominated rules 

will contain all optimal rules with respect to 

any attractiveness measure with the property M.



Detailed tasks

n Analysis of rule support, rule anti-support, confidence, rule interest 

function, gain, dependency factor, f and s attractiveness measures 

with respect to the property M, the property of confirmation

and the property of hypothesis symmetry.
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n Analysis of relationships between the considered interestingness 

measures and analysis of enclosure relationships between the sets of 

non-dominated rules in different evaluation spaces.



Detailed tasks

n Proposition of a multicriteria evaluation space in which the set 

of non-dominated rules will contain all optimal rules with respect to 

any attractiveness measure with the property M. 

n Determining the area of rules with desirable value of a confirmation 
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n Determining the area of rules with desirable value of a confirmation 

measure in the proposed multicriteria evaluation space. 

n Extension of an apriori-like algorithm for generation of rules with 

respect to attractiveness measures possessing valuable properties and 

presentation of application of the results to analysis of rules induced 

from exemplary datasets. 



Performed analyses of properties of attractiveness measures

n Analysis of measures wrt property of confirmation: 
Theorems:

RI, Dependency factor, and Gain (if Θ=sup(ψ)/|U|) have the property 

of confirmation,  

while Rule support, Anti-support, Confidence do not have the property 

of confirmation
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n Analysis of measures wrt property M: 
Theorems:

Rule support, Anti-support, Confidence, RI, Gain have the property M, 

while Dependency factor does not have the property M



Performed analyses of properties of attractiveness measures

n Analysis of measures wrt property hypothesis symmetry: 
Theorems:

RI and Gain (if Θ=1/2) have the property of confirmation,  

while Rule support, Anti-support, Confidence and Dependency factor

do not have the property HS
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n Theorem (Greco, Pawlak & Słowiń ski 2004):

Confirmation measures f, s have the property M and property of 

hypothesis symmetry



Support–confidence Pareto borderSupport–confidence Pareto border



Support–confidence Pareto border

n Support–confidence Pareto border is the set of non-dominated, 

Pareto-optimal rules with respect to both rule support and confidence

Pareto border - Pareto-optimal rules 
(non-dominated)

conf (φ→ψ)
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n Mining the border identifies rules optimal with respect to measures 

such as: lift, gain, conviction, Piatetsky-Shapiro,…

no rules fall above this borderdominated rules 
fall in this area

sup (φ→ψ)



Monotonicty of f in support and confidence

n Is measure  f included in the support-confidence Pareto border?

n Theorem:

Confirmation measure f is independent of support, and, therefore, 

monotone in support, when the value of confidence is held fixed.

n Theorem:

Confirmation measure f is increasing, and, therefore, monotone in 
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Confirmation measure f is increasing, and, therefore, monotone in 

confidence

n Conclusion:

Rules maximizing f lie on the support–confidence Pareto border



Support–confidence vs. support–f Pareto border

n The utility of confirmation measure f outranks utility of confidence

n Claim: Substitute the conf(φ→ψ) dimension for f(φ→ψ)

n Theorem:

The set of rules located on the support–confidence Pareto border is 

exactly the same as on the support–f Pareto border
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exactly the same as on the support–f Pareto border



No rules fall 
outside this border

Support–f Pareto border is more meaningful

1

f (φ→ψ)
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Dominated rules fall 
into this area

0

Area of rules to be discarded

-1 sup (φ→ψ)



n Is there a curve separating rules with negative value of any measure 

with the confirmation property in the support–confidence space?

n Theorem:

Rules lying above a constant:

conf(φ→ψ)=sup(ψ)/|U|

Confirmation perspective on support–confidence space
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have a negative value of any confirmation measure. 

For those rules, the premise only disconfirms the conclusion!



Dominated rules fall 
into this area

No rules fall 
outside this border

1

conf (φ→ψ)

0.5
c=0, for sup(ψ)/|U|=0.5

Confirmation perspective on support–confidence space
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0

Area of rules to be discarded

sup (φ→ψ)

For rules lying below the curve for which c=0 

the premise only disconfirms the conclusion



Support-confidence Pareto border vs. support-f

27

• indicates rules with negative confirmation

• the class constitutes over 70% of the whole dataset

• rules with high confidence can be disconfirming

• even some rules from the Pareto border need to be discarded 



Support–s Pareto borderSupport–s Pareto border



Monotonicty of s in support and confidence

n Is measure s on rule support–confidence Pareto border?

n Theorem:

Confirmation measure s is increasing, and, therefore, 
monotone in confidence when the value of support is held fixed

n Theorem:
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n Theorem:
For a fixed value of confidence, confirmation measure s is:

• increasing in sup(φ→ψ) ⇔ s(φ→ψ)>0

• constant  in sup(φ→ψ) ⇔ s(φ→ψ)=0

• decreasing in sup(φ→ψ) ⇔ s(φ→ψ)<0

n The above theorem states the monotone relationship just in the non-
negative range of the value of s (i.e. the only interesting)



Support–confidence vs. support–s Pareto border

n Theorem:

If a rule resides on the support–s Pareto border 

(in case of positive value of s), 
then it also resides on the support–confidence Pareto border, 

while one can have rules being on the support–confidence Pareto 

border which are not on the support–s Pareto border.
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border which are not on the support–s Pareto border.

n Conclusion:

The support–confidence Pareto border is, in general, larger than 

the support–s Pareto border



Measures with the property M in support–confidence space

n What are the conditions for rules maximizing

any measure with the property M 

to be included in the rule support-confidence Pareto border?
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n Reminder of the property M:

a=sup(φ→ψ), b=sup(¬φ→ψ), c=sup (φ→¬ψ), d=sup(¬φ→¬ψ)

I(a,b,c,d) is a function non-decreasing with respect to a and d, 

and non-increasing with respect to b and c



n Theorem:

When the value of support is held fixed, then I(a, b, c, d) is monotone 

in confidence. 

n Theorem:

When the value of confidence is held fixed, then I(a, b, c, d) admitting 

derivative with respect to all its variables a, b, c and d, is monotone 

Measures with the property M in support–confidence space
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derivative with respect to all its variables a, b, c and d, is monotone 

in support if:

n There are some measure with property M whose optimal rules will not 

be on the support-confidence Pareto border.

( )  
conf

c
I

d
I

b
I

a
I

    or    
d
I

c
I 110 −

ψ→φ
≥

∂
∂

−
∂
∂

∂
∂

−
∂
∂

=
∂
∂

=
∂
∂



Support–anti-support Pareto borderSupport–anti-support Pareto border



Support–anti-support Pareto border

n How to find rules optimal according to any measure 

with the property M?

n Theorem:

When the value of support is held fixed, then I(a, b, c, d) 

is anti-monotone (non-increasing) in anti-support

Theorem:

34

n Theorem:

When the value of anti-support is held fixed, then I(a, b, c, d) is 

monotone (non-decreasing) in support



Support–anti-support Pareto border

n Theorem:

For rules with the same conclusion,

the best rules according to any measure with the property M

must reside on the support–anti-support Pareto border 

n The support–anti-support Pareto border is the set of rules such that 
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there is no other rule having greater support and smaller anti-support

n Theorem:

The support–anti-support Pareto border is, in general, not smaller 

than the support–confidence Pareto border



Dominated rules fall 

into this area

Support–anti-support Pareto border

anti-support=
sup (φ→ ¬  ψ)
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No rules fall 
outside this border

0

The best rules according to any measure with the property M
must reside on the support–anti-support Pareto border

sup (φ→ψ)



Confirmation perspective on 

the support–anti-support Pareto borderthe support–anti-support Pareto border



n Is there a curve separating rules with negative value of 

any confirmation measure in the support–anti-support space?

n Theorem:

Rules lying above a linear function:

anti-sup(φ→ ψ) = sup(φ→ ψ)[|U|/sup(ψ)-1]

Confirmation perspective on support–anti-support border
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have a negative value of any confirmation measure. 

For those rules, the premise only disconfirms the conclusion!



Dominated rules fall 

into this area

anti-support= c=0, for sup(ψ)/|U|=0.5

c=0, for sup(ψ)/|U|=0.66

c=0, for sup(ψ)/|U|=0.33
sup (φ→ ¬  ψ)

Confirmation perspective on support–anti-support border
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No rules fall 
outside this border

0

For rules lying above the curve for which c=0 

the premise only disconfirms the conclusion

sup (φ→ψ)



Support - anti-support (workclass=Private)
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• indicates rules with negative confirmation

• even some rules from the Pareto border need to be discarded 



Inner monotonicity 

in support - anti-support spacein support - anti-support space



The gist of the algorithm for support–anti-support rules

n Traditional Apriori approach to generation of association rules 

(Agrawal et al) proceeds in a two step framework:

n find frequent itemsets (i.e. sets of items which occur more 

frequently than the minimum support threshold),

n generate rules from frequent itemsets and filter out those that do 

not exceed the minimum confidence threshold

42

not exceed the minimum confidence threshold

n Generation of association rules regarding support and anti-support, in 

general, requires only the substitution of the parameter calculated in 

step 2. Confidence -> anti-support



The gist of the algorithm for support–anti-support rules

n Claim: calculation of anti-support (instead of confidence) does not 

introduce any more computational overhead to the algorithm

n Let us observe that: anti-sup(φ→ψ) = sup(φ→ ¬  ψ) = sup(φ)–sup(φ→ψ).

n All the data required to calculate anti-support are also gathered in 

step 1 of Apriori
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step 1 of Apriori

n The data needed to calculate anti-support is the same as to calculate 

confidence



The gist of the algorithm for support–anti-support rules

n Claim: When generating association rules from a frequent set it is 

advisable to first generate rules with few conclusion elements (for 

optimisation reasons) 

n Let us observe three different rules constructed from the same 

frequent itemset {x, y, z, v}:

n r1: x→yzv anti-sup(r1) = sup(x) – sup(xyzv)
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n r1: x→yzv anti-sup(r1) = sup(x) – sup(xyzv)

n r2: xy→zv anti-sup(r2) = sup(xy) – sup(xyzv)

n r3: xyz→v anti-sup(r3) = sup(xyz) – sup(xyzv)

n anti-sup(r1) ≥ anti-sup(r2) ≥ anti-sup(r3)

n Conclusion: anti-sup(r3) > max_acceptable anti-support =>

anti-sup(r2) > max_acceptable anti-support

Generate and verify r3 first! 



SummarySummary



Main results of the thesis

n Analysis of 8 measures with respect to the property M, the property of 

confirmation and the property of hypothesis symmetry has been 

performed

n An analysis of relationships between the considered attractiveness 

measures and analysis of the enclosure relationships between the sets 
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measures and analysis of the enclosure relationships between the sets 

of non-dominated rules in the evaluation spaces formed by different 

combinations of the concerned measures has been conducted. The 

analysis has been performed for a set of rules with the same 

conclusion



Main results of the thesis

n A proposition of a support–anti-support evaluation space such that its 

set of the non-dominated rules contains all rules optimal with respect 

to any attractiveness measure that has the property M

n The support–confidence and support–anti-support evaluation spaces 

has also been enriched by the valuable semantics of confirmation 
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has also been enriched by the valuable semantics of confirmation 

measures. 

n A multicriteria rule evaluation system has been designed and 

developed. As the application of the system three datasets, census, 

msweb and hsv, have been analyzed and discussed 



Lines of further investigation

n Analysis of attractiveness measures with respect to other properties, 

in particular other forms of symmetry properties

n Development of algorithm for finding in support - anti-support space 

a set of rules (both dominated and non-dominated) that covers the 

objects in a certain percentage
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objects in a certain percentage

n Analysis of properties of normalized measures (Crupi et al)



Thank you!
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