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Introduction

Discovering rules from data is the domain of inductive reasoning (IR)

IR uses data about a sample of larger reality to start inference

S=〈U, A〉 – data table, where U and A are finite, non-empty sets 

U – universe;    A – set of attributes

S=〈U, C, D〉 – decision table,  where C – set of condition attributes,

D – set of decision attributes, C∩D=∅

e.g.

C D
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Introduction

With every subset of attributes B⊆A, one can associate a formal 

language of formulas L, called decision language

Formulas are built from attribute-value pairs (q,v),                  

where q∈B and v∈Va (domain of a), using logical connectives ∧, ∨, ¬

All formulas in L are partitioned into condition and decision formulas

(called premise and conclusion, resp.)

Decision rule or association rule induced from S

is a consequence relation:  φ→ψ read as  if φ, then ψ

where φ and ψ are condition and decision formulas expressed in L
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Introduction

E.g. decision rules induced from „characterization of nationalities”:

1) If (Height=tall), then (Nationality=Swede)

2) If (Height=medium) & (Hair=dark), then (Nationality=German)

3) If (Height=medium) & (Hair=blond), then (Nationality=Swede)

4) If (Height=tall), then (Nationality=German)

5) If (Height=short), then (Nationality=German)

6) If (Height=medium) & (Hair=dark), then (Nationality=Swede)

Decision rule or association rule induced from S

is a consequence relation:  φ→ψ read as  if φ, then ψ

where φ and ψ are condition and decision formulas expressed in L
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Introduction

The number of rules generated from massive datasets can be

very large and only a few of them are likely to be useful

In all practical applications, like medical practice, market basket, 

it is crucial to know how good the rules are

To measure the relevance and utility of rules, quantitative measures

called attractiveness or interestingness measures, have been proposed

(e.g. support, confidence, lift, gain, conviction, Piatetsky-Shapiro,…)

There is no evidence which measure(s) is (are) the best
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Introduction – Basic quantitative characteristics of rules

is the set of all objects from U, having property φ in S

is the set of all objects from U, having property ψ in S

Basic quantitative characteristics of rules

Support of decision rule φ→ψ in S:

Confidence (called also certainty factor) of decision rule φ→ψ in S  
(Łukasiewicz, 1913):

φ

ψ

)()( ψ∧φ=ψ→φ cardsup

( ) ( )
( )φ

ψ→φ
=ψ→φ

sup
sup

conf
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Introduction – Bayesian confirmation measures

Among widely studied interestingness measures, there is a group of 
Bayesian confirmation measures

Measures of confirmation quantify the strength of confirmation that 

premise φ gives to conclusion ψ

„ψ is verified more often, when φ is verified, rather than when φ
is not verified”

Its meaning is different from a simple statistics of co-occurrence 

of properties φ and ψ in universe U

( )
( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )
( )φ

ψ→φ
=ψφ=φψ

⎪
⎪
⎩
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⎨

⎧

ψ<φψ<

ψ=φψ=

ψ>φψ>

ψφ

sup
sup

,confPr

PrPr
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Introduction – Desirable properties of confirmation measures

Desirable properties of c(φ,ψ):

hypothesis symmetry (Eells, Fitelson 2002):  

c(φ,ψ) = –c(φ,¬ψ)

monotonicity (M) (Greco, Pawlak, Słowiński 2004):

a=sup(φ→ψ), b=sup(¬φ→ψ), c=sup (φ→¬ψ), d=sup(¬φ→¬ψ)

c(φ,ψ) = F(a,b,c,d), where F is a function non-decreasing with 

respect to a and d and non-increasing with respect to b and c
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Introduction – Desirable properties of confirmation measures

The property of monotonicity (M) takes into account

four evidences in assesment of the impact of property φ on φ→ψ

E.g. (Hempel) consider rule φ→ψ : if x is a raven, then x is black

φ is the property to be a raven and ψ is the property to be black

a – the number of objects in S which are black ravens

b – the number of objects in S which are black non-ravens

c – the number of objects in S which are non-black ravens

d – the number of objects in S which are non-black non-ravens
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Introduction – Desirable properties of confirmation measures

c(φ, ψ)>0 means that property ψ is satisfied more frequently

when φ is satisfied (then, this frequency is conf(φ, ψ)), 

rather than generically in S (where the frequency is Pr(ψ)),

c(φ, ψ)=0 means that property ψ is satisfied with the same frequency

whether φ is satisfied or not

c(φ, ψ)<0 means that property ψ is satisfied less frequently

when φ is satisfied, rather than generically
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Introduction – Confirmation measure f and s

As shown by (Greco, Pawlak, Słowiński 2004), confirmation measure f
(Good 1984, Heckerman 1988, Pearl 1988, Fitelson 2001)

and confirmation measure s (Christensen 1999)

are the only ones that enjoy both hypothesis symmetry (HS) and 

monotonicity (M), among the most well known confirmation measures

( ) ( ) ( )
( ) ( )φ→ψ¬+φ→ψ

φ→ψ¬−φ→ψ
=ψ→φ

confconf
confconf

f

( ) ( ) ( )ψ→φ¬−ψ→φ=ψ→φ confconfs
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Utility of confidence vs. utility of confirmation measures (1)

Utility of scales:

conf(φ→ψ) is the truth value of the knowledge pattern 

„if φ, then ψ”, 

f(φ→ψ), s(φ→ψ) say to what extend ψ is satisfied more frequently

when φ is satisfied rather than when φ is not satisfied
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Utility of confidence vs. utility of confirmation measures Eg. 1

Consider the possible result of rolling a die: 1,2,3,4,5,6, and let the 

conclusion be ψ=„the result is 6”

φ1 ="the result is divisible by 3" conf(φ1 →ψ)=1/2, f(φ1 →ψ)=2/3

φ2 ="the result is divisible by 2" conf(φ2 →ψ)=1/3, f(φ2 →ψ)=3/7

φ3 ="the result is divisible by 1" conf(φ3 →ψ)=1/6, f(φ3 →ψ)=0

In particular, rule φ3→ψ, can be read as „in any case, the result is 6”; 

indeed, the „any case” does not add any information which could 

confirm that the result is 6, and this fact is expressed by f(φ3→ψ)=0

This example clearly shows that the value of f has a more useful 

interpretation than conf
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Utility of confidence vs. utility of confirmation measures Eg. 2

Consider the possible result of rolling a die: 1,2,3,4,5,6, and let the 

premise be φ=„the result is divisible by 2”

ψ1="the result is 6" conf(φ→ψ1)=1/3, f(φ→ψ1)=3/7 

ψ2="the result is not 6" conf(φ→ψ2)=2/3, f(φ→ψ2)=−3/7

In this example, rule φ→ψ2 has greater confidence than rule φ→ψ1

However, rule φ→ψ2 is less interesting than rule φ→ψ1 because 

premise φ reduces the probability of conclusion ψ2 from 5/6=sup(ψ2) 

to 2/3= conf(φ→ψ2), while it augments the probability of conclusion ψ1

from 1/6=sup(ψ1) to 1/3= conf(φ→ψ1)

In consequence, premise φ disconfirms conclusion ψ2, which is 

expressed by a negative value of f(φ→ψ2)=−3/7, and it confirms 

conclusion ψ1, which is expressed by a positive value of f(φ→ψ1)=3/7
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Support-confidence Pareto border

In the set of rules induced from data, we look for rules that are 

optimal according to a chosen attractiveness measure

This problem was addressed with respect to such measures as

lift, gain, conviction, Piatetsky-Shapiro,…

Bayardo and Agrawal (1999) proved, however, that

given a fixed conclusion ψ, the support-confidence Pareto border

(i.e. Pareto-optimal border w.r.t. rule support and confidence)

includes optimal rules according to any of those attractiveness 

measures
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Support-confidence Pareto border

Support-confidence Pareto border is the set of non-dominated, 

Pareto-optimal rules with respect to both rule support and confidence

Mining the border identifies rules optimal with respect to measures 

such as: lift, gain, conviction, Piatetsky-Shapiro,…

Pareto borderconfidence

support

no rules fall above this borderdominated rules 
fall in this area

- Pareto-optimal rules 
(non-dominated)
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Support-confidence Pareto border

Decision rules were generated from lower approximations

of preference-ordered decision classes defined according to 

Variable-consistency Dominance-based Rough Set Approach 

(VC-DRSA) (Greco, Matarazzo, Słowiński, Stefanowski 2001)

Rule induction algorithm: all rules algorithm (DOMAPRIORI)
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Support-confidence Pareto border

The following conditions are sufficient for verifying whether rules 

optimal according to a measure g(x) are included 

on the support-confidence Pareto border:

1. g(x) is monotone in support over rules with the same confidence

and

2. g(x) is monotone in confidence over rules with the same support

A function g(x) is understood to be monotone in x, 

if x1 p x2 implies that g(x1) ≤ g(x2)
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Monotonicty of f in support and confidence

Is confirmation measure f included in 

the support-confidence Pareto border?

Theorem 1:

Confirmation measure f is independent of support, and, therefore, 

monotone in support, when the value of confidence is held fixed

Theorem 2:

Confirmation measure f is increasing, and, therefore, monotone in 

confidence

Conclusion:

Rules maximizing f lie on the support-confidence Pareto border
(rules with fixed conclusion)
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Monotonicty of confidence in support and f

The utility of confirmation measure f outranks utility of confidence

Claim 1: Substitute the conf(φ→ψ) dimension for f(φ→ψ) in the 
support-confidence Pareto border

Corollary 1:
Confidence is independent of support, and, therefore, 

monotone in support, when the value of f(φ→ψ) is held fixed

Corollary 2:

Confidence is increasing, and, therefore, monotone in f(φ→ψ)

Conclusion:

The set of rules located on the support-confidence Pareto border is 
exactly the same as on the support-f Pareto border
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Support-confidence vs. support-f Pareto border

All the other interestingness measures that were represented on 

the support-confidence Pareto border also reside on support-f Pareto 

border

Any non-dominated rule with a negative value of f(φ→ψ) must be 

discarded from further analysis as its premise only disconfirms the 

conclusion – such situation cannot be expressed by the scale of 

confidence 

Conclusion:

The support-f Pareto border is more meaningful than 

the support-confidence Pareto border
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sup (φ→ψ)

f
(φ
→
ψ
)

Dominated rules fall 
into this area

No rules fall 
outside this border

Support-confidence vs. support-f Pareto border

0

Area of rules to be discarded

1
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Monotonicty of s in support and confidence

Is confirmation measure s included in 
the rule support-confidence Pareto border?

Theorem 3:
Confirmation measure s is increasing, and, therefore, 
monotone in confidence when the value of support is held fixed

Theorem 4:
For a fixed value of confidence, confirmation measure s is:

• increasing in sup(φ→ψ) ⇔ s(φ→ψ)>0

• constant  in sup(φ→ψ) ⇔ s(φ→ψ)=0

• decreasing in sup(φ→ψ) ⇔ s(φ→ψ)<0

Theorem 4 states the monotone relationship just in the non-negative 
range of the value of s (i.e. the only interesting)
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Support-confidence vs. support-s Pareto border

Theorem 5:

If a rule resides on the support-s Pareto border 

(in case of positive value of s), 

then it also resides on the support-confidence Pareto border, 

while one can have rules being on the support-confidence Pareto 

border which are not on the support-s Pareto border.

Conclusion:

The support-confidence Pareto border is, in general, larger than 

the support-s Pareto border
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Confirmation measures with the property of monotonicity (M)

What are the necessary and sufficient conditions for rules maximizing

a confirmation measure c(φ,ψ) with the property of monotonicity (M)

to be included in the rule support-confidence Pareto border?

Reminder of the property of monotonicity (M):

a=sup(φ→ψ), b=sup(¬φ→ψ), c=sup (φ→¬ψ), d=sup(¬φ→¬ψ)

c(φ,ψ)=F(a,b,c,d), where F is a function non-decreasing with respect to a and d,

and non-increasing with respect to b and c
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Confirmation measures with the property of monotonicity (M)

Let F(a, b, c, d) be a confirmation measure with the property (M)

Theorem 6:

When the value of support is held fixed, then F(a, b, c, d) is monotone 

in confidence. 

Theorem 7:

When the value of confidence is held fixed, then F(a, b, c, d) admitting 

derivative with respect to all its variables a, b, c and d, is monotone 

in support if:

( )  1
1
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Confirmation measures with the property of monotonicity (M)

Conclusions:

Theorem 6 states that for a set of rules with the same conclusion, 

any Bayesian confirmation measure satisfying the property of 

monotonicity (M) is always non-decreasing with respect to 

confidence when the value of support is kept fixed

Due to Theorem 7, all those confirmation measures that are 

independent of c=sup(φ→¬ψ) and d=sup(¬φ→¬ψ) are always 

monotone in support when the value of confidence remains 

unchanged
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Support-anti-support Pareto border

How to find rules optimal according to any confirmation measure 

with the property (M)?

Theorem 8:

When the value of support is held fixed, then F(a, b, c, d) 

is anti-monotone (non-increasing) in anti-support

Theorem 9:

When the value of anti-support is held fixed, then F(a, b, c, d) is 

monotone (non-decreasing) in support

Anti-support is the number of examples which satisfy the premise of 

the rule but not its conclusion: sup(φ→¬ψ)
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Support-anti-support Pareto border

Claim 2: 

The best rules according to any of the confirmation measures 

with the property of monotonicity (M) must reside on 

the support-anti-support Pareto border

The support-anti-support Pareto border is the set of rules such that 

there is no other rule having greater support and smaller anti-support
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sup(φ→ψ)
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Conclusions

Many attractiveness measures can be identified by mining the 

support-confidence Pareto border – very practical result

The utility of confirmation measures outranks the utility of confidence

Suggested new Pareto borders:

support-f Pareto border

support-s Pareto border

Pareto border w.r.t. support and anti-support includes rules 

maximizing all confirmation measures with the property (M)
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Conclusions

Indeed, a rule φ→ψ lying on the support-anti-support Pareto-optimal 

border is „maximally frequent” with respect to the pattern φ∧ψ

and „minimally infrequent” with respect to the pattern φ∧¬ψ

From an algorithmic viewpoint this is particularly useful because of 

the closure property of support and anti-support:

a)  if an itemset is frequent, then all its subsets are also frequent,

b)  if an itemset is infrequent, then all its supersets are also infrequent.  

Property a) means that support is downward closed, i.e. if an itemset

has a required support, then all its subsets also have it. 

Property b) means that anti-support is upward closed, i.e. if an

itemset has not a required support, then neither of its subsets has it. 
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sup(φ→ψ)
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Thank you


