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1. Introduction 

1.1. Knowledge discovery 

Computer systems are commonly used nowadays in vast number of application areas, 

including banking, telecommunication, management, healthcare, trade, marketing, 

control engineering, environment monitoring, research and science, among others. We 

are witnessing a trend to use them anytime and anywhere. As a result a huge amount of 

data of different types (text, graphics, voice, video) concerning in fact all human 

activity domains (business, education, health, culture, science) is gathered, stored and 

available. These data may contain hidden from a user interesting and useful knowledge 

represented (defined) by some non-trivial and not-explicitly visible patterns 

(relationships, anomalies, regularities, trends) [21], [46], [67], [82], [90], [91]. 

With the growth of the amount and complexity of the data stored in contemporary, 

large databases and data warehouses, the problem of extracting knowledge from 

datasets emerges as a real challenge, increasingly difficult and important. This problem 

is a central research and development issue of knowledge discovery that generally is a 

non-trivial process of looking for new, potentially useful and understandable patterns in 

data [21], [58], [4].  

The discovered knowledge is represented by patterns which can take the form of 

decision or association rules, clusters, sequential patterns, time series, contingency 

tables, and others [14], [24], [31], [58], [59], [85], [84], [89]. In this thesis, we shall 

consider patterns expressed in the form of “if…, then…” rules. The representation of 

knowledge in form of rules is considered as easier to comprehend than other forms (for 

discussion see [14], [52], [51], [70]). Rules are usually induced from a dataset being a 

set of objects characterized by a set of attributes. They can be described as consequence 

relations between the condition (the “if part”) and decision (the “then part”) formulas 

built from attribute-value pairs. The condition formulas are called the premise of the 

rule and the decision formulas are referred to as the conclusion of the rule. Objects from 

a dataset support the rule if the attribute-value pairs from the rule’s premise and 

conclusion match respectively the values of the object on each of the attributes 

mentioned in the rule, i.e. if the premise and conclusion of the rule is satisfied by the 

object. The more objects support the rule, the stronger the rule is. Rules can be induced 

from different datasets, e.g. from a dataset containing information about patients of a 
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hospital. Such data can be gathered in the process of diagnostic treatment. Rules that 

could potentially be induced from such dataset could describe co-occurrence of certain 

symptoms and a disease: if symptom s1 is present and symptom s2 is absent then 

disease d1. 

 

1.2. Attractiveness measures and their properties 

Typically, the number of rules generated from massive datasets is quite large, but only a 

few of them are likely to be useful for the domain expert. It is due to the fact that many 

rules are either irrelevant or obvious, and do not provide new knowledge [10]. 

Therefore, in order to measure the relevance and utility of the discovered rules, 

quantitative measures, also known as attractiveness or interestingness measures 

(metrics), have been proposed and studied (for review see, e.g. [26], [35], [50], [76], 

[88]). They allow to reduce the number of rules that need to be considered by ranking 

them and filtering out the useless ones. Since there is no single attractiveness measure 

that captures all characteristics of the induced rules and fulfils the expectations of any 

user, the number of interestingness measures proposed in literature is large. Each of 

them reflects certain characteristics of rules and leads to an in-depth understanding of 

their different aspects. Among widely known and commonly applied attractiveness 

measures there are such as support and confidence [2], gain [25], conviction [6], rule 

interest function [67], dependency factor [63], entropy gain [55], [56], laplace [12], 

[87], lift [38], [6], [16].  

While choosing an attractiveness measure(s) of rules for a certain application, the 

users also often take into consideration properties (features) of measures which reflect 

the user's expectations towards the behaviour of the measures in particular situations. 

For example, one may demand that the used measure will increase its value for a given 

rule (or at least will not decrease) when the number of objects in the dataset that support 

this rule increases. In the thesis, we shall focus on the following properties of 

attractiveness measures, well motivated in the recent literature [28], [9], [22], [15], [17], 

[10]: 

• the property M of monotonic dependency of the measure on the number of 

objects supporting or not the premise or the conclusion of the rule [28], [9],  

• the property of confirmation quantifying the degree to which the premise of the 

rule provides evidence for or against the conclusion [22], [15], 
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• the property of hypothesis symmetry arguing that the significance of the premise 

with respect to the conclusion part of a rule should be of the same strength, but 

of the opposite sign, as the significance of the premise with respect to a negated 

conclusion [17], [10]. 
 

Analyses verifying whether popular interestingness measures possess the above 

listed properties widen our understanding of those measures and of their applicability, 

and help us learn about relationships between different measures. The obtained results 

are also useful for practical applications because they show which attractiveness 

measures are relevant for meaningful rule evaluation.  

 

1.3. Aim and scope of the thesis 

The problem of choosing an appropriate attractiveness measure for a certain application 

is difficult not only because of the number of measures but also due to the fact that a 

single measure of interestingness is often an insufficient indicator of the quality of the 

rules. Therefore, a multicriteria evaluation, i.e. using at the same time more than one 

attractiveness measure (criterion), has become a common approach solving this issue 

[3], [23], [48]. In case of a multicriteria rule evaluation, objectively, the best rules are 

the non-dominated ones (also known as Pareto-optimal rules), i.e. those for which there 

does not exist any other rule that is better on at least one evaluation criterion and not 

worst on any other. The set of all non-dominated rules, with respect to particular 

evaluation criteria, is referred to as the Pareto-optimal set or the Pareto-optimal border.  

The popular measures of rule support and confidence, have been considered by 

Bayardo and Agrawal [3] as sufficient for multicriteria evaluation of rules. They express 

the number of objects in the dataset that support the rule and the probability with which 

the conclusion evaluates to true given that the premise is true, respectively. Those 

measures are used in the well-known apriori algorithms [2] and permit to benefit from 

the main advantage of these algorithms, which consists in reduction of the frequent 

itemset search space.  

In the literature, a group of attractiveness measures called Bayesian confirmation 

measures has also been thoroughly investigated ([11], [17], [22], [28]). The reason for 

that was different than the motivation for using support–confidence measures in 

connection with apriori algorithms. It followed from semantic consideration of 
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attractiveness measures. In general, Bayesian confirmation measures quantify the 

degree to which a premise of a rule “provides arguments for or against” the rule’s 

conclusion. Therefore, their semantic meaning allows to distinguish the meaningful 

rules for which the premise confirms the conclusion. The measure of confidence does 

not have the means to do that and there may occur situations in which rules that are 

characterised by high values of confidence are in fact misleading because the premise 

disconfirms the rule’s conclusion. In this context, there arises a natural need to search 

for a substituting evaluation space that would include a confirmation measure. 

Moreover, since the property M of monotonic dependency of an attractiveness measure 

on a number of objects supporting or not the premise or conclusion of a rule, proposed 

by Greco, Pawlak and Słowiński [28], has been recognised as crucial especially for 

confirmation measures, it is desirable for a new evaluation space to include measures 

that are not only confirmation measures but also have the property M. 

The most general goal of the thesis is to find an evaluation space such that its set of 

non-dominated rules would include rules that are optimal with respect to any measure 

with the property M. Of course, the confirmation semantics would also need to be 

included in such space to avoid analysing uninteresting and misleading rules. 

The problem of choosing an adequate multicriteria evaluation space is non trivial. It 

naturally leads to an important issue, not yet thoroughly discussed in the literature, of 

comparing different evaluation spaces, as well as determining the relationships of 

enclosure between their sets of non-dominated rules. If such relationships were 

discovered, it would mean that inducing non-dominated rules with respect to one 

evaluation space, one can guarantee that it contains optimal or Pareto-optimal rules with 

respect to combination of other measures. Such results would have a significant 

practical value as they would allow to determine a limited set of interesting rules more 

effectively, because instead of numerous rule evaluations in different spaces, one could 

conduct such an evaluation once only finding the most general set of non-dominated 

rules which contains other optimal or Pareto-optimal rules. 

In the above context the general aim of this work has be formulated as: 
 

Analysis of properties and relationships between popular rule attractiveness measures 

and proposition of multicriteria rule evaluation space in which the set  

of non-dominated rules will contain all optimal rules with respect to any attractiveness 

measure with the property M. 
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To attain this aim the following detailed tasks should be completed: 

1. Analysis of rule support, rule anti-support, confidence, rule interest function, 

gain, dependency factor, f and s attractiveness measures with respect to the 

property M, the property of confirmation and the property of hypothesis 

symmetry. 

2. Analysis of relationships between the considered interestingness measures and 

analysis of enclosure relationships between the sets of non-dominated rules in 

different evaluation spaces. 

3. Proposition of a multicriteria evaluation space in which the set of non-dominated 

rules will contain all optimal rules with respect to any attractiveness measure 

with the property M. 

4. Determining the area of rules with desirable value of a confirmation measure in 

the proposed multicriteria evaluation space. 

5. Extension of an apriori-like algorithm for generation of rules with respect to 

attractiveness measures possessing valuable properties and presentation of 

application of the results to analysis of rules induced from exemplary datasets. 
 

The plan of the thesis follows the above tasks. In particular, in Section 2 

preliminaries on rules and their basis quantitative description as well as the definitions 

of the considered properties of attractiveness measures are presented. Section 3 is 

devoted to analysing whether considered interestingness measures possess the property 

M, the property of confirmation and the property of hypothesis symmetry. Section 4 

describes different multicriteria evaluation spaces and discusses their advantages and 

disadvantages. Section 5 presents our proposition of the support–anti-support evaluation 

space, for which the set of non-dominated rules contains rules that are optimal with 

respect to any attractiveness measure that has the property M. Next, in Section 6 there is 

a presentation of an association mining system developed for showing applications of 

the results on exemplary datasets. Finally, Section 0 summarises the thesis with a 

discussion on the completed work and possible lines of further investigations.  



 9 

2. Basic quantitative rule description 

The discovery of knowledge from data is done by induction. It is a process of creating 

patterns which are true in the world of the analyzed data. However, it is worth 

mentioning, as Karl Popper [69] did, that one cannot prove the correctness of 

generalizations of specific observations or analogies to known facts, but can refute 

them. 

In this thesis we consider discovering knowledge represented in form of rules. The 

starting point for such rule induction (mining) is a sample of larger reality often 

represented in a form of a data table. Formally, a data table is a pair  

S = (U, A). (2.1) 

where U is a nonempty finite set of objects (items) called universe, and A is a nonempty 

finite set of attributes.  

For every attribute a ∈ A let us denote by Va the domain of a. By a(x) we will 

denote the value of attribute a ∈ A for an object x ∈ U. 

Attributes describing objects can be of various types. The classical hierarchy of 

attribute types is the following [83], [5], [54], [13], [82]: 

• nominal,  

• ordinal, 

• interval, 

• ratio. 

Nominal attribute values can be regarded as names assigned to objects as labels. The 

domain of the nominal attributes is an unordered set of attribute values and therefore, 

the only comparison that can be performed between two such values is equality and 

inequality. Relations such as “less than” or “greater than” and operations such as 

addition or subtraction are inapplicable for such attributes. For practical data processing 

nominal attribute values can take the form of numerals, but in that case their numerical 

value is irrelevant. Examples of nominal attributes can include: the marital status of a 

person, the make of a car, religious or political-party affiliation, birthplace. 

The domain of the ordinal attributes is an ordered set of attribute values. The values 

assigned to objects represent the rank order (1st, 2nd, 3rd etc.) of the objects. In addition 

to equality/inequality, one can also perform “less than” or “greater than” comparisons 
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on ordinal attribute values. Nevertheless, conventional addition and subtraction remain 

meaningless. Examples of ordinal attributes include the results of a horse race, which 

only express which horse arrived first, second, etc., or school grades. 

The domain of the interval attributes is defined over numerical scale, in such way 

that differences between arbitrary pairs of values can be meaningfully compared. It 

means that equal differences between interval attribute values represent equal intervals 

and operations of addition or subtraction are meaningful. Moreover, obviously, all the 

relation comparisons valid for nominal or ordinal attributes can also be performed, 

however, operations such as multiplication or division cannot be carried out. There 

exists an arbitrary zero point on the interval value scales, such as the 0 degrees of 

Celsius or Fahrenheit on the temperature scale. Among examples of interval attributes 

one can also mention year dates in many calendars. 

The domain of ratio attributes is defined over numerical scale, such that ratios 

between arbitrary pairs of values are meaningful. Thus, on interval attributes operations 

of multiplication or division can be performed, as well as all the operations and 

comparisons valid for interval attributes. The zero value on a ratio scale is non-arbitrary, 

like in e.g. the Kelvin temperature scale (zero is absolute). Examples of ratio attributes 

also contain many physical quantities such as mass or length. Social ratio attributes 

include age, number of class attendances in a particular time, etc.  

Apart from the above mentioned attributes, there also exists a type of attributes 

called criteria, for which the domains are preference-ordered (e.g. from the least wanted 

to the most wanted). Among scales of criteria one can distinguish ordinal, interval or 

ratio scales [77].  

Some authors also distinguish other attribute types e.g. structural, for which the 

domain values are characterized by a taxonomy [31], [51].  

Association and decision rules 

A rule induced from a data table S is denoted by φ→ψ (read as “if φ, then ψ”), where φ 

and ψ are built up from elementary conditions using logical operator ∧ (and). The 

elementary conditions of a rule are defined as ))(( v rel xa where rel is a relational 

operator from the set {=, <, ≤, ≥, >} and v is a constant belonging to Va. The antecedent 

φ of a rule is also referred to as premise or condition. The consequent ψ of a rule is also 

called consequent, decision or hypothesis. Therefore a rule can be seen as a 



 11 

consequence relation (see critical discussion [28], [88] about interpretation of rules as 

logical implications) between premise and conclusion. The attributes that appear in 

elementary conditions of the premise (conclusion, resp.) are called condition attributes 

(decision attributes, resp.). Obviously, within one rule, the sets of condition and 

decision attributes must be disjoint. The rules induced (mined) from data may be either 

decision or association rules, depending on whether the division of A into condition and 

decision categories of attributes has been fixed or not. 

One of the classical examples of data table used in the literature to illustrate 

algorithms of rule induction concerns playing golf (see Table 2.1) and was originally 

introduced by Quinlan [70], [71]. The dataset uses weather information to decide 

whether or not to play golf. It contains 14 objects (items) described by four attributes 

concerning the weather state: outlook (with nominal values sunny, overcast or rain), 

temperature (with ordinal values hot, mild or cold), humidity (with ordinal values high 

or normal) and windy (with nominal values true or false). Moreover, there is also a 

decision attribute play? with nominal values yes or no. 
 

Table 2.1 A data table describing the influence of the weather  
conditions on the decision whether or not to play golf 

outlook temperature humidity windy play? 

sunny hot high false no 

sunny hot high true no 

overcast hot high false yes 

rain mild high false yes 

rain cold normal false yes 

rain cold normal true no 

overcast cold normal true yes 

sunny mild high false no 

sunny cold normal false yes 

rain mild normal false yes 

sunny mild normal true yes 

overcast mild high true yes 

overcast hot normal false yes 

rain mild high true no 
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Exemplary decision rules induced from this dataset could be the following: 

• if outlook=overcast then play=yes, 

• if outlook=sunny and humidity=normal then play=yes, 

• if outlook=sunny and humidity=high then play=yes, 

• if outlook=rain and windy=true then play=no,  

• if outlook=rain and windy=false then play=yes. 
 

Such rules could have a descriptive function helping to describe under what weather 

conditions people are willing to play golf, or a predictive function helping to forecast 

whether people will tend to play golf if certain weather conditions occur. 

 

2.1. Attractiveness measures for decision and 

association rules 

The number of rules induced from massive datasets usually is so large that it 

overwhelms the human comprehension capabilities, and, moreover, vast majority of 

them have very little value in practice. Thus, in order to increase the relevance and 

utility of selected rules and limit the size of the resulting rule set, quantitative measures, 

also known as attractiveness or interestingness measures, have been proposed and 

widely studied in literature [1], [43], [48], [86]. The variety of proposed measures 

comes as a result of looking for means of reflecting particular characteristics of rules or 

sets of rules. Most of the attractiveness measures are gain-type criteria, which means 

that the higher values they obtain, the greater is the utility, interestingness of an 

evaluated rule. However, in literature there are also measures which are considered as 

cost-type criteria, i.e. the smaller the value of the measure for a given rule, the more 

attractive the rule is.  

Below, there are definitions of the attractiveness measures that are analyzed in the 

thesis. 

Rule support 

One of the most popular measures used to identify frequently occurring rules in sets of 

items from information table S is the support [2]. Support of condition φ (analogously, 

ψ), denoted as sup(φ) (analogously, sup(ψ)), is equal to the number of objects in U 

satisfying φ (analogously, ψ). The support of rule φ→ψ (also simply referred to as 
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support), denoted as sup(φ→ψ), is the number of objects in U satisfying both φ and ψ. 

Thus, it corresponds to statistical significance [35]. The domain of the measure of 

support can cover any natural number. The greater the value of support for a given rule, 

the more desirable the rule is, thus, support is a gain-type criterion.  
 

Example: Let us consider two rules induced from Table 2.1: 

r1: if outlook=overcast then play=yes, 

r2: if outlook=sunny and humidity=normal then play=yes. 

On the basis of Table 2.1 we can calculate that sup(r1) = 4 as there are four objects 

supporting r1 (i.e. objects with “overcast” value of the attribute outlook and at the same 

time with “yes” value for the decision attribute). In case of the second rule: sup(r2) = 2. 

Thus, rule r1 is more interesting (attractive) than r2 in the sense of support. 
 

Some authors define support as a relative value with respect to the number of all 

objects in the dataset U. Then, the rule support can be interpreted as the percentage of 

objects satisfying both the premise and conclusion of the rule, in the dataset. 

Throughout this thesis we will only consider the former definition of support, however, 

using the latter would not influence the generality of the conducted analysis and the 

obtained results.  

Rule anti-support 

Anti-support of a rule φ→ψ (also simply referred to as anti-support), denoted as anti-

sup(φ→ψ), is equal to the number of objects in U having property φ but not having 

property ψ. Thus, anti–support is the number of counter-examples, i.e. objects for which 

the premise φ evaluates to true but whose conclusion is different than ψ. Note that anti-

support can also be regarded as sup(φ→¬ψ). 

Similarly to support, the anti-support measure can obtain any natural value. 

However, its optimal value is 0. Any value greater than zero means that the considered 

rule is not certain i.e. there are some counter-examples for that rule. The less counter-

examples we observe in the dataset, the better, and therefore anti-support is considered a 

cost-type criterion.  
 

Example: Let us consider two rules induced from Table 2.1: 

r1: if outlook=overcast then play=yes, 

r2: if humidity=high then play=no. 
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On the basis of Table 2.1 we can observe that there are no counter-examples for r1 

(there are no objects in Table 2.1 for which outlook = overcast and play ≠yes), and thus 

anti-sup(r1) = 0. Rule r2, however, is not pure as there are three counter-examples, 

which means that anti-sup(r2) = 3. Thus, form the view point of anti-support, r1 is more 

attractive than r2. 
 

Similarly to support, one can also define anti-support as a relative value with respect 

to the number of all objects in the dataset U. Then, the rule anti-support can be 

considered as the percentage of counter-examples, in the dataset. Again, without loss of 

generality, throughout this thesis we will only focus on the former definition of anti-

support.  

Confidence 

Among measures very commonly associated with rules induced from information table 

S, there is also confidence [2]. The confidence of a rule (also called certainty), denoted 

as conf(φ→ψ), is defined as follows: 

( ) ( )
( )φ

ψ→φ
=ψ→φ

sup

sup
conf . (2.2) 

Obviously, when considering rule φ→ψ, it is necessary to assume that the set of 

objects having property φ is not empty, i.e. sup(φ)≠0.  

Under the “closed world assumption” [72] (which is the presumption that what is 

not currently known to be true is false) adopted in rule induction, and because U is a 

finite set, it is legitimate to express probabilities Pr(φ) and Pr(ψ) in terms of frequencies 

sup(φ)/|U| and sup(ψ)/|U|, respectively. In consequence, the confidence measure 

conf(φ→ψ) can be regarded as conditional probability Pr(ψ|φ)=Pr(φ∧ψ)/Pr(φ) with 

which conclusion ψ evaluates to true, provided that premise φ evaluates to true. 

Moreover, let us point out the relationship between confidence and another 

attractiveness measure called coverage, denoted as cov(φ→ψ) and defined in the 

following manner: 

( ) ( )
( )ψ

φ→ψ
=ψ→φ

sup

sup
cov . (2.3) 
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Since sup(φ→ψ) = sup(ψ→φ) as they both express the number of objects satisfying 

both φ and ψ, it s clear that confidence of a rule φ→ψ can be regarded as coverage for 

rule ψ→φ.  

Confidence takes any value between 0 and 1. It is a gain-type criterion and thus, the 

most desirable value is 1, which reflects the situation in which all objects that satisfy the 

premise also support the whole rule (i.e. both the premise and conclusion). Let us note 

that confidence is equal to 1 only when the anti-support is 0.  
 

Example: Let us consider two rules induced from Table 2.1: 

r1: if outlook=overcast then play=yes, 

r2: if humidity=high then play=no. 

Since there are no counter-examples for rule r1 (anti-sup(r1) = 0), conf(r1) = 4/4=1. For 

rule r2, however, there are 3 counter-examples, which implies that confidence for this 

rules will not be 1. There are 7 objects supporting r2’s premise but only four of them 

support the whole rule (sup(r2) = 4). Thus, conf(r2) = 4/7. It is, therefore, clear that r1 is 

better than r2 with respect to confidence. 

Rule interest function 

The rule interest function RI introduced by Piatetsky-Shapiro in [67] is used to quantify 

the correlation between the premise and conclusion. It is defined by the following 

formula: 

( ) ( ) ( ) ( )
.

||U

 supsup
supRI

ψφ
−ψ→φ=ψ→φ  (2.4)  

For rule φ→ψ, when RI=0, then φ and ψ are statistically independent and thus, such 

a rule should be considered as uninteresting. When RI > 0 (RI < 0), then there is a 

positive (negative) correlation between φ and ψ [35]. Obviously, it is a gain-type 

criterion as greater values of RI reflect stronger trend towards positive correlation. 

After simple mathematical transformation, RI can also be expressed as: 

( ) ( ) ( ) ( ) ( )
.

||U

supsup-supsup
RI

ψ¬→φψ→φ¬ψ¬→φ¬ψ→φ
=ψ→φ  (2.5)  
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Now, one can also analyse RI’s sign (interpreted as positive or negative correlation) 

as verification of the sign of the above nominator, i.e. the sign of the difference: 

sup(φ→ψ)sup(¬φ→¬ψ) - sup(¬φ→ψ)sup(φ→¬ψ). 
 

Example: Let us consider two rules induced from Table 2.1: 

r1: if outlook=overcast then play=yes, 

r2: if outlook=sunny and humidity=normal then play=yes 

From Table 2.1 we obtain:  

RI(r1) = 4 - (4 * 9 / 14) = 1.42  and  RI(r2) = 2 - (2 * 9 / 14) = 0.71. 

These results show that in both of the considered rules the premises are positively 

correlated with the conclusions, however the correlation in r1 is stronger. 

Gain function 

The gain function of Fukuda et al. [25] is defined in the following manner: 

( ) ( ) ( )φΘ−ψ→φ=ψ→φ  supsupgain  

where Θ is a fractional constant between 0 and 1. 

(2.6)  

Note that, for a fixed value of Θ = sup(ψ)/|U|, the gain measure becomes identical to 

the presented above rule interest function RI. Moreover, if Θ is zero then, gain boils 

down to calculation of the support of the rule, and when Θ is equal to 1, gain will take 

negative values unless all objects satisfying φ also satisfy ψ (in that case gain will be 0). 

Thus, gain can take any integer value depending on what value Θ is set at. For a fixed 

Θ, greater values of gain are more desirable, thus it is a gain-type criterion. 
 

Example: We consider two rules induced from Table 2.1: 

r1: if outlook=overcast then play=yes, 

r2: if humidity=high then play=no. 

Let us assume Θ=0.5 (such value means that the value of sup(φ→ψ) is twice as 

important to us as the value of sup(φ)). Then, from Table 2.1 we obtain:  

gain(r1) = 4 – 0.5 * 4 = 2  and  gain(r2) = 4 – 0.5 * 7 = 0.5. 

In this example both of the considered rules had the same value of sup(φ→ψ), however, 

for r2 there were also some counter-examples. The existence of counter-examples 

causes the difference between the value of sup(φ→ψ) and sup(φ), which directly 

influences the value of the gain measure. In this example, for the same value of Θ, 



 17 

gain(r1) > gain(r2), thus we can conclude that r1 is a more interesting rule with respect 

to gain. 

Dependency factor 

The dependency factor of Pawlak [65] (also considered by Popper [69]) is defined in the 

following manner: 

( )

( )
( )

( )

( )
( )

( ) .

|U|

sup

sup

sup

|U|

sup

sup

sup

ψ
+

φ
ψ→φ

ψ
−

φ
ψ→φ

=ψ→φη  (2.7)  

The dependency factor expresses a degree of dependency, and can be seen as a 

counterpart of correlation coefficient used in statistics. When φ and ψ are independent 

on each other, then η(φ→ψ) = 0. If -1< η(φ→ψ) <0, then φ and ψ are negatively 

dependent (i.e. the occurrence of φ decreases the probability of ψ), and if 

0 < η(φ→ψ) < 1, then φ and ψ are positively dependent on each other (i.e. the 

occurrence of φ increases the probability of ψ). The dependency factor is a gain-type 

criterion. 
 

Example: Let us consider two rules induced from Table 2.1: 

r1: if outlook=overcast then play=yes, 

r2: if outlook=sunny and humidity=normal then play=yes. 

From Table 2.1 we obtain:  

( ) 217.0
23

5

14

9

4

4
14

9

4

4

1 ==
+

−
=η r   and  ( ) .217.0

23

5

14

9

2

2
14

9

2

2

2 ==
+

−
=η r  

 

The results show that, from the viewpoint of dependency factor, both of the considered 

rules are of equal attractiveness. It is due to the fact that they have the same conclusion 

and do not have any counter-examples. The positive value of η reflects positive 

correlation between the premises in r1 and r2, and the conclusion. 

Measures f and s 

Among the best-known and widely studied confirmation measures (see the definition in 

Section 2.2.2), there are measures denoted by f and s, defined as follows: 
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)|Pr()|Pr(

)|Pr()|Pr(
)(

ψ¬φ+ψφ
ψ¬φ−ψφ

=ψ→φf , (2.8)  

)|Pr()|Pr()( φ¬ψ−φψ=ψ→φs . (2.9)  

Taking into account that conditional probability )()|Pr( ∗→=∗ oo conf , measures f 

and s can be re-written as: 

)()(

)()(
)(

φ→ψ¬+φ→ψ
φ→ψ¬−φ→ψ

=ψ→φ
confconf

confconf
f , (2.10)  

)()()( ψ→φ¬−ψ→φ=ψ→φ confconfs . (2.11)  

 

Among authors advocating for measure f, there are Kemeny and Oppenheim [44], 

Good [27], Heckerman [33], Horvitz and Heckerman [37], Pearl [66], Schum [75] and 

Fitelson [22]. Measure s has been proposed by Christensen [11] and Joyce [40]. It is 

worth noting that confirmation measure f is monotone (and therefore gives the same 

ranking) with respect to the Bayes factor originally proposed by Jeffrey [39] and 

reconsidered as an interestingness measure by Kamber and Shingal [41]. The Bayes 

factor is defined by the following formula: 
( )

( )
.

ψ

ψ
)(

φ→¬
φ→

=ψ→φ
conf

conf
k  

Measures f and s are regarded as gain-type measures quantifying the degree to 

which the premise φ provides “support for or against” the conclusion ψ. Thus, they 

obtain positive values (precisely, <1, 0>) iff the premise φ confirms the conclusion ψ 

i.e. iff Pr(ψ|φ)≥Pr(ψ). Measures f and s take negative values (precisely, <-1, 0)) when 

the premise φ disconfirms the conclusion ψ, i.e. iff Pr(ψ|φ)<Pr(ψ).  In literature, these 

measures are found as a powerful tool for analyzing the confirmation of conclusion by a 

rule’s premise. 
 

Example: Let us consider two rules induced from Table 2.1: 

r1: if outlook=overcast then play=yes, 

r2: if humidity=high then play=yes. 

On the basis of Table 2.1 we can calculate that: 
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9

4

)1( =
+

−
=rf   and  41.0
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9
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−
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2/1
10

5

4

4
)1( =−=rs   and  .7/3

7

6

7

3
)2( −=−=rs  

For the first rule there are no counter-examples (the rule is certain) which means that the 

premise confirms the conclusion. This fact is reflected by positive values of measures f 

and s. In case of r2, one can observe in Table 2.1 even more counter-examples than 

examples actually supporting the rule (sup(φ→ψ)> sup(φ→ψ)). Thus, in r2 the premise 

disconfirms the conclusion, which is expresses by negative values of measures f and s. 

 

2.2. Desirable properties of attractiveness measures 

While choosing attractiveness measures for a certain application one also considers their 

properties (features), which express the user's expectations towards the behavior of 

measures in particular situations. Those expectations can be of various types, e.g. one 

can desire to use only such measures that have the property of not going further away 

(or even of coming closer to) from their optimal value for a certain induced rule when 

the number of objects supporting the pattern increases. 

Properties group the attractiveness measures according to similarities in their 

characteristics. Using the measures which satisfy the desirable properties one can avoid 

considering unimportant rules. Therefore, knowledge of which commonly used 

interestingness measures satisfy certain valuable properties, is of high practical and 

theoretical importance. 

 

2.2.1. Property M 

Greco, Pawlak and Słowiński in [28] analyzed measuring of attractiveness of rules. 

They proposed a valuable property M of monotonic dependency of an attractiveness 

measure on the number of objects satisfying or not the premise or the conclusion of a 

rule. The introduction of property M was motivated by a need of a formal requirement 

that would allow to escape the paradoxes of interpreting the rules as material 

implications instead of consequence relations. 
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Formally, an attractiveness measure  

( ) ( ) ( ) ( )[ ]ψ,ψ,ψ,ψ)( ¬→φ¬¬→φ→φ¬→φ=ψ→φ supsupsupsupFI  (2.12)  

being a gain-type criterion (i.e. the higher the value of the measure, the better) has the 

property M iff it is a function: 

• non-decreasing with respect to sup(φ→ψ), and  

• non-increasing with respect to sup(¬φ→ψ), and 

• non-increasing with respect to sup(φ→¬ψ), and 

• non-decreasing with respect sup(¬φ→¬ψ). 
 

Respectively, an attractiveness measure  

( ) ( ) ( ) ( )[ ]ψ,ψ,ψ,ψ)( ¬→φ¬¬→φ→φ¬→φ=ψ→φ supsupsupsupFI  (2.13)  

being a cost-type criterion (i.e. the lower the value of the measure, the better) has the 

property M iff it is a function: 

• non-increasing with respect to sup(φ→ψ), and  

• non-decreasing with respect to sup(¬φ→ψ), and 

• non-decreasing with respect to sup(φ→¬ψ), and 

• non-increasing with respect sup(¬φ→¬ψ). 
 

Most of the considered attractiveness measures are gain-type criteria and therefore, 

below we will present the interpretation of property M only for this type of measures 

(for cost-type criteria, the considerations are analogous). 

The property M with respect to sup(φ→ψ) (or, analogously, with respect to 

sup(¬φ→¬ψ)) means that any object in the dataset for which φ and ψ (or, analogously, 

neither φ nor ψ) hold together, increases (or at least does not decrease) the attractiveness 

of the rule φ→ψ. On the other hand, the property M with respect to sup(¬φ→ψ) (or, 

analogously, with respect to sup(φ→¬ψ)) means that any object for which φ does not 

hold and ψ holds (or, analogously, φ holds and ψ does not hold), decreases (or at least 

does not increase) the attractiveness of the rule φ→ψ. 

Let us use the following example mentioned by Hempel [34] to show the 

interpretation of the property. Consider a rule φ→ψ: if x is a raven then x is black. In 

this case φ stands for being a raven and ψ stands for being black. If an attractiveness 

measure I(φ→ψ) (being a gain-type criterion) possesses the property M then: 
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• the more black ravens or non-black non-ravens there will be in the dataset, the 

more attractive the rule will become, and thus I(φ→ψ) will obtain greater value, 

• the more black non-ravens or non-black ravens in the dataset, the less attractive 

the rule will become and thus, the value of I(φ→ψ) will become smaller. 
 

Property M makes use of elementary parameters of the considered dataset (numbers of 

objects satisfying some properties) and therefore is an easy and intuitive criterion 

helping to choose an appropriate attractiveness measure for a certain application.  

Greco, Pawlak and Słowiński [28] have considered attractiveness measures with 

respect to property M. The results they obtained show that measures f and l [44], [27], 

[33], [37], as well as s [11], [40] possess the property M, while measures d [17], [18], 

[39], [73], r [36], [42], [49], [74], [68], b [10] do not. 

 

2.2.2. Property of Bayesian confirmation 

Formally, an attractiveness measure c(φ→ψ) has the property of Bayesian confirmation 

(or simply confirmation) iff it satisfies the following conditions: 









ψ<φψ<

ψ=φψ=

ψ>φψ>

ψ→φ

).Pr)|Pr0

),Pr)|Pr0

),Pr)|Pr0

)(

(( if  

(( if  

(( if  

c  (2.14)  

Since the conditional probability Pr(ψ|φ)=Pr(φ∧ψ)/Pr(φ) and can be regarded as the 

confidence measure conf(φ→ψ), the above definition can be re–written as: 









ψ<ψ→φ<

ψ=ψ→φ=

ψ>ψ→φ>

ψ→φ

./))(0

,/))(0

,/))(0

)(

 U(supconf if  

 U(supconf if  

 U(supconf if  

c  (2.15)  

Measures that possess the property of confirmation are referred to as confirmation 

measures or measures of confirmation. According to Fitelson [22], measures of 

confirmation quantify the degree to which a premise φ provides “support for or against” 

a conclusion ψ. When their values are greater than zero, it means that the conclusion is 

satisfied more frequently when the premise is satisfied, rather than generally in the 

whole dataset. Measures of confirmation equal to zero, reflect that fulfilment of the 

premise imposes no influence on fulfilment of the conclusion. Analogously, when the 
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value of confirmation measure is smaller than zero, it means that the premise only 

disconfirms the conclusion as the conclusion is satisfied less frequently when the 

premise is satisfied, rather than generally in the whole dataset. Thus, for a given rule 

φ→ψ, attractiveness measures with the property of confirmation express the credibility 

of the following proposition: ψ is satisfied more frequently when φ is satisfied, rather 

than when φ is not satisfied. This interpretation stresses the very valuable semantics of 

the property of confirmation. By using the attractiveness measures that possess this 

property one can filter out rules which are misleading and disconfirm the user, and this 

way, limit the set of induced rules only to those that are meaningful. 

Among commonly used and discussed Bayesian confirmation measures there are the 

following measures: f and l [44], [27], [33], [37], [22], s [11], [40] d [17], [18], [39], 

[73], r [36], [42], [49], [74], [68], and b [10]. 

 

2.2.3. Property of hypothesis symmetry 

Many authors have also considered properties of symmetry of attractiveness measures. 

Eells and Fitelson have analyzed in [17] a set of best-known confirmation measures 

from the viewpoint of the following four properties of symmetry introduced by Carnap 

in [10]: 

• evidence symmetry (ES): I(φ→ψ) = −I(¬φ→ψ) 

• commutativity symmetry (CS): I(φ→ψ) = I(ψ→φ) 

• hypothesis symmetry (HS): I(φ→ψ) = −I(φ→¬ψ) 

• total symmetry (TS): I(φ→ψ) = −I(¬φ→¬ψ) 
 

Eells and Fitelson remark in [17] that given CS, ES and HS are equivalent i.e. provided 

that I(φ→ψ) = I(ψ→φ), −I(¬φ→ψ) = −I(φ→¬ψ). Moreover, they show that that TS 

follows from the conjunction of ES and HS. 

They also conclude that, in fact, only HS is a desirable property, while ES, CS and 

TS are not. The meaning behind the hypothesis symmetry is that the influence of the 

premise on the conclusion part of a rule should be of the opposite sign, as the influence 

of the premise on a negated conclusion. 

The arguments against ES, CS and TS can be presented by an exemplary situation of 

randomly drawing a card from a standard deck ([17], [28]). Let φ stand for that the 

drawn card is the seven of spades, and let ψ be the hypothesis that the card is black. 
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Despite the strong confirmation of ψ by φ, the negated premise is useless to the 

conclusion as the evidence the card is not the seven of spades (¬φ) is practically of no 

value to the conclusion the card is black (ψ). Thus, the ES is not valid. Continuing this 

example one can observe that the evidence that the card is black (ψ) does not confirm 

the hypothesis that the card is the seven of spades (φ) to the same extent as the evidence 

that the card is the seven of spades (φ), confirms the hypothesis that the card is black 

(ψ). This means that CS is not valid. Analogously, arguments against TS can be shown. 

The above mentioned example is also an argument for the hypothesis symmetry as, 

obviously, the evidence that the card is the seven of spades (φ) is negatively conclusive 

for the hypothesis that the card is not black (¬ψ). 

Having considered popular confirmation measures with respect to symmetry 

properties, Fitelson [22] concluded that measures f and l [44], [27], [33], [37], as well as 

s [11], [40] and d [17], [18], [39], [73], satisfy the property of hypothesis symmetry. 
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3. Analyses of properties of particular attractiveness 

measures 

Analyses verifying whether popular attractiveness measures possess valuable properties 

widen our understanding of those measures and of their applicability. Moreover, 

through such property analysis one can also learn about relationships between different 

measures. The obtained results are useful for practical applications because they show 

which interestingness measures are relevant for meaningful rule evaluation. Using the 

measures which satisfy the desirable properties one can avoid analysing unimportant 

rules. 

Many authors have considered different attractiveness measures with respect to 

several properties ([17], [22], [28]). However, analysis of property M, property of 

confirmation and property of hypothesis symmetry for many popular attractiveness 

measures still remains an open problem. In the following section we shall provide 

answers for some of those open questions. 

For the sake of the clarity of presentation, the following notation shall be used 

throughout the next sections:  

.||

),(),(),(),(

),(),(),(),(

Udcba

  supdc  supdb  supba  supca

supd  supc  supb  supa

=+++

ψ¬=+φ¬=+ψ=+φ=+

ψ¬→φ¬=ψ¬→φ=ψ→φ¬=ψ→φ=
 (3.1)  

We also assume that set U is not empty, so that at least one of a, b, c, d is strictly 

positive.  

 

3.1. Analysis of measures with respect to property M 

In order to prove that a gain-type measure I(φ→ψ) has the property M we need to show 

that it is non-decreasing with respect to a and d, and non-increasing with respect to b 

and c. It means that all of the following conditions must be satisfied:  

1. the increase of a does not result in decrease of the measure, 

2. the increase of b does not result in increase of the measure, 

3. the increase of c does not result in increase of the measure, 

4. the increase of d does not result in decrease of the measure. 

(3.2)  
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In case of a cost-type measures J(φ→ψ), we will say that it possesses the property 

M iff the following conditions will be fulfilled: 

1. the increase of a does not result in increase of the measure, 

2. the increase of b does not result in decrease of the measure, 

3. the increase of c does not result in decrease of the measure, 

4. the increase of d does not result in increase of the measure. 

(3.3)  

Rule support 

According to the notation in (3.1) rule support sup(φ→ψ) is a. Thus, obviously, rule 

support, being a gain-type criterion, increases with a and does not change (i.e. neither 

decreases nor increases) with b, c, or d. Therefore, it is legitimate to conclude that the 

measure of rule support has the property M.  

Rule anti-support 

Anti-support is a cost-type criterion and therefore the conditions (3.3) need to be 

verified. Since anti-support can be regarded as the number of counter examples,  

anti-sup(φ→ψ) = c. Thus, obviously, anti-sup(φ→ψ) increases with c and does not does 

not change with a, b, or d. Therefore, it can be concluded that anti-sup(φ→ψ) has the 

property M. 

Confidence 

Now, let us consider confidence with respect to the property M. Confidence is a gain-

type criterion dependent only on sup(φ→ψ) and sup(φ), therefore the analysis of 

conf(φ→ψ) with respect to the property M can be practically narrowed down to analysis 

of its dependence on the number of objects supporting both the premise and conclusion, 

and on the number of objects satisfying the premise but not the conclusion.  

Theorem 3.1  
 

Confidence measure has the property M. 
 

Proof: Let us consider confidence expressed in the notation (3.1): 

( ) ( )
( ) ca

a

sup

sup
conf

+
=

φ
ψ→φ

=ψ→φ . (3.4) 
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As conf(φ→ψ) does not depend on b nor d, it is clear that conditions (3.2).2 and (3.2).4 

are satisfied. However, conditions (3.2).1 and (3.2).3 require verification: 
 

Condition (3.2).1: 

Let us assume that ∆>0 is a number by which we shall increase a. Condition (3.2).1 will 

be satisfied if and only if  

ca

a
conf

ca

a
conf '

+∆+
∆+

=→φ≤
+

=→φ
)(

)(
ψ)(ψ)( . 

We can easily calculate that 

⇔
+∆+

∆+
≤

+ ca

a

ca

a

)(

)(
⇔∆++≤∆++ ))(()( acacaa  

⇔∆+∆++≤∆++ caacaaaca 22 .0≥∆c  

Since both c and ∆ are numbers greater than 0, the last inequality is always fulfilled, and 

therefore condition (3.2).1 is satisfied.  
 

Condition (3.2).3: 

Let us assume that ∆>0 is a number by which we shall increase c. Condition (3.2).3 will 

be satisfied if and only if  

)(
ψ)(ψ)(

∆++
=→φ≥

+
=→φ

ca

a
conf

ca

a
conf ' . 

We can observe that 

⇔
∆++

≥
+ )(a c

a

ca

a
⇔+≥∆++ )()( caacaa  

⇔+≥∆++ acaaaca 22 .0≥∆a  

Since both a and ∆ are numbers greater than 0, the last inequality is always fulfilled, 

and therefore condition (3.2).3 is satisfied. 

Since all four conditions are satisfied, the hypothesis that confidence has the property M 

is true.  

Rule interest function 

Let us now focus on the rules interest function and analyze it with respect to the 

property M. Such analysis will require verification of RI’s dependency on a, b, c and d, 

i.e. all (3.2) conditions.  
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Theorem 3.2  
 

Rule interest function has the property M. [29] 
 

Proof: Let us observe that according to notation (3.1) measure RI can be rewritten as: 

( )( )
dcba

caba
aRI

+++
++

−=→φ ψ)( . (3.5) 

After some simple algebraic transformation, we obtain  

dcba

bcad
RI

+++
−

=→φ ψ)(  (3.6) 

Taking into account condition (3.2).1, to prove the monotonicity of RI with respect to a 

we have to show that if a increases by ∆>0, then RI does not decrease, i.e.  

( )
dcba

bcad

dcba

bcda

+++
−

−
∆++++

−∆+
 ≥ 0. 

After few simple algebraic passages, and remembering that a, b, c, d are non-negative, 

we get 

( ) ( )
( )( )

00 ≥>
+++++++

+++
=

+++
−

−
++++

−+
∆dcbadcba

bc∆∆dcbd

dcba

bcad

∆dcba

bcd∆a
 

such that we can conclude that RI is non-decreasing (more precisely, strictly increasing) 

with respect to a. Analogous proofs hold for the monotonicity of RI with respect to b, c 

and d. ⁪ 

Gain function 

We shall now consider gain function with respect to property M. Similarly to 

confidence, the gain function is a gain-type criterion that only depends on sup(φ→ψ) 

and sup(φ). Thus, analysis of gain function with respect to the property M boils down to 

analysis of its dependence on a and c.  

Theorem 3.3  
 

Gain function has the property M. 
 

Proof: Let us consider gain function expressed in notation (3.1): 

)(ψ)( ca-again +Θ=→φ . (3.7) 

where Θ is a fractional constant between 0 and 1. 
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As gain(φ→ψ) does not depend on b nor d, it is clear that the change of b or d does 

not result in any change of gain (φ→ψ). Thus, we only have to verify if conditions 

(3.2).1 and (3.2).3 hold. 
 

Condition (3.2).1: 

Let us assume that ∆>0 is a number by which a increases. The condition will be 

satisfied if and only if  

)()(ψ)()(ψ)( ca-againca-again ' +∆+Θ∆+=→φ≤+Θ=→φ . 

Let us observe that 

⇔+∆+Θ∆+≤+Θ )()()( ca-aca-a ⇔Θ∆−ΘΘ∆+≤ΘΘ c- a-a c- a-a  

0)1(0 ≥Θ−∆⇔≥Θ∆−∆ . 

The last inequality is always satisfied as ∆>0 and (1−Θ)≥0 because Θ is a fractional 

constant between 0 and 1. Thus, condition (3.2).1 is satisfied.  
 

Condition (3.2).3: 

Let us assume that ∆>0 is a number by which c increases. Condition (3.2).3 will be 

satisfied if and only if  

)(ψ)()(ψ)( ca-againca-again ' +∆+Θ=→φ≥+Θ=→φ . 

Let us observe that: 

⇔+∆+Θ≥+Θ )()( ca-aca-a ⇔Θ∆−ΘΘ≥ΘΘ  c- a-a c- a-a 0≥Θ∆ . 

The last inequality is always satisfied as ∆>0 and Θ≥0. Thus, condition (3.2).3 is 

satisfied.  

Since all four conditions are satisfied, the gain function has the property M. ⁪ 

Dependency factor 

Let us, now analyse dependency factor with respect to the property M. The measure will 

satisfy the property only when all conditions (3.2) are fulfilled.  

Theorem 3.4  
 

Dependency factor η(φ→ψ) does not have the property M. [29] 
 

Proof: Let us consider the dependency factor rewritten in notation (3.1): 
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( ) .

b dca

ba

ca

a
dcba

ba

ca

a

+++
+

+
+

+++
+

−
+=ψ→φη  (3.8) 

It will be shown by the following counterexample that η(φ→ψ) does not satisfy the 

condition that the increase of a results in non-decrease of η(φ→ψ), thus this measure 

does not have the property M. 

Let us consider case α, in which a=7, b=2, c=3, d=3, and case α', in which a 

increases to 8 and b, c, d remain unchanged. The dependency factor does not have the 

property M as such increase of a results in the decrease of the measure: 

ψ)('0756.00769.0ψ)( →φη=>=→φη . ⁪ 

Measures f and s 

Greco et al. have considered in [28] different measures from the perspective of property 

M. They have proved that measures f and s satisfy this property. 

 

3.2. Analysis of measures with respect to property  

of confirmation 

To prove that a measure has the property of confirmation the following conditions need 

to be verified:  

1. the measure takes positive values iff conf(φ→ψ)>sup(ψ)/|U|  

2. the measure value = 0 iff conf(φ→ψ)=sup(ψ)/|U|                             

3. the measure takes negative values iff conf(φ→ψ)<sup(ψ)/|U| 

(3.9)  

If all those conditions are satisfied, then a measure is said to have the property of 

confirmation. 

Rule support, anti-support and confidence 

The domains of the attractiveness measures of support, anti-support and confidence are 

restricted to non-negative values only. Therefore, none of these measures can satisfy the 

last condition of (3.9). Hence, these simple measures do not have the property of 

confirmation. 
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Rule interest function 

Let us consider the rule interest function with respect to the property of confirmation. 

Theorem 3.5  
 

Rule interest function has the property of confirmation. 
 

Proof: Let us consider rule interest function given by formula (2.4). Let us observe that 

according to condition (3.9).1:  

( ) ( ) ( ) ( ) ( ) ( )
.

||
0

|| U

sup
conf

U

 supsup
supRI

ψ
>ψ→φ⇔>

ψφ
−ψ→φ=ψ→φ  (3.10)

Since  

( ) ( )
( )φ

ψ→φ
=ψ→φ

sup

sup
conf ,  

we can observe that: 

( ) ( ) ( ) ( ) ( )
0

||||
>

ψφ
−ψ→φ⇔

ψ
>ψ→φ

U

supsup
sup

U

sup
conf  

which means that equivalence (3.10) is always true. Analogous proofs hold for 

conditions (3.9).2 and (3.9).3. ⁪ 

Gain function 

We will now analyse the gain function with respect to the property of confirmation. 

Theorem 3.6  
 

Gain function has the property of confirmation iff Θ = sup(ψ)/|U|. 
 

Proof: Let us consider gain function given by formula (2.6). Let us first consider 

condition (3.9).2, according to which:  

( ) ( ) ( ) ( ) ( )
.

||
0

U

sup
confsupsupgain

ψ
=ψ→φ⇔=φΘ−ψ→φ=ψ→φ  (3.11)

Since  

( ) ( )
( )φ

ψ→φ
=ψ→φ

sup

sup
conf ,  

we can observe that: 
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( ) ( ) ( ) ( ) ( )
|||| U

supsup
sup

U

sup
conf

ψφ
=ψ→φ⇔

ψ
=ψ→φ  

which means that equivalence (3.11) can be transformed in the following manner: 

( ) ( ) ( ) ( ) .0
||

0 =φΘ−
ψφ

⇔=ψ→φ sup
U

supsup
gain  (3.12)

It is easy to observe that equivalence (3.12) holds only for Θ = sup(ψ)/|U|. In that 

situation gain function actually boils down to rule interest function, which was proved 

to be a confirmation measure. Hence, gain function has the property of confirmation if 

and only if Θ = sup(ψ)/|U|. ⁪ 

Dependency factor 

Let us now focus on the dependency factor and analyze it with respect to the property of 

confirmation. 

Theorem 3.7  
 

Dependency factor has the property of confirmation. 

 

Proof: Let us consider dependency factor given by formula (2.7). Let us observe that 

according to condition (3.9).1: 
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Since  
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φ
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it is clear that 
( )

( )
( )

0
||

>
ψ

−
φ

ψ→φ
U

sup

sup

sup
.  

Thus, both the nominator and the denominator of the dependency factor are positive and 

we can conclude that equivalence (3.13) is always true. Analogous proofs hold for 

conditions (3.9).2 and (3.9).3. ⁪ 
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Measures f and s 

Among well recognized and established confirmation measures and important role is 

played by measures f and s. They have been considered as measures with property of 

confirmation since their introduction in literature and are widely discussed and analyzed 

by many authors ([9], [22], [47]). 

 

3.3. Analysis of measures with respect to property of 

hypothesis symmetry 

In order to prove that a certain measure has the property of hypothesis symmetry it must 

be checked if its values for rules φ→ψ and φ→¬ψ are the same but of opposite sign. 

Rule support, anti-support and confidence 

Similarly as in confirmation analysis, in the analysis of property of hypothesis 

symmetry we sustain the limits introduced by the non-negative domains of support, 

anti-support and confidence. Non of these attractiveness measures has the property of 

hypothesis symmetry as their values are never negative. E.g. sup(φ→ψ)≠-sup(φ→¬ψ). 

Rule interest function 

Let us now analyse if the rules interest function satisfies the property of hypothesis 

symmetry. 

Theorem 3.8  
 

Rule interest function has the property of hypothesis symmetry. [29] 
 

Proof: Let us consider RI expressed as in (3.5): 

dcba

baca
aRI

+++

++
−=→φ

))((
ψ)( . 

For a negated conclusion RI is defined as: 

dcba

dcca
cRI

+++

++
−=¬→φ

))((
ψ)( . 

The hypothesis symmetry will be satisfied by RI iff: 







+++
++

−−=
+++
++

−
dcba
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c

dcba

baca
a

))(())((
. 



 33 

Through simple mathematical transformation we obtain that: 

dcba

bcad

dcba

dcca
c

dcba

baca
a

+++
−

=
+++
++

+−=
+++
++

−
))(())((

 

and, therefore, we can conclude that RI has the property of hypothesis symmetry. ⁪ 

Gain function 

We shall now consider the gain function with respect to the property of hypothesis 

symmetry.  

Theorem 3.9  
 

Gain function has the property of hypothesis symmetry iff Θ=1/2. [29] 
 

Proof: Let us consider gain function expressed as in (3.7): 

)(ψ)( ca-again +Θ=→φ . 

For a negated conclusion gain function is defined as: 

)(ψ)( ca-cgain +Θ=¬→φ . 

The hypothesis symmetry will be satisfied by this measure iff: 

)]([)( ca-cca-a +Θ−=+Θ . 

Through simple mathematical transformation we obtain that the above equality is 

satisfied only when Θ=1/2. ⁪ 

Dependency factor 

Let us now perform the analysis of dependency factor with respect to the property of 

hypothesis symmetry. 

Theorem 3.10  
 

The dependency factor η does not have the property of hypothesis symmetry. [29] 
 

Proof: Let us consider dependency factor expressed as in (3.8): 

dcba

ba

ca

a
dcba

ba

ca

a

+++
+

+
+

+++
+

−
+=→φη ψ)( . 

For a negated conclusion it is defined as: 
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dcba

dc

ca

c
dcba

dc

ca

c

+++
+

+
+

+++
+

−
+=¬→φη ψ)( . 

To prove that the dependency factor does not satisfy the hypothesis symmetry let us set 

a = b = c = 10 and d = 20. We can easily verify that 

ψ)(09.011.0ψ)( ¬→φη=≠=→φη . ⁪ 

Measures f and s 

Eells et al. have considered in [17] several confirmation measures from the perspective 

of properties of symmetry. They have proved that measures f and s satisfy the property 

of hypothesis symmetry. 
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4. Multicriteria attractiveness evaluation of rules 

Application of a measure that quantifies the interestingness of a rule induced from an 

information table S creates a complete preorder (see formal definition in Section 4.1.1) 

on the set of rules. This way the rules are ranked and it is possible to filter out the 

unwanted ones by setting a threshold on the value of the attractiveness measure.  

However, a single attractiveness measure is often not sufficient to evaluate the 

utility and attractiveness of rules. Thus, multicriteria attractiveness evaluation of rules 

has become very popular [3], [9], [23], [32]. In this approach, the induced rules are 

evaluated with respect to many attractiveness measures (criteria) at once and as a result 

a partial preorder (see formal definition in Section 4.1.2) on the set of rules is obtained. 

The implication of many complete preorders by partial preorders is a very interesting 

problem both form theoretical and practical point of view, however not many authors 

have tackled it. The next sections will be devoted to discussion about the relationships 

between different complete and partial preorders and the comparison of sets of rules 

resulting from different evaluation approaches.  

 

4.1. Definitions of orders and Pareto-optimal set 

4.1.1. Complete preorder on set of rules with respect to a single 

attractiveness measure 

Let us denote by v any attractiveness measure that quantifies the interestingness of a 

rule induced from an information table S. Application of q to a set of induced rules 

creates a complete preorder, denoted as pv, on that set. Recall that a complete preorder 

on a set X is any binary relation R on X that is strongly complete, (i.e. for all x,y∈X, xRy 

or yRx) and transitive (i.e. for all x,y,z∈X, xRy and yRz imply xRz). In simple words, if 

the semantics of xRy is “x is at most as good as y”, then a complete preorder permits to 

order the elements of X from the best to the worst, with possible ex-aequo but without 

any incomparability. In other words, considering an attractiveness measure v that 

induces a complete preorder on a set of rules X and two rules r1, r2∈X, rule r1 is 

preferred to rule r2 with respect to measure v if r1 fq r2 and, moreover, rule r1 is 

indifferent to rule r2 if r1 ∼q r2. 
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4.1.2. Partial preorder on rules with respect to two 

attractiveness measures 

Let us denote by pqt a partial preorder given by a dominance relation on a set X of rules 

in terms of any two different attractiveness measures q and t, i.e. for all r1, r2∈X r1pqt r2 

if r1pq r2 and r1pt r2. Recall that a partial preorder on a set X is any binary relation R on 

X that is reflexive (i.e. for all x∈X, xRx) and transitive. In simple words, if the semantics 

of xRy is “x is at most as good as y”, then a complete preorder permits to order the 

elements of X from the best to the worst, with possible ex–aequo (i.e. cases of x,y∈X 

such that  xRy and yRx) and with possible incomparability (i.e. cases of x,y∈X such that 

not xRy and not yRx). The partial preorder pqt can be decomposed into its asymmetric 

part pqt and its symmetric part ∼qt in the following manner:  

given a set of rules X and two rules r1, r2∈X,  r1 pqt r2 if and only if 

),()()()(

or,)()()()(

2121

2121

rtrtrqrq

 rtrtrqrq

≤∧<

<∧≤
 (4.1) 

moreover r1 ∼qt r2  if and only if 

).()()()( 2121 rtrtrqrq =∧=  (4.2) 

 

4.1.3. Pareto-optimal border 

If for a rule r∈X there does not exist any rule r'∈X, such that r pqt r' then r is said to be 

non–dominated (i.e. Pareto–optimal) with respect to attractiveness measures q and t.  

A set of all non–dominated rules with respect to q and t forms a Pareto-optimal border 

(Pareto-optimal set) of the set of rules in the q–t evaluation space and is referred to as a 

q–t Pareto–optimal border. 
 

4.1.4. Monotonicity of a function in its argument 

Let x be an element of a set of rules X and let g(x) be a real function associated with this 

set, such that g: X→R. Assuming an ordering relation f in X, function g is said to be 

monotone (resp. anti–monotone) in x, if for any x, y∈X, relation x f y implies that 

g(x) ≥ g(y) (resp. g(x) ≤ g(y)). 
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4.1.5. Implication of a complete preorder by a partial preorder 

A complete preorder pv is implied by a partial preorder  pqt  if and only if given a set of 

rules X and any two rules r1, r2∈X,  r1 pqt r2: 

.2~12~1

2121

r  rr r

and  ,rrrr

v qt 

vqt

⇒

⇒ pp

 (4.3) 

Moreover, Bayardo and Agrawal have shown in [3] that the following conditions are 

sufficient for proving that a complete preorder pv defined over a rule value function g(r) 

is implied by a partial preorder pqt: 

• g(r) is monotone in q over rules with the same value of t, and 

• g(r) is monotone in t over rules with the same value of q. 
(4.4) 

 

4.2. Support—confidence evaluation space 

Bayardo and Agrawal in [3] have investigated the concept of rule evaluation with 

respect to two popular attractiveness measures being rule support and confidence. They 

have considered rules with the same conclusion and evaluated them in such two 

dimensional space. 

It has been proved in [3] that, for a set of rules with the same conclusion, if a 

complete preorder pv is implied by a particular support–confidence partial preorder psc, 

then rules optimal with respect to pv can be found in the set of non-dominated rules with 

respect to rule support and confidence.  

Adjusting (4.4), the following conditions are sufficient for proving that a complete 

preorder pv defined over a rule value function g(r) is implied by the support–confidence 

partial preorder psc: 

• g(r) is monotone in rule support over rules with the same  

value of confidence, and                                                    

• g(r) is monotone in confidence over rules with the same  

value of rule support.                                                        

(4.5) 

 

Bayardo and Agrawal have shown that the support–confidence Pareto-optimal 

border (i.e. the set of non-dominated rules with respect to support and confidence) 

includes rules optimal according to several different attractiveness measures, such as 
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gain, Laplace [12], lift [38], conviction [6], rule interest function, and others. This 

practically useful result allows to identify the most interesting rules according to those 

measures by solving an optimized rule mining problem with respect to rule support and 

confidence only. 

Figure 4.1 Support–confidence Pareto-optimal border. 

 

Moreover, since the conditions (4.5) are general enough, the analysis of relationship 

of other attractiveness measures with support and confidence can be conducted. Due to 

the utility of the support–confidence Pareto-optimal border, the problem of proving 

which other complete preorders can be implied by psc remains an important issue both 

from theoretical and practical point of view. 

Monotonic relationship of measure f with support and confidence 

Due to valuable properties of measure f (property M, property of confirmation and 

hypothesis symmetry) our analysis aimed to verify whether (among rules with a fixed 

hypothesis) rules that are best according to measure f are included in the set of the non-

dominated rules with respect to support and confidence. To fulfill the above objective, it 

has been checked whether conditions (4.5) hold when the confirmation measure f is the 

g(r) rule value function. 

Theorem 4.1  
 

Measure f is independent of rule support, and, therefore, monotone in rule support, 
when the value of confidence is held fixed. [7] 

 

Proof. Let us consider measure f transformed such that, for given U and ψ, it only 

depends on confidence of rule φ→ψ and support of ψ: 
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)()())(2(

)()(
)(

ψ+ψ→φψ−

ψ−ψ→φ
=ψ→φ

supconfsupU

supconfU
f . (4.6) 

As we consider rules with a fixed conclusion ψ, the values of |U| and sup(ψ) are 

constant. Thus, for a fixed confidence, we have a constant value of measure f, no matter 

what the rule support is. Hence, confirmation measure f is monotone in rule support 

when the confidence is held constant. ⁪ 
 

Theorem 4.2  
 

Measure f is increasing in confidence, and, therefore, monotone in confidence. [7] 
 

Proof. Again, let us consider measure f given as in (4.6). For the clarity of presentation, 

let us express the above formula as a function of confidence, still regarding |U| and 

sup(ψ) as constant values greater than 0: 

mnx

mkx
y

+

−
= ,  

where y = f(φ→ψ),  x = conf(φ→ψ),  k = |U|,  m = sup(ψ),  n = |U|−2sup(ψ). 

It is easy to observe that k = |U| > 0, and 0 < m ≤ |U|. 

In order to verify the monotonicity of f in confidence, let us differentiate y with respect 

to x. We obtain: 
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)x(
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∂
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As m > 0, and k+n = |U|+|U|−2sup(ψ) = 2|U|−2sup(ψ) > 0 for |U| ≥ sup(ψ), the whole 

derivative is always not smaller than 0. Therefore, confirmation measure f is monotone 

in confidence. ⁪ 
 

Thus, both of Bayardo and Agrawal’s sufficient conditions for proving that a total 

order ≤v defined over a confirmation measure f is implied by partial order ≤sc are held. 

This means that, for a class of rules with a fixed conclusion, rules optimal according to 

measure f will be found in the set of rules that are best with respect to both rule support 

and confidence.  

This result does not refer, however, to utility of scales in which f(φ→ψ), having the 

property of confirmation, and conf(φ→ψ), not having the property of confirmation, are 

expressed. While the confidence is the truth value of the knowledge pattern “if φ, then 

ψ”, measure f(φ→ψ) says to what extend ψ is satisfied more frequently when φ is 
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satisfied rather than when φ is not satisfied. In other words, f says what is the “value of 

information” that φ adds to the credibility of ψ. For further discussion about weakness 

of confidence scale see [8], [67]. 

The difference of semantics and utility of conf(φ→ψ) on one hand, and f(φ→ψ) or 

s(φ→ψ) as representatives of measures with the confirmation property on the other 

hand, can be shown on the following example. Consider the possible result of rolling a 

die: 1, 2, 3, 4, 5, 6, and let the conclusion ψ = "the result is divisible by 2". Given two 

different premises: φ1 = "the result is a number from a set {1, 2, 3}", φ2 = "the result is a 

number from a set {2, 3, 4}", we get, respectively: conf(φ1→ψ) = 1/3, f(φ1→ψ) = -1/3, 

s(φ1→ψ) = -1/3, conf(φ2→ψ) = 2/3, f(φ2→ψ) = 1/3, s(φ2→ψ) = 1/3. This example, of 

course, acknowledges the monotone link between confirmation measure f and 

confidence. However, it also clearly shows that the values of confirmation measures 

have a more useful interpretation than confidence. In particular, in the case of rule 

φ1→ψ, the premise actually disconfirms the conclusion as it reduces the probability of 

conclusion ψ from 1/2 = sup(ψ) to 1/3 = conf(φ1→ψ). This fact is expressed by a 

negative value of confirmation measure f and s , but cannot be concluded by observing 

only the value of confidence. 

Finally, as semantics of f(φ→ψ) is more useful than that of conf(φ→ψ), and as both 

of these measures are monotonically linked, it is reasonable to propose a new rule 

evaluation space in which the search for the most interesting rules is carried out taking 

into account confirmation measure f(φ→ψ) and rule support [79]. 
 

4.3. Support–f evaluation space 

Combining of rule support and measure f in one rule evaluation space is valuable as f is 

independent of rule support in the sense presented in Theorem 4.1, and rules that have 

high values of measure f are often characterized by small values of the rule support. 

Proposition of a new evaluation space, naturally, brings a question of comparison 

with the support–confidence evaluation space. To fulfil that objective a thorough 

analysis of monotonicity of confidence in support and measure f has been carried out 

(for details see [8]). It has been shown that rules optimal in confidence lie on the Pareto-

optimal border with respect to support and measure f. Moreover, it has been proved that 

all attractiveness measures for which the optimal rules are found on the support–

confidence Pareto-optimal border also preserve that relationship with respect to 
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support -f Pareto-optimal border. Thus, it is legitimate to conclude that the set of rules 

forming the support–confidence Pareto-optimal border is exactly the same as the set of 

rules constituting the support–f Pareto-optimal border [8], [9]. An illustration of this 

result on a real life dataset census, for conclusion workclass='Private', is presented on 

Figure 4.2 (for more details on the dataset refer to Section 6.2.1).  

Those two Pareto sets can, in fact, be regarded as monotone transformations of each 

other. Hence, substitution of confidence by f does not diminish the set of interestingness 

measures for which optimal rules reside on the Pareto-optimal border. However, as 

semantics of measure f is more useful than of confidence, we are strongly in favor of 

mining the Pareto-optimal border with respect to rule support and confirmation f and not 

rule support and confidence as it was proposed in [3]. 

The advantage of the support–f evaluation space comes from the fact that, contrary 

to confidence, measure f has the property of confirmation and thus has the means to 

filter out the disconfirming rules (marked on Figure 4.2 by red circles; the blue triangles 

represent rules with positive confirmation value). Let us stress that even the non-

dominated rules, which are objectively the best rules, might be characterized by a 

negative value of confirmation measure f, and therefore need to be discarded. 

Confidence measure cannot distinguish such useless rules.  

The number of rules which are characterized by a negative value of any 

attractiveness measure with the property of confirmation (measure f is just a 

representative of the group of confirmation measures) depends on the dataset, but can 

potentially be quite large. Therefore, the reduction of the number of rules to be analyzed 

is another argument for the support–f evaluation space [81]. 
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Figure 4.2 Support–confidence Pareto-optimal border contains the same rules as 
support–f Pareto-optimal border (conclusion: workclass='Private', 
census dataset) 
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Table 4.1 Information about the percentage of rules with non-positive 
confirmation in the set of all generated rules for different 
conclusions, for minimal support=0.15 (census dataset) 

 

Considered conclusion No. of all 

rules 

No. of rules with  

non–positive 

confirmation 

Reduction 

percentage 

workclass=Private 84 42 50% 

sex=Male 84 23 27% 

income<=50kUSD 85 43 51% 

race=White 105 27 26% 

native_country=USA 111 30 27% 

 

Table 4.1 contains information about the number and percentage of rules with non-

positive confirmation for few sets of rules with different conclusions from the census 

dataset. For the conclusion being worklass='Private', 42 out of 84 rules had to be 

discarded for disconfirming the conclusion. Thus, the set of potentially interesting and 

valuable rules was reduced by 50%.  

Table 4.2 shows how many rules with non–positive confirmation were situated on 

the support–f Pareto–optimal border (or support–confidence Pareto-optimal border) for 

different considered conclusions. Even the Pareto–optimal borders, i.e. the sets of 

objectively the best rules, contain rules that are misleading. In some cases, the Pareto–

optimal border could be reduced by even 33%, like for the conclusion 

workclass='Private'. These reduction percentages also give weight to the need of taking 

into consideration the information brought by the confirmation property. 

 

Table 4.2 Information about the percentage of rules with non-positive 
confirmation located on the support–f Pareto–optimal border for 
different conclusions, for minimal support=0.15 (census dataset) 

 

Considered  

conclusion 

No. of all rules 

on Pareto 

border 

No. of rules with  

non–positive 

confirmation 

Reduction 

percentage 

workclass='Private' 6 2 33% 

sex=Male 6 1 17% 

income<=50 kUSD 4 1 25% 

race=White 10 0 0% 

native_country=USA 10 0 0% 
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4.3.1. Confirmation perspective on support–confidence 

evaluation space 

Inspired by the strength of the semantics of the family of confirmation measures, we 

find it valuable to try to impose a confirmation perspective on the support–confidence 

evaluation space and limit the set of rules by eliminating those that are characterized by 

non–positive or small values of a confirmation measure. Let us recall that non-positive 

values of a confirmation measure reflect that the premise of a rule disconfirms its 

conclusion, and small positive values of confirmation measures express that occurrence 

of the premise only slightly increases the probability of observing the conclusion.  

Let us consider a confirmation measure c(φ→ψ) with the property M (e.g. 

measure f) and let us observe that according to condition (3.9).1: 

U

sup
confc

)(
)(0)(

ψ
>ψ→φ⇔>ψ→φ . (4.7) 

Moreover, it has been analytically proved in [9] (see Theorem 4.9) that for a fixed 

value of rule support, any measure c(φ→ψ) having the property of confirmation and the 

property M is monotone with respect to confidence. Let us also stress that all 

confirmation measures (no matter whether having the property M or not) change their 

signs in the same situations. Thus, the possession or not of property M will not 

influence our further discussion. 

Since, we limit our consideration to rules with the same conclusion, |U| and sup(ψ) 

should be regarded as constant values. Thus, due to the monotonic link between 

c(φ→ψ) and confidence, (4.7) shows that rules laying under a constant sup(φ→ψ)/|U|, 

expressing what percentage of the whole dataset is taken by the considered class ψ, are 

characterized by negative values of any measure with the property of confirmation. For 

those rules ψ is satisfied less frequently when φ is satisfied rather than generically. 

Figure 4.3 illustrates this analytical result. Of course, the more objects there are in the 

analyzed class with a particular conclusion, the more demanding is the position of the 

constant line separating rules with non-positive confirmation and the less rules are 

expected to lie above it. 
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Figure 4.3 An example of a constant line representing any confirmation 
measure c(φ→ψ) = 0 in a support–confidence space; rules laying 
under this constant line should be discarded from further analysis 

 

It is also interesting to investigate a more general condition c(φ→ψ) ≥ k, k ≥ 0, for 

some specific measures with the property of confirmation. In the following, we consider 

confirmation measure f(φ→ψ). 

Theorem 4.3 [81]  

( ) ( ) ( )( )
( )( )ψ−−

+ψ
≥ψ→φ⇔≥ψ→φ

supUkU

ksup
confkf

2

1
. (4.8) 

 

Proof. Since the analysis concerns only a set of rules with the same conclusion, the 

values of |U| and sup(ψ) are constant. For given U and ψ, let us consider confirmation 

measure f(φ→ψ) written in terms of confidence and support of rule φ→ψ (effectively in 

terms of confidence only) as in (4.6): 

)()())(2(
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Transforming the above definition of f to outline how confidence depends on f we 

obtain:  
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conf . (4.10)
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Considering inequality f(φ→ψ) ≥ k  for (4.10) we obtain the thesis of the theorem.  
 

Figure 4.4 in an exemplary application of the theoretical results on the census 

dataset (for more examples see also [80]). Rules with conclusion workclass='Private' are 

evaluated in support–confidence and support–f space. On the diagrams a constant line 

separates the rules with positive confirmation (blue circles situated above the line) from 

those with non–positive confirmation (red circles situated below the line). In the 

support–confidence evaluation space the position of the line had to be calculated 

according to result (4.7), whereas the same information is given straightforward in the 

support–f evaluation space as only the sign of f needs to be observed. This example 

points out the advantage of support–f space over support–confidence space, however, it 

also shows that result (4.7) provides means by which the support–confidence space can 

actually be made meaningful. 
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Figure 4.4 Rules with positive (blue circles) and non–positive confirmation 
measure value (red circles) in a support–confidence and support–f 
space; for minimal support=0.15 (conclusion: workclass='Private', 
census dataset) 
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4.4. Support–s evaluation space 

Having proved a monotonic relationship between confidence and measure f our analysis 

proceeded to verify the existence of such link between confidence and another 

attractiveness measure with the property M and the property of confirmation, hoping 

that these results would finally allow to generalize the result for the whole class of 

attractiveness measures possessing the property M. In the following we consider 

measure s, having the property M, property of confirmation and hypothesis symmetry, 

and verify whether (among rules with a fixed hypothesis) rules that are best according 

to measure s are included in the set of non-dominated rules with respect to support and 

confidence. To fulfil the above objective, it has been checked whether conditions (4.5) 

hold when measure s is the g(r) rule value function. 

Theorem 4.4 [8]  
 

When the confidence value is held fixed, then:  
 

1. measure s(φ→ψ) is increasing in rule support (i.e. strictly monotone)  

iff s(φ→ψ)>0, 

2. measure s(φ→ψ) is constant in rule support (i.e. monotone)  

iff s(φ→ψ)=0, 

3. measure s(φ→ψ) is decreasing in rule support (i.e. strictly anti-monotone) iff 

s(φ→ψ)<0. 

 
Proof. Let us consider measure s expresses in the notation (3.1): 
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+
=ψ→φ )( . (4.11)

Only the proof of part 1 shall be presented, as the other points are analogous.  

Let us consider an increase of sup(φ→ψ) = a expressed in the form of a' = a+∆, where 

∆ > 0. Since 
ca

a
conf

+
=ψ→φ )(  is to be constant, thus c should change into c' = c+ε 

in such a way that: 
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Simple mathematical transformation lead to the conclusion that:  
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Let us observe that (4.12) implies that if c = 0 then ε = 0 and moreover if c > 0 then 

ε > 0. Since |U| and sup(ψ) must be kept constant, b and d need to decrease in such a 

way that b' = b-∆ and d' = d-ε. In this situation, the new confirmation measure s will be: 

ε−+∆−
∆−

−
ε++∆+

∆+
=

+
−

+
=ψ→φ

db

b

ca

a

db

b

ca

a
s'

''

'

''

'
)( . 

Remembering that 
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a
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=ψ→φ )(  is constant, let us observe that:  
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Considering (4.12) and (4.13) it can be concluded that: 
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This proves that, for a fixed value of confidence, measure s is increasing with respect to 

rule support if and only if s(φ→ψ) > 0 and therefore in its positive range measure s is 

strictly monotone in rule support.⁪ 

 

Theorem 4.5  
 

When the rule support value is held fixed, measure s is increasing with respect to 
confidence (i.e. measure s is monotone in confidence). [8] 
 

Proof. Let us consider the measure s given as in (4.11). For the hypothesis, 

sup(φ→ψ) = a is supposed to be constant. Therefore, it is clear that 

ca

a
conf

+
=ψ→φ )(  can only increase with the decrease of c. Hence, let us consider 

c' = c-∆, where ∆ > 0. Now, operating on c' the only way to guarantee that |U| and 

sup(ψ) still remain constant is to increase d such that d' = d+∆. The values of a and b 

cannot change: a' = a and b' = b. Now, the new value of measure s takes the following 

form: 
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+
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''

'

''

'
)( . 

Since ∆ > 0, it is clear that s'(φ→ψ) > s(φ→ψ). This means that for a fixed value of rule 

support, increasing confidence results in an increase of the value of measure s and 

therefore measure s is monotone with respect to confidence.⁪ 
 

As rules with negative values of measure s should always be discarded from 

consideration, the result from Theorem 4.4 states the monotone relationship just in the 

interesting subset of rules. It implies that rules for which s(φ→ψ) ≥ 0 and which are 

optimal with respect to measure s will reside on the support–confidence Pareto-optimal 

border. They will also be found on the support–f Pareto-optimal border since those 

Pareto sets have the same contents.  

Since confirmation measure s has the property of monotonicity M, we propose to 

generate interesting rules by searching for rules maximizing confirmation measure s and 

support, i.e. substituting the confidence in the support–confidence Pareto-optimal 

border with measure s and obtaining in this way a support–s Pareto-optimal border. This 

approach differs from the idea of finding the Pareto-optimal border according to rule 

support and confirmation measure f, because support–f Pareto-optimal border contains 

the same rules as the support–confidence Pareto-optimal border, while in general 

support–s Pareto-optimal border contains a subset of the support–confidence Pareto-

optimal border as stated in the following theorem.  

Theorem 4.6  
 

If a rule resides on the support–s Pareto-optimal border (in case of positive value of 
confirmation measure s), then it also resides on the support–confidence Pareto-optimal 
border, while one can have rules being on the support–confidence Pareto-optimal border 
which are not on the support–s Pareto-optimal border. [9] 
 

Proof. Let us consider a rule r: φ→ψ residing on the support–s Pareto-optimal border 

and let us suppose that measure s has a positive value. This means that for any other 

rule r': φ'→ψ we have that: 

sup(φ'→ψ)>sup(φ→ψ)⇒s(φ'→ψ)<s(φ→ψ). (4.14)

On the basis of monotonicity of measure s with respect to support and confidence in 

case of positive value of s, we have that sup(φ'→ψ) > sup(φ→ψ) and s(φ'→ψ) <s(φ→ψ)  
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implies that conf(φ'→ψ) < conf(φ→ψ). This means that (4.14) implies that for any other 

rule r',  sup(φ'→ψ) > sup(φ→ψ) ⇒ conf(φ'→ψ) < conf(φ →ψ).  

This means that rule r residing on the support–s Pareto-optimal border is also on the 

support–confidence Pareto-optimal border because one cannot have any other rule r' 

such that sup(φ'→ψ) > sup(φ→ψ) and conf(φ'→ψ) ≥ conf(φ →ψ). 

Now, we prove by a counter-example that there can be rules being on the support–

confidence Pareto-optimal border which are not on the support–s Pareto-optimal border. 

Let us consider rules r and r' residing on the support–confidence Pareto-optimal border 

such that for rule r we have sup(φ→ψ) = 200 and conf(φ→ψ) = 0.667, while for rule r' 

we have sup(φ'→ψ) = 150 and conf(φ'→¬ψ) = 0.68. We have that s(φ→ψ) = 0.167 

which is greater than s(φ'→ψ)=0.142. Thus, rule r' is not on the support–s Pareto-

optimal border because it is dominated with respect to support–s by rule r having a 

greater support and a greater value of measure s.  

 

Theorem 4.6 states that some rules from the support–confidence Pareto-optimal 

border may be not present on the support–s Pareto-optimal border. Figure 4.5 is an 

exemplary illustration of this result on the census dataset for the conclusion being: 

income<=50kUSD. On the diagram, the support–s Pareto-optimal border contains three 

points, each representing one rule, whereas the set of non-dominated rules according to 

support and confidence has one more rule.  

The result from Theorem 4.6 can be easily generalized by substituting measure s for 

any attractiveness measure monotone with respect to support and confidence. The 

following theorem states formally this point. 

Theorem 4.7  
 

Given an attractiveness measure i, which is monotone with respect to support and 
confidence, if a rule resides on the support–i Pareto-optimal border, then it also resides 
on the support–confidence Pareto-optimal border, while the opposite assertion is not 
necessarily true. [9] 
 

Proof. Analogous to proof of Theorem 4.6. 
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Figure 4.5 Support–confidence Pareto-optimal border is the upper-set of 
support–s Pareto-optimal border (conclusion: income<=50kUSD, 
census dataset) 
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4.5. Support and confirmation measures with the 

property M evaluation space 

The investigation of a monotone link with confidence and rule support has also been 

extended to a general class of all measures that have the property M. Such 

monotonically linked with confidence and support measures are good candidates for 

substituting confidence in the support–confidence evaluation space if they also belong 

to the group of Bayesian confirmation measures. 

For a set of rules with a fixed conclusion a general analysis has been conducted 

verifying under what conditions a measure possessing the property M holds 

conditions (4.5), i.e.: 

• is monotone in rule support when the value of confidence is held fixed,  

• is monotone in confidence when the value of rule support is kept unchanged. 
 

Let us consider an attractiveness measure F(a, b, c, d) having the property M. The 

analysis concerns only a set of rules with the same conclusion, thus the values of 

|U| = a+b+c+d and sup(ψ) = a+b are constant. One can observe that a, b, c, and d can be 

transformed in the following way: 
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1
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)(
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ψ→φ+ψ→φ
ψ→φ

−ψ=

ψ→φ−ψ→φ
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 supsup
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 supsupb

 supa

 

Then, measure F can be expressed as: 
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ψ→φ+ψ→φ
ψ→φ

−ψ

ψ→φ−ψ→φ
ψ→φ

ψ→φ−ψψ→φ=
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conf

sup-U 

 supsup
conf

sup  supsupFdcbaF

. 
(4.15)

Let us remark that we can say nothing in general about monotonicity with respect to 

support of F(a, b, c, d) satisfying the property of monotonicity M. In fact F(a, b, c, d) is 

clearly non-decreasing with respect to the value of support in variable a and b, however 
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it is non-increasing with respect to the value of support in variable c and d. The latter 

point merits some explanations. We have that  

c = )()(
)(

1
ψ→φ−ψ→φ

ψ→φ
supsup

conf
= 




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
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1
)(

conf
sup  

and 







−

ψ→φ
1

)(

1

conf
 is non-negative. Since for the property of monotonicity M, F is 

non-increasing with respect to variable c, we get that F is non-increasing with respect to 

the value of support in variable c.  

Analogously, we have that  

=ψ→φ+ψ→φ
ψ→φ

−ψ−= )()(
)(

1
)( supsup

conf
supUd  
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
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−

ψ→φ
1

)(

1

conf
 is non-negative. Since for the property of monotonicity M, F is 

non-decreasing with respect to variable d, we get that F is non-increasing with respect 

to the value of support in  variable d. 
 

Theorem 4.8 [9]  
 

When the value of confidence is held fixed, then the measure F(a, b, c, d) with property 
M, admitting derivative with respect to all its variables a, b, c and  d, is monotone in 
rule support if: 
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Proof. Let us consider F(a, b, c, d) expressed as in (4.15). Let us assume that 

const)( =ψ→φconf . Let us differentiate F(a, b, c, d) with respect to )( ψ→φsup  

Then, we obtain: 
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Since F is supposed to satisfy the property M, it must be non-increasing with respect to 

b, c and non-decreasing with respect to a, d, such that  
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⁪ 

Theorem 4.9  
 

When the value of rule support is held fixed, then measure F(a, b, c, d) with property M 
is monotone in confidence. [9] 
 

Proof. Let us consider F(a, b, c, d) expressed as in (4.15). Confidence determines the 

value of measure F(a, b, c, d) through variables c and d. We have that variable c is non-

increasing in confidence. In fact,  

c = )()(
)(

1
ψ→φ−ψ→φ

ψ→φ
supsup

conf
 and sup(φ→ψ) is non-negative.  

Since for the property M, F is non-increasing with respect to variable c, we get that F is 

non-decreasing with respect to the value of confidence in variable c.  

We also have that variable d is non-decreasing in confidence. In fact,  

)()(
)(

1
)( ψ→φ+ψ→φ

ψ→φ
−ψ−= supsup

conf
supUd   and   sup(φ→ψ)  

is non-negative.  

Since for the property M, F is non-decreasing with respect to variable d, we get that 

F is non-decreasing with respect to the value of confidence in variable d. ⁪ 
 

Theorem 4.9 states that for a set of rules with the same conclusion, any measure 

satisfying the property M is always non-decreasing with respect to confidence when the 
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value of rule support is kept fixed. Moreover, due to Theorem 4.8, all those 

confirmation measures that are independent of )( ψ¬→φsup  and )( ψ¬→φ¬sup  are 

always found monotone in rule support when the value of confidence remains 

unchanged. However, for a constant value of confidence, measures which do depend on 

the value of )( ψ¬→φsup  and )( ψ¬→φ¬sup  are also non-decreasing with respect to 

rule support if and only if they satisfy the following condition: 

1
)(

1
−

ψ→φ
≥

∂

∂
−

∂

∂
∂
∂

−
∂
∂

conf

c

F

d

F

b

F

a

F

. 

The general analysis in Theorem 4.8 and Theorem 4.9 outlines a method of verification 

whether there exists a monotone link between any measure with the property M, and 

rule support and confidence, respectively. Measures that positively undergo such 

ascertainment and, moreover, have the property of confirmation are, in our opinion, 

good candidates for substituting the confidence dimension in the Pareto-optimal border 

with respect to rule support and confidence proposed by Bayardo and Agrawal [3]. 

Theorem 4.8 and Theorem 4.9 consider general class of measures with property M, 

however taking into account the semantics of attractiveness measures, this result is 

especially interesting with respect to measures of confirmation.  
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5. Support–anti-support evaluation space 

Let us observe that Theorem 4.8 can be regarded as a critical remark towards support–

confidence Pareto optimal border as it says that a rule maximizing an attractiveness 

measure satisfying the property M is on the support–confidence Pareto-optimal border 

only if a specific condition is satisfied. Thus, in general, not all rules maximizing such a 

measure satisfying the property M are on the support–confidence Pareto–optimal 

border. However, due to valuable semantics of the property M, mining all rules that 

maximize any measure with M, is an interesting problem.  

Let us consider an attractiveness measure F(a, b, c, d) having the property M and 

induction of rules with a given conclusion ψ from a universe U such that sup(ψ) and |U| 

can be considered fixed. Again, for the simplicity of presentation, let us use the notation 

(3.1). One can observe that a, b, c, and d can be transformed in the following way:  
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Then, measure F can be expressed as: 
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ψ¬→φ−ψψ¬→φ

ψ→φ−ψψ→φ=

supsup-U  sup

sup  supsupFdcbaF
 (5.1) 

Let us stress that sup(φ→¬ψ) is the anti-support of rule φ→ψ. It represents the number 

of counter-examples to the rule φ→ψ. For example, if φ=“x is a raven” and ψ=“x is 

black”, then φ→ψ  is the rule “if x is a raven, then x is black” and the anti-support 

sup(φ→¬ψ) is the number of non-black ravens. 
 

Theorem 5.1  
 

When the value of rule anti-support is held fixed, then measure F(a, b, c, d) with the 
property M is monotone (non-decreasing) in rule support. [9] 

 

Proof. Function F(a, b, c, d) (5.1) depends on the rule support sup(φ→ψ) through 

variables a and b. Observe that a is increasing with respect to sup(φ→ψ) while b is 

decreasing. Remembering that for the property M F is non-decreasing in a and non-

increasing in b, we get the thesis.  
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Theorem 5.2  
 

When the value of rule support is held fixed, then measure F(a, b, c, d) with the 
property M is anti-monotone (non-increasing) in rule anti-support. [9] 

 

Proof. Function F(a, b, c, d) (5.1) depends on the anti-support sup(φ→¬ψ) through 

variables c and d. Observe that c is increasing while d is decreasing with respect to 

sup(φ→¬ψ). Remembering that for the property M F(a, b, c, d) is non-increasing in c 

and non-decreasing in d, we get the thesis.  
 

Theorem 5.1 and Theorem 5.2 say that F(a, b, c, d) with the property M is monotone 

(non-decreasing) with respect to rule support sup(φ→ψ) and anti-monotone (non-

increasing) with respect to rule anti-support sup(φ→¬ψ). Therefore, the best rules 

according to any measure having the property M must reside on the support–anti-

support Pareto-optimal border being the set of rules such that there is no other rule 

having greater support and smaller anti-support. 

 

Figure 5.1 Support–anti-spport Pareto-optimal border 
 

Figure 5.1 presents the support–anti-support evaluation space. Since anti-support is 

a cost-type criterion (the smaller its value the better), the shape of the support–anti-

support Pareto-optimal border is different than in the previously considered evaluation 

spaces. The set of non-dominated rules with respect to support and anti-support contains 
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rules optimal with respect to any attractiveness measure with the valuable property M. 

Above the Pareto-optimal border there reside the dominated rules. 

The following theorem formally describes the relationship between the Pareto-

optimal borders with respect to support and confidence on one hand, and support and 

anti-support on the other hand.  
 

Theorem 5.3  
 

If a rule resides on the support–confidence Pareto-optimal border, then it also resides on 
the support–anti-support Pareto-optimal border, while one can have rules being on the 
support–anti-support Pareto-optimal border which are not on the support–confidence 
Pareto-optimal border. [9] 
 

Proof. Let us consider a rule r: φ→ψ residing on the support–confidence Pareto-optimal 

border. This means that for any other rule r': φ'→ψ  we have that:  

sup(φ'→ψ) > sup(φ→ψ) ⇒ conf(φ'→ψ) < conf(φ→ψ). (5.2) 

Observe that  

conf(φ'→ψ) < conf(φ→ψ) ⇔ 
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''

'
 

and since we are supposing sup(φ'→ψ) > sup(φ→ψ),  

we get that sup(φ'→¬ψ) > sup(φ →¬ψ).  

This means that (5.2) implies that for any other rule r' 

sup(φ'→ψ) > sup(φ→ψ) ⇒ sup(φ'→¬ψ) > sup(φ →¬ψ). 

This means that rule r residing on the support–confidence Pareto-optimal border is also 

on the support–anti-support Pareto-optimal border because one cannot have any other 

rule r' such that sup(φ'→ψ) > sup(φ→ψ) and sup(φ'→¬ψ) > sup(φ →¬ψ). 

Now, we prove with a counter-example that there can be a rule being on the 

support–anti-support Pareto-optimal border which is not on the support–confidence 

Pareto-optimal border. Let us consider two rules r and r' residing on the support–anti-

support Pareto-optimal border such that for rule r we have support sup(φ→ψ) = 200 and 

anti-support sup(φ→¬ψ) = 100, while for rule r' we have support sup(φ'→ψ) = 150 and 

anti-support sup(φ'→¬ψ) = 99. We have that conf(φ→ψ) = 0.667 which is greater than 

conf(φ'→ψ) = 0.602. Thus, rule r' is not on the support–confidence Pareto-optimal 
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border because it is dominated in the sense of support–confidence by rule r having a 

larger support and a larger confidence.  
 

Let us observe that the support–confidence Pareto-optimal border has the advantage 

of presenting a smaller number of rules (more precisely a not greater number of rules) 

than the support–anti-support Pareto-optimal border. However, its disadvantage is that it 

does not present the rules optimizing any attractiveness measure satisfying the property 

M. In fact, all the rules which are present on the support–anti-support Pareto-optimal 

border and not present on the support–confidence Pareto-optimal border maximize an 

attractiveness measure which is not monotone with respect to support because it does 

not satisfy the condition of the above Theorem 4.8. 

Summarizing illustration of comparison of the support–anti-support Pareto-optimal 

border with non-dominated sets from all previously mentioned evaluation spaces is 

presented on Figure 5.2. On the diagram there are the Pareto-optimal borders with 

respect to four evaluation spaces, for a fixed conclusion being income<=50 kUSD. We 

can observe on Figure 5.2 that, as it has been analytically shown, the support–anti-

support Pareto-optimal border is the upper-set of all the other discussed Pareto-optimal 

sets. Moreover, the support–confidence Pareto-optimal border contains the same rules 

as the support–f Pareto-optimal set, whereas the set of non-dominated rules with respect 

to support and s is their subset.  
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Figure 5.2 Comparison of Pareto-optimal sets in different rule evaluation 
spaces, for minimal support=0.15 (conclusion: income<=50 k USD, 
census dataset) 

 

5.1. Confirmation perspective on support–anti-support 

evaluation space 

Since neither support nor anti-support has the property of confirmation, by using only 

these measures one cannot distinguish which rules are disconfirming and should be 

discarded from further analysis. Thus, it would be valuable to enrich the support–anti-

support evaluation space by the strength of confirmation property. This would allow to 

limit the set of rules by eliminating those that are characterized by non–positive or small 

values of a confirmation measure. 
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Let us consider a confirmation measure c(φ→ψ) with the property M (e.g. measure 

f). Let us observe that anti-sup(φ→ψ)=sup(φ→¬ψ)=sup(φ)-sup(φ→ψ). Thus, a simple 

transformation of condition (3.9).1 leads to the following result: 

( ) ( ) ( )
( ) 








−

ψ
ψ→φ≤ψ→φ⇔≥ψ→φ 10

sup

U
supsup-antic . (5.3) 

Moreover, due to Theorem 5.2, for a fixed value of rule support, any confirmation 

measure c(φ→ψ) having the desired property M is anti–monotone (i.e. non–decreasing) 

with respect to anti–support. Let us also stress that all confirmation measures (no matter 

whether having the property M or not) change their signs in the same situations. Thus, 

the possession or not of property M will not influence our further discussion. 

Since, we limit our consideration to rules with the same conclusion, |U| and sup(ψ) 

should be regarded as constant values. Thus, due to the anti-monotone link between 

c(φ→ψ) and anti-support, (5.3) shows that a simple linear function bounds rules that are 

characterized by positive values of confirmation from those with non–positive 

confirmation values. For those rules ψ is satisfied less frequently when φ is satisfied 

rather than generically. Figure 5.3 illustrates this analytical result. The diagram shows 

three linear functions drawn for three conclusions varying in the number of objects 

supporting them. The blue line signifies the conclusion which is the largest in 

cardinality, the green one stands for the smallest class. The functions separate the rules 

with positive confirmation value (marked by blue triangles) from those with non-

positive (marked by red circles). The angle of inclination of each of those functions is 

determined by the cardinality of the set representing the conclusion, and thus, the larger 

the class cardinality, the more demanding the function is (i.e. the smaller the angle). 
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Figure 5.3 Three examples of linear functions representing c(φ→ψ)=0 in a 
support–anti–support space. Each line was drawn according to a set 
of rules for conclusions different in cardinality. Rules laying above 
these functions should be discarded from further analysis 

 

It is also interesting to investigate a more general condition c(φ→ψ)≥k, k≥0, for 

some specific confirmation measures. In the following, we consider again the 

confirmation measure f(φ→ψ). 
 

Theorem 5.4 [81] 
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Proof. For given U and ψ, measure f(φ→ψ) can be written in terms of support and anti-

support of rule φ→ψ as follows: 
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Transforming (5.5) as the dependency of anti-sup(φ→ψ) on f(φ→ψ) and 

considering the inequality f(φ→ψ) ≥ k, we obtain the thesis.  
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Figure 5.4 Rules with positive (trangles) and non–positive (circles) confirmation 
measure value in a support–anti–support space. First diagram shows 
all generated rules, second one shows the Pareto-optimal border only 
(conclusion: workclass='Private', census dataset) 
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Figure 5.4 presents rules generated from the census dataset for the conclusion: 

workclass='Private' in a support–anti–support space. The semantic scale of anti–support 

is weaker than that of confirmation measures as it cannot show rules for which the 

premise disconfirms the conclusion. Therefore, despite the fact that the support–anti–

support Pareto–optimal border contains all rules that are optimal according to any 

measure with the property M, it is necessary to take under consideration also the 

information brought by the sign of a confirmation measures. In the set of both 

dominated and non–dominated rules, there can be examples of rules with negative 

values of confirmation. The second chart on Figure 5.4. presents just the rules which 

form the support–anti–support Pareto–optimal border. Within the Pareto-optimal set 

presented on Figure 5.4, over 23% of rules need to be discarded from further analysis as 

their value of confirmation is non–positive. On the diagrams, a linear function was 

placed separating the rules with positive confirmation (situated under the line) from 

those with non–positive confirmation (situated above the line) to visualize result (5.3).  
 

Table 5.1 Information about the percentage of rules with non-positive 
confirmation laying on the support–anti–support Pareto–optimal 
border for different conclusions (census dataset) 

 

Considered  

conclusion 

No. of all rules 

on Pareto 

border 

No. of rules with  

non–positive 

confirmation 

Reduction 

percentage 

workclass='Private' 17 4 24% 

sex=Male 8 3 38% 

income<=50 kUSD 15 5 33% 

race=White 17 1 0.6% 

native_country=USA 15 0 0% 

 

Table 5.1 presents the percentage of rules that should be discarded from the Pareto–

optimal border with respect to support and anti–support, for different conclusions in the 

census dataset. The support–anti–support Pareto–optimal border is, in general, larger (or 

precisely, not smaller) than the support–confidence Pareto–optimal set. The first set 

fully contains the latter, and therefore it is obvious that if there appeared some 

confirmation–negative rules on the support–confidence Pareto–optimal border then they 

would also be present on the support–anti–support Pareto–optimal border. But as it can 

be observed in Table 5.1, on the support–anti–support Pareto–optimal border there also 

came up other rules with non-positive confirmation values.  
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6. Examples of application of attractiveness 

measures to multicriteria rule evaluation 

The number of different attractiveness measures, which can be regarded as rule 

evaluation criteria, described in the literature is overwhelming. As we have shown in the 

previous sections, there exist many relationships between those criteria, despite which, 

however, the semantics of the measures still vary. Therefore, there arises a need to 

combine few interestingness measures to form a multicriteria evaluation space.  

The monotonic or anti-monotonic relationships between different measures that 

have been pointed out in the previous sections (in particular Theorem 5.1 and 

Theorem 5.2) can be applied to allow an increase of efficiency while determining of the 

rules from the Pareto-optimal border or from the area close to it. It is a direct result of 

the anti-monotonic dependency of all of the considered measures on the anti-support. 

Practically, it means that, for a set of rules with the same conclusion, the order of rules 

according to confidence, f, s, or any other measure with the property M, for a fixed 

value of rules support, is in concordance (consistent) with the order determined by the 

measure of rule anti-support. Hence, having ordered a set of rules once (e.g. with 

respect to rule support and anti-support), we can "re-use" the same order many times in 

other evaluation spaces (e.g. in support–confidence, support–f, etc.).  

Moreover, assuming induction of rules for any conclusion and according to a user-

defined maximal acceptable rule anti-support and minimal rule support thresholds, the 

rule generation efficiency can be increased due to the following relationship between 

rule support and anti-support.  
 

Claim 6.1.  
When generating decision or association rules from a frequent set it is advisable to first 
generate rules with few conclusion elements (for optimization reasons). 

 

Explanation: Let us assume that a frequent (item)set is a set occurring in the dataset at 

least as many times as the value of the minimal support threshold requires. Let us 

consider three different rules constructed from the same frequent itemset {x, y, z, v}: 

• r1:  x→yzv  anti-sup(r1) = sup(x) – sup(xyzv),r2:  xy→zv  anti-

sup(r2) = sup(xy) – sup(xyzv), 
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• r3:  xyz→v   anti-sup(r3) = sup(xyz) – sup(xyzv).Clearly, anti-sup(r1) ≥ 

anti-sup(r2) ≥ anti-sup(r3). Therefore, we can conclude that if 

anti-sup(r3) > max_acceptable anti-support  then  

anti-sup(r2) > max_acceptable anti-support.This observation means that if we 

generate r3 and verify that its rule anti-support is unacceptable, because it is higher than 

the anti-support threshold, then we should skip the phase of r1 and r2 generation. This 

result allows us to limit the space of the rules to be generated from the frequent itemsets 

and this way gain on efficiency. 

 

6.1. Multicriteria rule evaluation system 

The system is available at http://www.cs.put.poznan.pl/iszczech/research.html 

 

6.1.1. System concept 

The system composes of the following modules: 

• File Processing Unit, 

• Frequent Itemset Generator, 

• Rule Generator, 

• Ordering and Optimization Unit, 

• Visualization Unit, 

• User Interaction Unit. 

They cooperate according to the structure presented on Figure 6.1: 
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Figure 6.1 The component diagram of the system 

 

File Processing Unit is responsible for accessing the input datasets and adjusting them 

to the format the systems operates on. The acceptable input formats are .arff and .data, 

but the system can be easily extended to handle other input data formats as well. 
 

Frequent Itemset Generator is a module searching for frequent itemsets (i.e. itemsets 

that occur in the input file at least as often as it is required by the minimal rule support 

threshold). The threshold is obtained from the user through the User Interaction Unit. 

The user can choose the frequent itemset algorithm to be applied. There are two options: 

Apriori by Agrawal et al. [2] and FP-Growth by Han et al. [30]. 
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Apriori: 

 

1:  FSet1 = frequent 1-itemsets; 

2:  for (count = 2; FSetcount-1 ≠ ∅; count++) 

3:  { 

4:   Candcount  = GenerateCandidateSets(FSetcount-1); 

5:   foreach (Record r in  database) 

6:   { 

7:    foreach (CandidateSet cs in Candcount) 

8:    { 

9:     if (∀i i∈cs ⇒ i∈r) 

10:     cs.support ++; 

11:   } 

12:  } 

13:  FSetcount = {cs ∈ Candcount : cs.support >= minsup}; 

14: } 

15: Result = Ucount Fsetcount; 

 

 

 

GenerateCandidateSets(FSetcount): 

 

1:  foreach (pair of sets  (s1, s2) in FSetcount) 

2:  { 

3:   union = s1 ∪ s2; 

4:   if (union.count == count + 1) 

5:    CandidateSets.Add(union); 

6:   foreach (Set s in CandidateSets) 

7:   { 

8:    subsets = count-subsets of s; 

9:    foreach (Set sub in subsets) 

10:    if (sub ∉ FSetcount)  

11:     CandidateSets.Remove(s); 

12:  } 

13: } 

 

The Apiori algorithm represents an iterative approach to association mining. In the first 

step, single-element frequent item sets are selected from the database (Apriori line 1). 
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Based on these sets, larger frequent sets are found by generating candidate sets (Apriori 

line 4) and by prunning (Apriori lines 5-13) them.  

The first step of generating candidate sets is merging. Sets with size count are 

summed to create candidate sets of count+1 size (GenerateCandidateSets lines 3-5). 

Each of these newly created sets must be then verified  to ensure it is a frequent set. 

This is done by checking if all count subsets of the candidate set are frequent 

(GenerateCandidateSets lines 6-11). 

The database is then scanned to verify each candidate set’s support and eliminate 

those which do not satisfy the minimal support threshold. Later frequent sets with size 2 

are used to generate frequent sets of size 3 and so on. In each iteration the algorithm 

generates frequent sets that are one element bigger and with each iteration the database 

needs to be scanned. The algorithm ends when no more candidate sets can be generated. 

 

CreateTree(): 

 

1: FSet1 = frequent 1-itemsets; 

2: SortDesc(FSet1); 

3: Tree = new FPTree(null); 

4: foreach (Row r in database) 

5: { 

6:  CurrentNode = Tree.Root(); 

7:  foreach (Item i in FSet1)  

8:  { 

9:   if(i ∈ r && i ∉ CurrentNode.Children) 

10:   { 

11:    CurrentNode.AddChild(i); 

12:    CurrentNode = CurrentNode.Children(i); 

13:   } 

14:   if(i ∈ r && i ∈ CurrentNode.Children) 

15:   { 

16:    CurrentNode = CurrentNode.Children(i); 

17:    CurrentNode.Support++; 

18:   } 

19:  } 

20: } 
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FP-Growth(Tree, α): 

 

1:  if (Tree has a single path P) 

2:  { 

3:   foreach (subset β of nodes in P) 

4:   { 

5:    fs = α ∪ β; 

6:    fs.support = mini.support{i: i∈β} 

7:    Result.Add(fs); 

8:   } 

9:  } 

10: else 

11: { 

12:  foreach (Item i in Header) 

13:  { 

14:   β = i ∪ α; 

15:   β.support = i.support; 

16:   Result.Add(β); 

17:   create β’s conditional pattern base; 

18:   create β’s conditional FPTree Treeβ;  

19:   if (Treeβ ≠ ∅) 

20:    FP-Growth(Treeβ, β); 

21:  } 

22: } 

 

 

 

The process of rule mining using the FP-Growth algorithm consists of two major 

steps. In the first step the database is transformed into a special structure called the FP-

Tree. In the second step the FP-Tree is explored recursively in search of frequent sets. 

To transform a database into an FP-Tree, single-element frequent sets must be 

selected and sorted by support in descending order for each row of the database 

(CreateTree lines 1-2). Then an empty FP-Tree is created with a null labeled root 

(CreateTree line 3). Reading the database for the second time we only read the frequent 

elements and create an FP-Tree as shown in CreateTree lines 6-17. If there is no child 

labeled as the item, a new node is created with the desired label and support = 1. 

Otherwise, we increment the child’s support by 1 and consider it as the new root. 
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Upon reaching a new record with elements to add to the tree, we return to the null-

labeled root (CreateTree line 6). During the generation of the tree a header list of item 

nodes is created in order to localize nodes containing the same item more rapidly and to 

identify each item's support. An FP-Tree constructed in such a way is then recursively 

explored by calling FP-Growth (Tree, null). 

The recursive process of exploring the FP-Tree is based on distinguishing two 

situations. If the tree has only a single path then all non-empty subsets of that path are 

combined with the suffix pattern α (with which the function was called) and added to 

the result frequent pattern list (FP-Growth lines 1-9).    

Otherwise, if the tree consists of more than one path then the header list is read in 

support ascending order (FP-Growth lines 12-21). The examined item is merged with 

suffix pattern and added to the result list with support equal to the item’s support  

(FP-Growth lines 14-16). Based on paths containing nodes with the currently explored 

item a conditional pattern base is created and later a conditional FP-Tree (FP-Growth 

lines 17-18). The idea is to filter items that occur with the new suffix (the item currently 

read from header list) often enough to satisfy the minimal support value. Once these 

items are filtered a new FP-Tree is created in a similar way to the one created from the 

database (the support values of the nodes are incremented by the node’s support value 

and not 1 like in CreateTree()). If the tree is not empty we recursively call FP-Growth 

with the new tree and suffix (FP-Growth lines 19-20). 
 

Rule Generator is a unit that generates rules from the frequent itemsets found by the 

Frequent Itemset Generator. The basic rule generation algorithm is based on creating 

rules from the subsets of frequent itemsets: 

 

GenerateRules(FrequentSets): 

 

1:  foreach (FrequentSet fs in FrequentSets) 

2:  { 

3:   subsets = list of all non-empty subsets of fs; 

4:   foreach (Subset sub in subsets) 

5:    create rule: sub ⇒ (fs – sub); 

6:  } 
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The rules can be formed with respect to different attractiveness measures i.e. the 

user can optionally set the following thresholds: maximal acceptable rule anti-support, 

minimal acceptable confidence, f or s measure value. On the Rule Generator's output 

there will only be rules that satisfy the introduced thresholds. The results from 

Claim 6.1 are used to generate rules with a given anti-support threshold more 

effectively. For each generated rule the values of the following counters are obtained: 

a = sup(φ→ψ), b = sup(¬φ→ψ), c = sup(φ→¬ψ) and d = sup(¬φ→¬ψ). On their 

bases, for each rule, measures of rule support and anti-support, confidence, f and s are 

calculated. The user can see the output rules with their values of the considered 

attractiveness measures, in form of a table (see example on Figure 6.2). 

The user can also choose a particular attribute to be a decision attribute and in that 

case only rules with that attribute in the rule’s conclusion will be generated. If the user 

does not assign any decision attribute, association rules are generated.  
 

 

Figure 6.2 Example of rule presentation format (census dataset) 

 

Ordering and Optimization Unit is a module that divides the set of all rules into subsets 

according to their conclusions. Rules from each of such group are ordered with respect 

to their value of support and with respect to anti-support when the value of support is 

the same. Such ordering allows to optimize the phase of finding the Pareto-optimal 

border (or the area close to it) in the support–anti-support evaluation space because 

there is no need to perform n2 of comparisons on rules (where n is the number of rules 

with the same conclusion). For each group of rules with the same conclusion, this 

Pareto-optimal border is found in the following manner (for reference see also 

JumpAlg below): 
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• the first element from the ordered list (i.e. the rules that have the highest rule 

support and the smallest anti-support) are placed on the Pareto-optimal border, 

for they are surely non-dominated, 

• we jump to the element on the list with the next highest value of support and 

search for a rule(s) whose anti-support is smaller than the anti-support of the 

element chosen in the previous step. If such rule(s) is found, it is added to the 

Pareto-optimal border. The procedure is then continued for the next highest 

values of support until the element with the smallest support is reached. 
 

 
JumpAlg: 

 

for (idx = 0; idx < Rules.count; idx += Rules[idx].EqualCount) 

{ 

if(idx ==0 ||  

           Rules[idx].Measure > Rules[lastPareto].Measure) 

 { 

  ParetoOptimal.Add(Rules[idx]); 

  lastPareto = idx; 

 } 

} 

 

where: 

Measure has property M. 

 

 

Due to relationships between anti-support and other considered measures (in 

particular Theorem 5.1 and Theorem 5.2) the fact that the rules are ordered with respect 

to anti-support implies that they are also ordered according to confidence, measure f or 

s, etc. This means that the above described way of searching for Pareto-optimal borders 

can also be applied to looking for Pareto-optimal rules with respect to support and 

confidence, support and f, etc. Moreover, since the support–anti-support Pareto-optimal 

border is the upper-set of all the considered Pareto-optimal sets, we can mine them 

simply from the support–anti-support Pareto-optimal border instead of searching the set 

of all rules.  
 

Visualization Unit is responsible for presentation of the induced rules on diagrams. The 

user determines (through the User Interaction Unit) the conclusion with which the rules 
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are to be displayed and the evaluation space. The user can view many charts at ones in 

order to compare them. The thresholds for the evaluation criteria can be adjusted by the 

user, changing the set of rules that are presented. On the diagrams, rules with non-

positive confirmation value are distinguished by color and shape from those with 

positive value. The user can limit the set of displayed rules only to the Pareto-optimal 

ones or view the whole set of rules with the chosen conclusion. The system presents the 

values of rule support and anti-support as relative values between 0 and 1. 
 

User Interaction Unit is a module that provides communication between the user and 

other system components. All the user-set parameters (e.g. thresholds) are delivered to 

the system through this unit.  

 

6.1.2. System functionality 

Association miner - general information 

Association miner is an association rule mining program that utilizes the Apriori or FP-

Growth algorithm. It enables the user to create and view charts presenting rules in 

support–confidence, support–s, support–f and support–anti-support planes. Rules can be 

saved in special structures for later use as well as be exported to Excel format. 

Association miner benefits are: 
 

• efficient Pareto-optimal rule generation in several measure evaluation spaces 

together in one step,  

• chart exemplification of important theoretical thesis, 

• rule export capabilities. 

System Requirements 

Microsoft .Net Framework 2.0 or higher, Windows 2000/ME/XP  

Installation 

The program does not require any special installation steps and is ready to use as long 

as all of the system requirements are met. 
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Starting the program 

To start Association miner, click the Association miner icon found in the installation 

directory.  

6.1.3. Brief User Guide 

Opening data files 

To open a data file simply choose Open Data File from the File menu option list or 

press Ctrl+O while using the main form of the program. You can choose from *.arff 

 and MSWeb *.data file formats. When asked type in the desired minimal support and 

optionally other measure requirements to generate rules. If you decide to cancel at this 

point, no rules will be generated but the database will be loaded. 

Managing rule files 

Once rules are generated you can save them by accessing the Save Rule File option 

from the File menu. Rules can be saved to the default *.rff format or exported as an 

Excel sheet.  

Rules can also be loaded through the Open Rule File option from the File menu. 

Only *.rff files are supported by this option. 

Chart and multichart creation 

To create a chart or multichart simply choose the desired option from the Options 

menu. Charts are only shown for rules with the same conclusion, so it is necessary to 

select one of the conclusions from the provided list.  

When a chart has been created the user has the possibility to filter rules through 

various options:  

• Show only Pareto, 

• Show only selection,  

• Show invisible. 
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This is the main form of the program and gives access to all the options provided by 

the Association Miner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

premise: if clicked, sorts the rules according to the alphabetical order of the premise 

column 

conclusion: if clicked, sorts the rules according to the alphabetical order of the 

conclusion column 

supp: if clicked, sorts the rules according to the support column 

conf: if clicked, sorts the rules according to the confidence column 

s: if clicked sorts, the rules according to the confirmation-s value column 

f: if clicked sorts, the rules according to the confirmation-f value column 

a-supp: if clicked sorts, the rules according to the anti-support column 
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An example of the form with generated rules is presented below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The algorithm for frequent itemset generation can be changed according to the user 

preferences: 
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During the rule generation phase the user can set measure thresholds and assign a 

decision attribute if there is one: 

 

 

 

 

 

 

 

 

 

 

 

Minimal support value for rule generation: specifies the minimal support value that 

will be used to generate rules. This field must be filled in order to generate rules. The 

provided values must be greater than 0 and less or equal to 1. 

 

Minimal confidence: specifies the minimal confidence value that will be used to 

generate rules.  The provided values must be between 0 and 1. 

 

Minimal confirmation-s: specifies the minimal confirmation-s value that will be used 

to generate rules.  The provided values must be between -1 and 1. 

 

Maximal anti-support: specifies the maximal anti-support value that will be used to 

generate rules.  The provided values must be between -1 and 1. 

 

Minimal confirmation-f: specifies the minimal confirmation-f value that will be used 

to generate rules.  The provided values must be between 0 and 1. 

 

Decision attribute: specifies an attribute that was chosen by the user to be a decision 

attribute. If no decision attribute is specified, then all possible association rules are 

generated. 
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For the generated set of rules the user can create charts presenting rules with a chosen 

conclusion in different evaluation spaces: 

 

 

Chart creation dialog 

 

 

 

 

 

 

 

 

 

 

Choose conclusion: allows the user to choose a conclusion for which the chart(s) will 

be created. Charts can only be created for rules with the same conclusion. 
 

Choose chart type 

confidence: creates a chart showing rules in the support–confidence plane. 

confirmation s: creates a chart showing rules in the support–s plane. 

confirmation f: creates a chart showing rules in the support–f plane. 

anti-support: creates a chart showing rules in the support–anti-support plane. 

all: when selected creates all four of the above charts. 

An example of created charts is presented below: 
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Show border: Shows the lines separating rules with negative confirmation value. 

Whether this line is shown or not, one can distinguish the rules with positive 

confirmation values by their shape of blue triangles. 
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Show only Pareto: Shows only rules that are Pareto-optimal in the specified plane.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the Show invisible checkbox is selected then rules that are not Pareto-optimal will be 

shown as hollow shapes on the chart. Otherwise the rules that are not Pareto-optimal 

will not be shown at all. 
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Show only selection: Shows on the chart only the rules that are within the selection 

lasso. The selection lasso is always drawn when the user presses the mouse on the chart 

picture and moves the mouse selecting rules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Show invisible: Forces rules that should not be drawn (they are not pareto optimal/not 

within selection/are in the shaded part of the chart) to appear on the chart as hollow 

shapes. 

Minimal support: Defines the minimal support for the shown rules. If the minimal 

support provided by the user in the textbox is lower than the one used to generate the 

rules the field corresponding to that support will still stay shaded. 

Minimal y-axis value: Defines the minimal (maximal in case of anti-support) value of 

the measure in the y-axis of the chart. Rules that do not satisfy these conditions are not 

displayed on the diagram. 

Save image: Saves the chart image in *.bmp format. 
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The user can also create a multichart suitable for chart comparison. 
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6.2. Examples of the system's application 

6.2.1. Census dataset 

The census dataset is a selection from a dataset used by Kohavi et al. in [45]. It contains 

information about financial and social status of the questioned people. The number of 

analyzed instances reached 32 561. The chosen instances did not contain any missing 

values. They were described by 9 nominal attributes differing in domain sizes: 

• workclass: Private, Local-gov, etc.; 

• education: Bachelors, Some-college, etc.; 

• marital-status: Married, Divorced, Never-married, etc.;  

• occupation: Tech-support, Craft-repair, etc.; 

• relationship: Wife, Own-child, Husband, etc.;  

• race: White, Asian-Pac-Islander, etc.;  

• sex: Female, Male; 

• native-country: United-States, Cambodia, England, etc.; 

• salary: >50K, <=50K  

We have conducted several experiments with the census dataset and the most 

interesting results are presented below.  

For the minimal support threshold set to 0.15, there were over 2200 rules 

generated. Figure 6.3 presents all of the rules with the conclusion workclass='Private' in 

different evaluation spaces. The confirmation semantics are added to the charts by the 

black lines that separate the rules with non-positive confirmation value (marked by red 

circles) from those with positive confirmation value (marked by blue triangles). It can 

be observed that 50% of the generated rules need to be discarded as their premises 

disconfirm the conclusion. 

Figure 6.4 compares the Pareto-optimal borders (for conclusion: 

workclass='Private') obtained in different evaluation spaces. It shows that even the non-

dominated rules can be disconfirming. Moreover, we can observe that the support–anti-

support Pareto-optimal border is the upper-set of all the other considered non-dominated 

sets. The two circled points represent the rules with negative confirmation that are on 

the support–anti-support Pareto-optimal border but are not present on any other Pareto-

optimal border. The system allows a detailed insight into each rule and helps to analyse 

thoroughly the differences between the evaluation spaces. 
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Figure 6.3 Multichart presenting all rules with the conclusion 
workclass="Private" generated with the 0.15 minimal  
support threshold 
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Figure 6.4 Multichart presenting only the Pareto-optimal rules with the 
conclusion workclass="Private" generated with the 0.15 minimal 
support threshold 

 

The system also allows to analyse how a change of one measure threshold is 

reflected in other evaluation spaces. On Figure 6.5 we have increased the minimal 

confidence threshold to 0.78, which resulted in decrease of the number of rules that 

satisfy this threshold (now only 21 rules are above the thresholds). We can observe how 

an increase of demands with respect to confidence influences other considered criteria 

as for any evaluation space the system displays only the rules that satisfy the most 

severe thresholds (in this case it is the confidence threshold).  
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Figure 6.5 Multichart presenting all rules with the conclusion 
workclass="Private" generated with the thresholds of minimal 
support = 0.15 and minimal confidence = 0.78 

 

6.2.2. MSweb dataset 

The msweb dataset [61] is anonymous web data collected from www.microsoft.com 

during one-week timeframe in February 1998. The data was created by sampling and 

processing the www.microsoft.com logs. The data records the use of 

www.microsoft.com by 38000 anonymous, randomly-selected users. For each user, the 

data lists all the areas of the web site that the user visited. Users are identified only by a 

sequential number and the visited web sites by their title (e.g. "NetShow for 

PowerPoint") and URL (e.g. "/stream"). 
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The data contains 32 711 transactions with 294 different web sites. The data is 

sparse and, on average in each transaction there are only 3 elements (web sites). 

We have conducted several experiments with the msweb dataset and the most 

interesting results are presented below. Since the dataset is sparse, for most of the 

conclusions there were only a few rules even if the minimal support threshold was 

lower than 0.1. 

 

 

Figure 6.6 Multichart presenting all rules with the conclusion 
web_site="Internet Explorer" generated with the 0.005 minimal  
support threshold 

 

Figure 6.6 presents one of the largest classes, which was obtained for the conclusion 

being web_site='Internet Explorer' (this class represents transactions in which the 

anonymous users have visited the Internet Explorer web site). The diagram clearly 
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shows that there are hardly any rules with rule support over 0.1 value. An insight into 

the points on the chart reveals that there is actually only one rule characterized by the 

rule support greater than 0.1. The investigated conclusion has quite a big percentage of 

rules with non-positive confirmation value. There are over 47% of rules that should be 

discarded. The Pareto-optimal borders, however, are completely free of such 

uninteresting rules, as it can be observed on Figure 6.7. The enclosure relationships of 

those non-dominated sets can also be analyzed using that multichart. 

Figure 6.7 Multichart presenting only the Pareto-optimal rules with the 
conclusion web_site="Internet Explorer" generated with the 0.005 
minimal support threshold 
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6.2.3. HSV dataset 

The HSV dataset [64] contains information about 122 patients with duodenal ulcer who 

were treated by highly selective vagotomy (HSV) in one of Poznań’s hospitals in 

1980’s. Each object (patient) is described by 12 attributes: the first 11 attributes concern 

anamnesis and preoperative gastric secretion examined with the histaminic test of Kay, 

and the last attribute is a decision attribute defining classification of patients according 

to long term results of operation evaluated by a surgeon in the modified Visick grading. 

The eleven condition attributes contain such information about each patient: 

• sex, 

• age, 

• duration of the disease,  

• complications of ulcer, 

• HCl concentration, 

• basic volume of gastric juice per hour,  

• volume of residual gastric juice, 

• basic acid output (BOA), 

• HCl concentration under histamine, 

• volume of gastric juice per hour under histamine, 

• maximal acid output (MAO). 
 

The twelfth attribute defines a long-term result of HSV, evaluated by a surgeon in the 

modified Visick grading. It obtains the following values: 

1. excellent, 

2. very good, 

3. satisfactory, 

4. unsatisfactory. 
 

Several experiments concerning the HSV dataset have been carried out and the most 

interesting results for the conclusion: Visick_grading = ”excellent” are presented below.  
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Figure 6.8 Rules with positive (triangles) and non–positive (circles) 
confirmation measure value in a support–anti-support space. First 
diagram shows all generated rules, second one shows only a selection of 
interesting rules (conclusion: Visick_grading='excellent') 



 93 

Originally, the minimal rule support threshold was set to 0.05, and the maximal 

acceptable rule anti-support was not set at all, which means that almost all possible (for 

that class) rules were generated. Our experiments aimed at showing how to determine 

an area of rules that are interesting from the point of view of support, anti-support, 

confirmation and property M. 

Figure 6.8 presents decision rules generated for the class: 

Visick_grading = “excellent”. The first diagram contains all generated rules. It is clear 

that the number of rules is overwhelming and no surgeon could make any use of it. 

Thus, it is necessary to limit the set of rules by introducing more severe support and 

anti-support thresholds and by choosing only the rules that are characterized by positive 

values of confirmation measures. The determined area of interesting measures is 

marked on the second diagram of Figure 6.8. These are rules with support not lower 

than 0.3, anti-support not higher than 0.2, and a positive value of any confirmation 

measure. Let us stress, that this area is not limited only to the Pareto-optimal rules, 

because from the point of view of good representation of concept 

Visick_grading = “excellent” the dominated rules may also be useful and interesting for 

the user. The limited area contains 22 rules and includes rules that are optimal with 

respect to measures with the property M. A conducted analysis has shown that these 

rules cover almost 70% of all objects for which Visick_grading had the value 

“excellent”. 
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7. Conclusions 

The work has been aimed at proposing a multicriteria rule evaluation space whose set of 

non-dominated rules contains all rules optimal with respect to any attractiveness 

measure having the property M, and at analyzing the relationships occurring between 

popular attractiveness measures (rule support, rule anti-support, confidence, rules 

interest function, gain, dependency factor and measures f and s) and  

To complete the main goal, the following specific tasks and problems have been 

solved: 

1. An analysis of measures of rule support, rule anti-support, confidence, rules 

interest function, gain, dependency factor and measures f and s with respect to 

the property M, the property of confirmation and the property of hypothesis 

symmetry for has been performed. It has been proved that in the set of the 

considered measures only the dependency factor does not possess the property 

M (Theorem 3.1 - Theorem 3.4). Moreover, we have analytically verified that 

rule support, anti-support and confidence cannot be considered as confirmation 

measures, while the gain measure is a confirmation measure only under certain 

conditions (Theorem 3.5 - Theorem 3.7). In case of the property of hypothesis 

symmetry, we have proved that, in addition to measures f and s which were 

found to be characterized by this property earlier by Eells et al. in [17], only rule 

interest function and gain possess it (Theorem 3.8 - Theorem 3.10). These 

results allow to group the attractiveness measures according to their properties 

and support the user in choosing a measure appropriate for his expectations. 
 

2. An analysis of relationships between the considered attractiveness measures and 

analysis of the enclosure relationships between the sets of non-dominated rules 

in the evaluation spaces formed by different combinations of the concerned 

measures has been conducted. The analysis has been performed for a set of rules 

with the same conclusion. As a result, for a fixed value of rule support, we have 

proved existence of a monotonic link between confidence and measures f and s 

(Theorem 4.2, Theorem 4.5), and we have also generalized it to the whole class 

of measures with the property M (Theorem 4.9). Assuming a fixed value of 

confidence, we have also formulated the conditions under which there exists a 

monotonic relationship between rule support and measure f, s (Theorem 4.1, 
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Theorem 4.4) and any measure with the property M (Theorem 4.8). Moreover, 

we have proved that any measure with the property M is monotone (anti-

monotone) in rule support (rule anti-support) when the value of rule anti-support 

(rule support) is held fixed (Theorem 5.1, Theorem 5.2).  

The analysis of enclosure relationships between the sets of non-dominated rules 

in the evaluation spaces formed by different combinations of the concerned 

measures has revealed that the support–confidence and support–f Pareto-optimal 

sets of rules contain exactly the same rules. Moreover, we have proved that the 

set of the non-dominated rules with respect to support and confidence contains 

the support–s Pareto-optimal set, while the support–anti-support Pareto-optimal 

set is the upper set of the support–confidence Pareto-optimal set (Theorem 4.6, 

Theorem 4.7, Theorem 5.3). 
 

3. A proposition of a multicriteria evaluation space such that its set of the non-

dominated rules contains all rules optimal with respect to any attractiveness 

measure that has the property M (Section 5). It is a two dimensional space 

formed by the measures of rule support and anti-support. The monotonic or anti-

monotonic relationship, described above, between any attractiveness measure 

with the property M on one hand, and anti-support and support on the other 

hand, guarantees that rules optimal with respect to any measure possessing the 

property M will surely be found among the rules forming the support–anti-

support Pareto-optimal border. 
 

4. The support–confidence and support–anti-support evaluation spaces has also 

been enriched by the valuable semantics of confirmation measures. It has been 

proved that linear functions allow to distinguish the invaluable rules with non-

positive or very small confirmation values in these evaluation spaces 

(Theorem 4.3, Theorem 5.4). This result helps to limit the set of induces rules 

only to those with an appropriate confirmation. 
 

5. A multicriteria rule evaluation system has been designed and developed 

(Section 6). It is based on an apriori-like framework adjusted for generation of 

rules with respect to attractiveness measures possessing valuable properties. As 

the application of the system three datasets, census, msweb and hsv, have been 

analysed and discussed. 
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Completion of the tasks listed above pointed out also new interesting directions for 

future research. The most important and promising ones include: 

• verification of the above mentioned properties for other attractiveness measures, 

• development of algorithm for finding in the support–anti-support space a set of 

rules (both dominated and non-dominated) that covers the dataset in a certain 

percentage. 
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