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Abstract. We investigate a monotone link between Bayesian confirma-
tion measures and rule support and confidence. In particular, we prove
that two confirmation measures enjoying some desirable properties are
monotonically dependent on at least one of the classic dimensions be-
ing rule support and confidence. As the confidence measure is unable to
identify and eliminate non-interesting rules, for which a premise does not
confirm a conclusion, we propose to substitute the confidence for one of
the considered confirmation measures. We also provide general conclu-
sions for the monotone link between any confirmation measure enjoying
some desirable properties and rule support and confidence.

1 Introduction

Knowledge patterns discovered from data are usually expressed in a form of
“if. . . , then. . . ” rules. They are consequence relations representing mutual re-
lationship, association, causation, etc. between independent and dependent at-
tributes. Typically, the number of rules generated from massive datasets is very
large, and only a small portion of them is likely to be useful. In order to mea-
sure the relevance and utility of the discovered patterns, quantitative measures,
also known as attractiveness or interestingness measures (metrics), have been
proposed and studied. Measures such as confidence and support, gain [10], con-
viction [3], etc. have been introduced to capture different characteristics of rules.
Among widely studied interestingness measures, there is, moreover, a group of
Bayesian confirmation measures, which quantify the degree to which a piece of
evidence built of the independent attributes provides “evidence for or against”
or “support for or against” the hypothesis built of the dependent attributes [9].
An important role is played by a confirmation measure denoted in [9] and other
studies byf , and by a confirmation measure s proposed by [6]. Both of them
have a valuable property of monotonicity (M) introduced in [12].



Bayardo and Agrawal [2] have proved that for a class of rules with fixed
conclusion, the upper support-confidence Pareto border (i.e. the set of non-
dominated, Pareto-optimal rules with respect to both rule support and confi-
dence) includes optimal rules according to several different interestingness mea-
sures, such as gain, Laplace [7], lift [13], conviction [3], an unnamed measure
proposed by Piatetsky-Shapiro [16]. This practically useful result allows to iden-
tify, the most interesting rules according to several interestingness measures by
solving an optimized rule mining problem with respect to rule support and con-
fidence only.

As shown in [12], the semantics of the scale of confidence is not as meaningful
as that of confirmation measures. Moreover, it has been analytically shown in
[4] that there exist a monotone link between some confirmation measures on one
side, and confidence and support, on the other side. In consequence, we propose
in this paper, two alternative approaches to mining interesting rules. The first
one consists in searching for a Pareto-optimal border with respect to rule support
and confirmation measure f , the second concentrates on searching for a Pareto-
optimal border with respect to rule support and confirmation measure s.

The paper is organized as follows. In the next section, there are preliminar-
ies on rules and their quantitative description. In section 3, we investigate the
idea and the advantages of mining rules constituting Pareto-optimal border with
respect to support and confirmation measure f . Section 4 concentrates on the
proposal of mining Pareto-optimal rules with respect to support and confirma-
tion measure s. In section 5, we generalize the approaches from sections 3 and 4
to a broader class of confirmation measures. The paper ends with conclusions.

2 Preliminaries

Discovering rules from data is a domain of inductive reasoning. To start inference
it uses information about a sample of larger reality. This sample is often given in
a form of an information table, containing objects of interest characterized by a
finite set of attributes. Let us consider information table S = (U , A), where Uand
A are finite, non-empty sets called universe and set of attributes, respectively.
One can associate a formal language L of logical formulas with every subset
of attributes. Conditions for a subset B ⊆ A are built up from attribute-value
pairs (a,v), where a ∈ B and v ∈ Va (set Va is a domain of attribute a), using
logical connectives ¬ (not), ∧ (and), ∨ (or). A decision rule induced from S and
expressed in L is denoted by φ → ψ (read as “if φ, then ψ′′) and consists of
condition and decision formulas in L, called premise and conclusion, respectively.

In this paper, similarly to [2], we only consider all minimal rules with the
same conclusion, which can be induced from a dataset. Let us remind that a
rule is minimal if, for a given conclusion, there is no other rule with weaker
conditions.



2.1 Monotonicity of a function in its argument

For x belonging to a set ordered by the relation ≻ and for the values of g
belonging to a set ordered by the relation ≤, a function g(x) is understood to
be monotone (resp. anti-monotone) in x, if x1 ≺ x2 implies that g(x1) ≤ g(x2)
(resp. g(x1) ≥ g(x2)).

2.2 Support and confidence measures of rules

With every rule induced from information table S, measures called support and
confidence can be associated. The support of condition φ, denoted as sup(φ),
is equal to the number of objects in U having property φ. The support of rule
φ → ψ, denoted as sup(φ → ψ), is equal to the number of objects in U having
both property φ and ψ; for those objects, both premise φ and conclusion ψ

evaluate to true.
The confidence of a rule (also called certainty), denoted as conf (φ → ψ), is

defined as follows:

conf (φ→ ψ) =
sup (φ→ ψ)

sup (φ)
, sup(φ) > 0 (1)

Note, that it can be regarded as a conditional probability Pr(ψ|φ) with which
conclusion ψ evaluates to true, given that premise φ evaluates to true, however,
expressed in terms of frequencies.

2.3 Bayesian confirmation measures f and s

In general, confirmation measures quantify the strength of confirmation that
premise φ gives to conclusion ψ. All confirmation measures take (desired) positive
values in situations where the conclusion of the rule is verified more often when
its premise is verified, rather than when its premise is not verified. For the
confirmation measures a desired property of monotonicity (M) was proposed in
[12]. This monotonicity property says that, given an information system S, a
confirmation measure is a function non-decreasing with respect to sup(φ → ψ)
and sup(¬φ → ¬ψ), and non-increasing with respect to sup(¬φ → ψ) and
sup(φ → ¬ψ). Among confirmation measures that have property (M) there is
confirmation measure f [9] and confirmation measure s [6].

The confirmation measures f and s are defined as follows:

f(φ→ ψ) =
Pr(φ|ψ) − Pr(φ|¬ψ)

Pr(φ|ψ) + Pr(φ|¬ψ)
, (2)

s(φ→ ψ) = Pr(ψ|φ) − Pr(ψ|¬φ). (3)

Taking into account that conditional probability Pr(◦|∗) = conf(∗ → ◦),
confirmation measures f and s can be expressed as:



f(φ→ ψ) =
conf(ψ → φ) − conf(¬ψ → φ)

conf(ψ → φ) + conf(¬ψ → φ)
, (4)

s(φ→ ψ) = conf(φ→ ψ) − conf(¬φ→ ψ). (5)

2.4 Partial order on rules in terms of two interestingness measures

Let us denote by �AB a partial order on rules in terms of any two different
interestingness measures A and B. The partial order �AB can be decomposed
into its asymmetric part ≺AB and symmetric part ∼ AB in the following manner:
given two rules r1 and r2, r1 ≺AB r2 if and only if

A(r
1
) ≤ A(r

2
) ∧B(r

1
) < B(r

2
), or

A(r
1
) < A(r

2
) ∧B(r

1
) ≤ B(r

2
);

(6)

moreover, r1 ∼AB r2 if and only if

A(r1) = A(r2) ∧B(r1) = B(r2). (7)

2.5 Implication of a total order �t by partial order �AB

Application of some measures that quantify the interestingness of a rule induced
from an information table S creates a total order, denoted as �t, on those rules.
In particular, measures such as gain, Laplace, lift, conviction, one proposed by
Piatetsky-Shapiro, or confirmation measures f and s result in such a total order
on the set of rules with a fixed conclusion, ordering them according to their
interestingness value.

A total order �t is implied by partial order �AB if:

r1 �AB r2 ⇒ r1 �t r2, and
r1 ∼AB r2 ⇒ r1 ∼t r2.

(8)

It has been proved by Bayardo and Agrawal in [2] that if a total order �t

is implied by support-confidence partial order �sc, then the optimal rules with
respect to �t can be found in the set of non-dominated rules with respect to
rule support and confidence. Thus, when one proves that a total order defined
over a new interestingness measure is implied by �sc, one can concentrate on
discovering non-dominated rules with respect to rule support and confidence.
Moreover, Bayardo and Agrawal have shown in [2] that the following conditions
are sufficient for proving that a total order �t defined over a rule value function
g(r) is implied by partial order �AB :

g(r) is monotone in A over rules with the same value of B, and

g(r) is monotone in B over rules with the same value of A.



3 Pareto-optimal border with respect to rule support
and confirmation measure f

Due to the semantic importance and utility of confirmation measure f , a ver-
ification of the monotonicity of confirmation measure f in rule support and
confidence has been conducted in [4]. It has been proved that rules maximizing
confirmation measure f can be found on the Pareto-optimal support-confidence
border. However, the utility of confirmation measure f outranks the utility of
confidence. The confidence measure has no means to show, that the rule is use-
less when its premise disconfirms the conclusion. Such situation is expressed by a
negative value of any confirmation measure, thus useless rules can be filtered out
simply by observing the confirmation measure’s sign. Therefore, we find it in-
teresting to propose a new Pareto-optimal border – with respect to rule support
and confirmation measure f .

An analysis of the monotonicity of confidence in rule support for a fixed value
of confirmation f , as well as in confirmation f for a fixed value of rule support,
has been performed. The following theorems have been proved in [5].

Theorem 1. Confidence is monotone in confirmation measure f .

Theorem 2. Confidence is independent of rule support, and therefore monotone

in rule support, when the value of confirmation measure f is held fixed.

It follows from the above results that rules optimal in confidence lie on the
Pareto-optimal border with respect to rule support and confirmation measure f .
Even more, the Pareto-optimal border with respect to support and onfirmation
measure f is identical with the Pareto-optimal border with respect to support
and confidence.

Consequently, other interestingness measures that are monotone in confi-
dence, must also be monotone in confirmation measure f , due to the monotone
link between confidence and confirmation measure f . Thus, all the interesting-
ness measures that were found on the support-confidence Pareto-optimal border
shall also reside on the Pareto-optimal border with respect to rule support and
confirmation measure f . We find it valuable to combine those two measures in
the border, as confirmation measure f is independent of rule support, and rules
that have high values of confirmation measure f are often characterized by small
values of the rule support.

A computation experiment showing rules in confirmation measure f and rule
support has been conducted. A real life dataset containing information about
technical state of buses was analyzed. The set consisted of 76 objects described
by 8 criteria and divided into 3 decision classes. For one of those classes a set of
all rules was generated. The values of confirmation measure f and rule support
for those rules were placed on Fig.1. It can be easily observed that the Pareto-
optimal set of rules (marked in Fig.1 by squares) includes rules maximizing
such interestingness measures as confidence, Laplace, lift (marked in Fig.1 by
asterisk), Piatetsky-Shapiro (marked in Fig.1 by a cross).



Fig. 1. Pareto-optimal border with respect to rule support and confirmation measure f

includes rules being optimal in many other measures (technical state of buses dataset)

For rules with a fixed conclusion, mining the set of non-dominated rules
with respect to rule support and confirmation measure f will identify rules op-
timal according to such interestingness measures as confidence, conviction, lift,
Laplace, Piatetsky-Shapiro, gain, etc. However, if those non-dominated rules are
characterized by a negative value of confirmation measure f , then they must
be discarded because in those rules the premise just disconfirms the conclu-
sion. A final set of rules representing ”‘the best”’ patterns discovered from the
whole dataset shall be a union of all the non-negative-in-f rules from all the
Pareto-optimal borders (all possible conclusions) with respect to support and
confirmation measure f .

4 Rules optimal with respect to confirmation measure s

The second confirmation measure that came into the scope of our interest was
confirmation measure s. Similarly to confirmation measure f , it also has the de-
sirable property of monotonicity (M). On the contrary to confirmation measure
f , however, it is dependent on both rule support and confidence. The mono-
tonicity of confirmation measure s in confidence for a fixed value of support, as
well as in rule support for a fixed value of confidence, has been analyzed. The
following theorems have been proved in [5].

Theorem 3. When the rule support value is held fixed, then confirmation mea-

sure s is monotone in confidence.

Theorem 4. When the confidence value is held fixed, then:
– confirmation measure s is monotone in rule support if and only if s ≥ 0,



– confirmation measure s is anti-monotone in rule support if and only if s < 0.

As rules with negative values of confirmation measure s are discarded from
consideration, the result from Theorem 4 states the monotone relationship just in
the interesting subset of rules. Since confirmation measure s has the property of
monotonicity (M), we propose to generate interesting rules by searching for rules
maximizing confirmation measure s and support, i.e. substituting the confidence
in the support-confidence Pareto-optimal border with the confirmation measure
s and obtaining in this way a support-confirmation-s Pareto-optimal border.
This approach differs from the idea of finding the Pareto-optimal border accord-
ing to rule support and confirmation measure f , because support-confirmation-f
Pareto-optimal border contains the same rules as the support-confidence Pareto-
optimal border, while, in general, the support-confirmation-s Pareto-optimal
border can differ from the support-confidence Pareto-optimal border. Moreover,
as measure f , unlikely to s, is a satisfying confirmation measure with respect
to the property of symmetry verified in [8], mining the Pareto-optimal border
with respect to rule support and confirmation measure f still remains a good
alternative idea.

5 Rules optimal with respect to any confirmation
measure having the property of monotonicity (M)

A general analysis of the monotonicity of any confirmation measure that enjoys
the property of monotonicity (M) has also been conducted.

Let us use the following notation:

a = sup(φ→ ψ), b = sup(¬φ→ ψ), c = sup(φ→ ¬ψ), d = sup(¬φ→ ¬ψ).

Let us consider a Bayesian confirmation measure F (a, b, c, d) being differ-
entiable and having the property of monotonicity (M). The following theorems
have been proved in [5].

Theorem 5. When the value of rule support is held fixed, then the confirmation

measure F (a, b, c, d) is monotone in confidence.

Theorem 6. When the value of confidence is held fixed, then the confirmation

measure F (a, b, c, d) is monotone in rule support if:

∂F

∂c
=
∂F

∂d
= 0 or

∂F
∂a

− ∂F
∂b

∂F
∂d

− ∂F
∂c

≥
1

conf (φ→ ψ)
− 1. (9)

It is worth noting, that, due to Theorem 6, all those confirmation measures
that are independent of sup(φ → ¬ψ) and sup(¬φ → ¬ψ) are found monotone
in rule support when the value of confidence is kept unchanged.

Theorem 5 and Theorem 6 outline an easy method of verification of existence
of the monotone link between any confirmation measure with the property of



monotonicity (M), and rule support and confidence. Confirmation measures that
positively undergo such verification are, in our opinion, good candidates for
substituting the confidence dimension in the Pareto-optimal border with respect
to rule support and confidence proposed by Bayardo and Agrawal in [2]. Thanks
to the monotonicity of a confirmation measure in rule support and confidence, a
monotone link of that confirmation measure with other interestingness measures
such as lift, gain, Laplace, etc. is assured. Therefore, the Pareto-optimal border
with respect to rule support and a confirmation measure includes rules optimal
according to the same metrics as the support-confidence Pareto-optimal border.
Due to the fact that the scale of confirmation measures is more useful than that of
confidence, we propose searching for the non-dominated set of rules with respect
to rule support and a confirmation measure with the propery of monotonicity
(M). We find confirmation measure f particularly valuable for its property of
monotonicity (M) and for being a satisfying measure with respect to the property
of symmetry, and confirmation measure s for its property of monotonicity (M)
and its simplicity.

6 Conclusions

Bayardo and Agrawal have opted in [2] for an approach to mining interesting
rules based on extracting a Pareto-optimal border with respect to rule support
and confidence. We have analyzed and described the monotone link between the
confirmation measures f and s, and rule support and confidence. This analysis
has also been extended to a more general class of all the confirmation measures
that have the property of monotonicity (M). The results show that it is reason-
able to propose a new approach in which we search for a Pareto-optimal border
with respect to rule support and a confirmation measure, in particular, we are
in favor of confirmation measure f or s. Consequently, our future research will
concentrate on adapting the “APRIORI” algorithm [1], based on the frequent
itemsets, for mining most interesting association rules with respect to rule sup-
port and either confirmation measure f or s.
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