Application of Bayesian confirmation measures
for mining rules from the support-confidence

Pareto-optimal set

Roman Stowinski

Poznan University of Technology,
Systems Research Institute, PAS, Poland

Izabela Brzezinska

Poznan University of Technology

Salvatore Greco

University of Catania, Italy

ICAISC 2006, Zakopane



Plan

m Introduction
m Basic quantitative characteristics of rules
s Bayesian confirmation measures and their desirable properties
s Confirmation measures fand s
m Utility of confidence vs. utility of confirmation measures
m Support-confidence Pareto-optimal border
m New proposals:
s support-confirmation f Pareto-optimal border
m support-confirmation s Pareto-optimal border
m support-anti-support Pareto-optimal border

m Conclusions



Introduction

m Discovering rules from data is the domain of inductive reasoning (IR)
m IR uses data about a sample of larger reality to start inference

m S=(U, A) - data table, where U and A are finite, non-empty sets
U - universe; A - set of attributes

m S=(U, C, D) - decision table, where C - set of condition attributes,
D - set of decision attributes, CnD=

e.g. Characterization of nationalities

U  Height Hair Eyes Nationality Support

| tall blond blue Swede 270

2 medium dark hazel German 90

3 medium blond blue Swede 90

4 tall blond blue German 360

5 short red blue German 45

6 medium dark hazel Swede 45
- - N ¥ Y,
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Introduction

= With every subset of attributes BcA, one can associate a formal

language of formulas L, called decision language

m Formulas are built from attribute-value pairs (g,v),

where geB and veV, (domain of a), using logical connectives A, v, —

m All formulas in L are partitioned into condition and decision formulas

(called premise and conclusion, resp.)

m Decision rule or association rule induced from S
is @ consequence relation: ¢—y read as if ¢, then y

where ¢ and y are condition and decision formulas expressed in L



Introduction

E.g. decision rules induced from ,characterization of nationalities”:
1) If (Height=tall), then (Nationality=Swede)

2) If (Height=medium) & (Hair=dark), then (Nationality=German)
3) If (Height=medium) & (Hair=blond), then (Nationality=Swede)
4y If (Height=tall), then (Nationality=German)

5) If (Height=short), then (Nationality=German)

6) If (Height=medium) & (Hair=dark), then (Nationality=Swede)

m Decision rule or association rule induced from S
is @ consequence relation: ¢—y read as if ¢, then y

where ¢ and y are condition and decision formulas expressed in L



Introduction

= The number of rules generated from massive datasets can be

very large and only a few of them are likely to be useful

= In all practical applications, like medical practice, market basket,

it is crucial to know how good the rules are

m To measure the relevance and utility of rules, quantitative measures

called attractiveness or interestingness measures, have been proposed
(e.g. support, confidence, lift, gain, conviction, Piatetsky-Shapiro,...)

m There is no evidence which measure(s) is (are) the best



Introduction — Basic quantitative characteristics of rules

= |9 is the set of all objects from U, having property ¢ in S

N H\V\ is the set of all objects from U, having property vy in S

m Basic quantitative characteristics of rules
m Support of decision rule ¢—>y in S:

sup($ — v) = card(|o A )

m Confidence (called also certainty factor) of decision rule ¢—y in S
(Lukasiewicz, 1913):

sup(o > v)
sup(9)

conf(op — y) =



Introduction — Bayesian confirmation measures

= Among widely studied interestingness measures, there is a group of
Bayesian confirmation measures

m Measures of confirmation quantify the strength of confirmation that
premise ¢ gives to conclusion vy

m vy is verified more often, when ¢ is verified, rather than when ¢

is not verified”
(> 0 if Prylo)> Pr(y)

c(6,v) =0 if Prylo)= Pr(v)
<0 if Pr(\ycl))< Pr (y)

where Pr(yl¢) = conf (o, )= 5”";5‘1; (—(I:)W)

m [ts meaning is different from a simple statistics of co-occurrence

of properties ¢ and vy in universe U



Introduction — Desirable properties of confirmation measures

m Desirable properties of c(¢,y):

m hypothesis symmetry (Eells, Fitelson 2002):

C(¢I\IJ) = _C(d)l_'\V)

= monotonicity (M) (Greco, Pawlak, Stowinski 2004):

a=sup(¢—->vy), b=sup(—¢—->vy), c=sup (¢p—>—y), d=sup(—p—->—vy)

c(¢,v) = F(a,b,c,d), where F is a function non-decreasing with
respect to a and d and non-increasing with respect to b and ¢



Introduction — Desirable properties of confirmation measures

m The property of monotonicity (M) takes into account

four evidences in assesment of the impact of property ¢ on ¢p—y

= E.g. (Hempel) consider rule (I)—)\|! : iIf X iIs a raven, then X is black

] (|) is the property to be a raven and \/ is the property to be black
m a - the number of objects in S which are black ravens
m b - the number of objects in S which are black non-ravens
m Cc - the number of objects in S which are non-black ravens

m d - the number of objects in S which are non-black non-ravens



Introduction — Desirable properties of confirmation measures

®= c(9, v)>0 means that property vy is satisfied more frequently
when ¢ is satisfied (then, this frequency is conf(¢, v)),
rather than generically in S (where the frequency is Pr(vy)),

= c(9, v)=0 means that property v is satisfied with the same frequency
whether ¢ is satisfied or not

= (9, v)<0 means that property v is satisfied less frequently
when ¢ is satisfied, rather than generically

11



Introduction - Confirmation measure fand s

®  As shown by (Greco, Pawlak, Stowinski 2004), confirmation measure f
(Good 1984, Heckerman 1988, Pearl 1988, Fitelson 2001)

flo > v)=

conf(y — &) conf(—y — ¢)
conf(y — ¢)+ conf(—y — ¢)

and confirmation measure s (Christensen 1999)
s(¢ — y) = conf(p — y) - conf(—¢ — )

are the only ones that enjoy both hypothesis symmetry (HS) and
monotonicity (M), among the most well known confirmation measures

12



Utility of confidence vs. utility of confirmation measures (1)

m Utility of scales:

m conf(p—vy) is the truth value of the knowledge pattern

#f ¢, then y”,

m f(0—v), s(¢p—>y) say to what extend v is satisfied more frequently

when ¢ is satisfied rather than when ¢ is not satisfied

13



Utility of confidence vs. utility of confirmation measures Eg. 1
m Consider the possible result of rolling a die: 1,2,3,4,5,6, and let the
conclusion be wy=,the result is 6”
m (¢, ="the result is divisible by 3"  conf(¢, »vy)=1/2, (¢, ->y)=2/3

= (, ="the result is divisible by 2"  conf(¢, »y)=1/3, (¢, >y)=3/7

m (5 ="the result is divisible by 1"  conf(¢; ->y)=1/6, f(¢5—>y)=0

= In particular, rule ¢;—y, can be read as ,in any case, the result is 6”;

indeed, the ,,any case” does not add any information which could

confirm that the result is 6, and this fact is expressed by f(¢;—y)=0

m This example clearly shows that the value of f has a more useful

interpretation than conf



Utility of confidence vs. utility of confirmation measures Eg. 2

m Consider the possible result of rolling a die: 1,2,3,4,5,6, and let the
premise be ¢=,the result is divisible by 2”

= y,="the result is 6" conf(op—>y,)=1/3, f(¢p—>y,)=3/7
= y,="the result is not 6" conf(¢p—>y,)=2/3, (d—>vy,)=-3/7
= In this example, rule ¢—>wy, has greater confidence than rule ¢y,

= However, rule ¢—, is less interesting than rule ¢—y, because
premise ¢ reduces the probability of conclusion vy, from 5/6=sup(wv,)
to 2/3= conf(¢—v,), while it augments the probability of conclusion v,
from 1/6=sup(y,) to 1/3= conf(¢p—>vy,)

m In consequence, premise ¢ disconfirms conclusion y,, which is
expressed by a negative value of f(¢p—wv,)=-3/7, and it confirms

conclusion y,, which is expressed by a positive value of f(¢p—>y,)=3/7
15



Support-confidence Pareto border

In the set of rules induced from data, we look for rules that are
optimal according to a chosen attractiveness measure

This problem was addressed with respect to such measures as
lift, gain, conviction, Piatetsky-Shapiro,...

Bayardo and Agrawal (1999) proved, however, that

given a fixed conclusion vy, the support-confidence Pareto border
(i.e. Pareto-optimal border w.r.t. rule support and confidence)
includes optimal rules according to any of those attractiveness

Measures

16



Support-confidence Pareto border

m Support-confidence Pareto border is the set of hon-dominated,
Pareto-optimal rules with respect to both rule support and confidence

A s s s s s s e s s e :
confidence . - Pareto-optimal rules
_______ = Pa.reto border . (non-dominated)
% |

e, e e - :

: dominated rules : .- T : no rules fall above this border :

.\ _______ F

AI:I L .|
’ >
support

® Mining the border identifies rules optimal with respect to measures
such as: lift, gain, conviction, Piatetsky-Shapiro,...



Support-confidence Pareto border
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X maxconviction, Laplace, lift

e maxPiatetsky-Shapiro

m Decision rules were generated from lower approximations

of preference-ordered decision classes defined according to

Variable-consistency Dominance-based Rough Set Approach

(VC-DRSA) (Greco, Matarazzo, Stowinski, Stefanowski 2001)

Rule induction algorithm: all rules algorithm (DOMAPRIORI)
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Support-confidence Pareto border

m The following conditions are sufficient for verifying whether rules
optimal according to a measure g(x) are included

on the support-confidence Pareto border:

1. g(x) is monotone in support over rules with the same confidence
and

2. g(x) is monotone in confidence over rules with the same support

m A function g(x) is understood to be monotone in x,

if x;< x, implies that g(x;) < g(x,)

19



Monotonicty of fin support and confidence

m Is confirmation measure f included in
the support-confidence Pareto border?

= Theorem 1:
Confirmation measure f is independent of support, and, therefore,
monotone in support, when the value of confidence is held fixed

m Theorem 2:
Confirmation measure f is increasing, and, therefore, monotone in
confidence

m Conclusion:

Rules maximizing f lie on the support-confidence Pareto border
(rules with fixed conclusion)

20



Monotonicty of confidence in support and f

m The utility of confirmation measure f outranks utility of confidence

m Claim 1: Substitute the conf(¢p—wy) dimension for f(¢p—y) in the
support-confidence Pareto border

m Corollary 1:
Confidence is independent of support, and, therefore,

monotone in support, when the value of f(¢p—>vy) is held fixed

m Corollary 2:
Confidence is increasing, and, therefore, monotone in f(¢p—>y)

m Conclusion:

The set of rules located on the support-confidence Pareto border is
exactly the same as on the support-f Pareto border

21



Support-confidence vs. support-f Pareto border

m All the other interestingness measures that were represented on
the support-confidence Pareto border also reside on support-f Pareto
border

m Any non-dominated rule with a negative value of f(¢p—y) must be
discarded from further analysis as its premise only disconfirms the
conclusion - such situation cannot be expressed by the scale of
confidence

m Conclusion:

The support-f Pareto border is more meaningful than
the support-confidence Pareto border

22



Support-confidence vs. support-f Pareto border

f (0—y)

No rules fall

outside this border
e e e 0
: ]

Dominated rules fall
into this area

sup (9—v)
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Monotonicty of s in support and confidence

m Is confirmation measure s included in
the rule support-confidence Pareto border?

= Theorem 3:
Confirmation measure s is increasing, and, therefore,
monotone in confidence when the value of support is held fixed

m Theorem 4:
For a fixed value of confidence, confirmation measure s is:

e increasing in sup(¢—vy) < s(é¢—>y)>0
e constant in sup(¢—vy) < s(éo—y)=0

e decreasing in sup(¢—vy) < s(o—>y)<0

m Theorem 4 states the monotone relationship just in the non-negative
range of the value of s (i.e. the only interesting)

24



Support-confidence vs. support-s Pareto border

m Theorem 5:
If a rule resides on the support-s Pareto border
(in case of positive value of s),
then it also resides on the support-confidence Pareto border,

while one can have rules being on the support-confidence Pareto
border which are not on the support-s Pareto border.

m Conclusion:

The support-confidence Pareto border is, in general, larger than
the support-s Pareto border

25



Confirmation measures with the property of monotonicity (M)

m What are the necessary and sufficient conditions for rules maximizing

a confirmation measure c(¢,y) with the property of monotonicity (M)

to be included in the rule support-confidence Pareto border?

m  Reminder of the property of monotonicity (M):
a=sup(¢o—v), b=sup(—=o—>vy), c=sup (¢—>—v), d=sup(—o—>—-v)
c(v,v)=F(a,b,c,d), where F is a function non-decreasing with respect to a and d

and non-increasing with respect to b and ¢

4
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Confirmation measures with the property of monotonicity (M)

m Let F(a, b, ¢, d) be a confirmation measure with the property (M)

m Theorem 6:

When the value of support is held fixed, then F(a, b, ¢, d) is monotone
in confidence.

m Theorem 7:
When the value of confidence is held fixed, then F(a, b, ¢, d) admitting
derivative with respect to all its variables a, b, c and d, is monotone
in support if:

oF OF
oF OF oa B ob 1
_ -0 or > -1
oc  od oF oF ~ conf(¢ — )

od oc
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Confirmation measures with the property of monotonicity (M)

m Conclusions:

m Theorem 6 states that for a set of rules with the same conclusion,
any Bayesian confirmation measure satisfying the property of
monotonicity (M) is always non-decreasing with respect to
confidence when the value of support is kept fixed

m Due to Theorem 7, all those confirmation measures that are

independent of c=sup(¢p—-vy) and d=sup(—-¢—>-vy) are always
monotone in support when the value of confidence remains
unchanged

28



Support-anti-support Pareto border

m How to find rules optimal according to any confirmation measure
with the property (M)?

= Theorem 8:
When the value of support is held fixed, then F(a, b, ¢, d)
is anti-monotone (non-increasing) in anti-support

= Theorem 9:
When the value of anti-support is held fixed, then F(a, b, c, d) is
monotone (non-decreasing) in support

m  Anti-support is the number of examples which satisfy the premise of
the rule but not its conclusion: sup(¢p—>-vy)

29



Support-anti-support Pareto border

m Claim 2:

m The best rules according to any of the confirmation measures
with the property of monotonicity (M) must reside on
the support-anti-support Pareto border

m The support-anti-support Pareto border is the set of rules such that
there is no other rule having greater support and smaller anti-support

30



Support-anti-support Pareto border

anti-support

’.

sup  (¢—=>—y)

Dominated rules fall ’
into this area ,

» No rules fall

’ “4a—  outside this border

sup (¢—v)

support
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Support-anti-support Pareto border

A
/
L
= Dominated
()]

but interesting rules
50%

\

max acceptable —F
anti-support

P >
0 _—"  50% Sup(p—>) 100%

min acceptable support



Conclusions

m Many attractiveness measures can be identified by mining the
support-confidence Pareto border — very practical result

m The utility of confirmation measures outranks the utility of confidence

m Suggested new Pareto borders:

m support-f Pareto border

m support-s Pareto border

m Pareto border w.r.t. support and anti-support includes rules
maximizing all confirmation measures with the property (M)

33



Conclusions

m Indeed, a rule ¢—>y lying on the support-anti-support Pareto-optimal
border is ,maximally frequent” with respect to the pattern ¢y

and ,minimally infrequent” with respect to the pattern ¢A—y

= From an algorithmic viewpoint this is particularly useful because of

the closure property of support and anti-support:
a) if an itemset is frequent, then all its subsets are also frequent,
b) if an itemset is infrequent, then all its supersets are also infrequent.

= Property a) means that support is downward closed, i.e. if an itemset

has a required support, then all its subsets also have it.

= Property b) means that anti-support is upward closed, i.e. if an

itemset has not a required support, then neither of its subsets has it.

34



Support-anti-support Pareto border

A
/
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= Dominated
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but interesting rules
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\

max acceptable —F
anti-support

P >
0 _—"  50% Sup(p—>) 100%

min acceptable support



Thank you
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