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Abstract. Analysis of rule interestingness measures with respect to
their properties is an important research area helping to identify groups
of measures that are truly meaningful. In this article, we analyze prop-
erty Ex1, of preservation of extremes, in a group of confirmation mea-
sures. We consider normalization as a mean to transform them so that
they would obtain property Ex1 and we introduce three alternative ap-
proaches to the problem: an approach inspired by Nicod, Bayesian, and
likelihoodist approach. We analyze the results of the normalizations of
seven measures with respect to property Ex1 and show which approaches
lead to the desirable results. Moreover, we extend the group of ordinally
non-equivalent measures possessing valuable property Ex1.
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1 Introduction

One of the main objectives of data mining process is to identify ”valid, novel,
potentially useful, and ultimately comprehensible knowledge from databases” [6].
When mining large datasets, the number of knowledge patterns, often expressed
in a form of ”if..., then...” rules, can easily be overwhelming rising an urgent
need to identify the most useful ones. Addressing this issue, various quantitative
measures of rule interestingness (attractiveness) have been proposed and stud-
ied, e.g., support, confidence, lift (for a survey on interestingness measures see
[1], [9], [13]). The literature is a rich resource of ordinally non-equivalent mea-
sures that reflect different characteristics of rules. There is no agreement which
measure is the best. To help to analyze objective measures, some properties

have been proposed, expressing the user’s expectations towards the behavior of
measures in particular situations. Properties of measures group the measures ac-
cording to similarities in their characteristics. Using the measures which satisfy
the desirable properties, one can avoid considering unimportant rules. Different
properties were surveyed in [5], [9], [10], [19]. In this paper, we focus on two de-
sirable properties: property of confirmation quantifying the degree to which the



premise of the rule provides evidence for or against the conclusion [8], [2], and
property Ex1 guaranteeing that any conclusively confirmatory rule, for which
the premise φ entails the conclusion ψ (i.e. such that φ |= ψ), is assigned a
higher value of measure than any rule which is not conclusively confirmatory,
and that any conclusively disconfirmatory rule, for which φ refutes ψ (i.e. such
that φ |= ¬ψ), is assigned a lower value than any rule which is not conclu-
sively disconfirmatory [4], [11]. Though property Ex1 is so intuitively clear and
required, it is not satisfied by many popular measures. Looking for a way of trans-
forming seven chosen confirmation measures, so they would fulfill Ex1, Crupi et
al. [4] proposed to normalize them. Their approach, however, is only one of many
ways to handle this issue. In this paper, we extend their analysis and propose
three other alternative normalization schemas. Moreover, we analyze them with
respect to property Ex1 presenting and commenting the results of application
of different normalizations to the chosen measures. Furthermore, as the result
of our work, there also emerges a set of interestingness measures (alternative to
one of Crupi et al.) that satisfy desirable properties and thus extend the family
of valuable measures.

2 Preliminaries

A rule induced from a dataset U shall be denoted by φ → ψ. It consists of a
premise (evidence) φ and a conclusion (hypothesis) ψ. A rule is a logical sentence
in the sense that elementary conditions on attributes are connected by logical
”and”, on both sides of the rules. However, on a particular attribute they can
concern evaluations expressed on nominal, ordinal or cardinal scales. For each
rule we consider the number of objects which satisfy both the premise and the
conclusion, only the premise, only the conclusion, neither the premise nor the
conclusion. However, this does not mean that in our data each object can assume
only values e.g., ψ or ¬ψ. It simply means that when we evaluate a rule of the
type ”if φ, then ψ” we take into account set of objects that satisfy ψ and a set
of objects that do not satisfy ψ.

In general, by sup(γ) we denote the number of objects in the dataset for
which γ is true. Thus, sup(φ→ ψ) is the number of objects satisfying both the
premise and the conclusion of a φ → ψ rule. Moreover, the following notation
shall be used throughout the paper: a = sup(φ → ψ), b = sup(¬φ → ψ),
c = sup(φ→ ¬ψ), d = sup(¬φ→ ¬ψ). Observe that b can be interpreted as the
number of objects that do not satisfy the premise but satisfy the conclusion of
the φ→ ψ rule. Analogous observations hold for c and d. Moreover, the following
relations occur: a+c = sup(φ), a+b = sup(ψ), b+d = sup(¬φ), c+d = sup(¬ψ),
and the cardinality of the dataset U , denoted by |U |, is the sum of a, b, c and d.

3 Property of Bayesian confirmation

Formally, an interestingness measure c(φ → ψ) has the property of Bayesian
confirmation (or simply confirmation) iff it satisfies the following conditions:



c(φ→ ψ)

> 0 if Pr(ψ|φ) > Pr(ψ),
= 0 if Pr(ψ|φ) = Pr(ψ),
< 0 if Pr(ψ|φ) < Pr(ψ).

(1)

where Pr(ψ) denotes the probability of ψ, and Pr(ψ|φ) is the conditional
probability of ψ given φ.

This definition identifies confirmation with an increase in the probability of
the conclusion provided by the premise, neutrality with the lack of influence
of the premise on the probability of conclusion, and disconfirmation with a de-
crease of probability of the conclusion imposed by the premise [2]. Under the
”closed world assumption” adopted in inductive reasoning, and because U is a
finite set, it is legitimate to estimate probabilities in terms of frequencies, e.g.,
Pr(ψ) = sup(ψ)/|U | = (a + b)/|U |. In consequence, we can define the con-
ditional probability as Pr(ψ|φ) = Pr(φ ∧ ψ)/Pr(φ), and it can be regarded as
sup(φ→ ψ)/sup(φ) (i.e. a/(a+c)). Thus, the above condition can be re-written:

c(φ→ ψ)


> 0 if a

a+ c >
a+ b
|U | ,

= 0 if a
a+ c = a+ b

|U | ,

< 0 if a
a+ c <

a+ b
|U | .

(2)

Measures that possess the property of confirmation are referred to as con-
firmation measures or measures of confirmation. They quantify the degree to
which the premise φ provides ”support for or against” the conclusion ψ [8]. By
using the attractiveness measures that possess this property one can filter out
rules which are misleading and disconfirm the user, and this way, limit the set
of induced rules only to those that are meaningful [18]. The only constraints (2)
that the property of confirmation puts on a measure are that it assigns positive
values in the situation when confirmation occurs, negative values in case of dis-
confirmation and zero otherwise. As a result, many alternative, non-equivalent
measures of confirmation have been proposed. Most commonly used ones are
gathered in Table (1) (selection provided in [4]):

4 Property Ex1 of preservation of extremes

To handle the plurality of alternative confirmation measures Crupi et al. [4] have
proposed a property (principle) Ex1 resorting to considering inductive logic as an
extrapolation from classical deductive logic. On the basis of classical deductive
logic they construct a function v:

v(φ, ψ) =

 the same positive value if φ |= ψ,
the same negative value if φ |= ¬ψ,
0 otherwise.

(3)

For any argument (φ, ψ) v assigns it the same positive value (e.g., +1) if and
only if the premise φ of the rule entails the conclusion ψ (i.e. φ |= ψ). The same



Table 1. Common confirmation measures

D(φ→ ψ) = Pr(ψ|φ)− Pr(ψ) = a
a+ c −

a+ b
|U | Carnap [2]

S(φ→ ψ) = Pr(ψ|φ)− Pr(ψ|¬φ) = a
a+ c −

b
b+ d

Christensen [3]

M(φ→ ψ) = Pr(φ|ψ)− Pr(φ) = a
a+ b

− a+ c
|U | Mortimer [14]

N(φ→ ψ) = Pr(φ|ψ)− Pr(φ|¬ψ) = a
a+ b

− c
c+ d

Nozick [16]

C(φ→ ψ) = Pr(φ ∧ ψ)− Pr(φ)Pr(ψ) = a
|U | −

(a+ c)(a+ b)

|U |2
Carnap [2]

R(φ→ ψ) =
Pr(ψ|φ)
Pr(ψ)

− 1 =
a|U |

(a+ c)(a+ b)
− 1 Finch [7]

G(φ→ ψ) =
Pr(¬ψ|φ)
Pr(¬ψ)

= 1− c|U |
(a+ c)(c+ d)

Rips [17]

value but of opposite sign (e.g., -1) is assigned if and only if the premise φ refutes
the conclusion ψ (i.e. φ |= ¬ψ). In all other cases (i.e. when the premise is not
conclusively confirmatory nor conclusively disconfirmatory for the conclusion)
function v obtains value 0.

From definition, any confirmation measure c(φ → ψ) agrees with function
v(φ, ψ) in the way that if v(φ, ψ) is positive then the same is true for c(φ →
ψ), and when v(φ, ψ) is negative, so is c(φ → ψ). According to Crupi et al.,
the relationship between the logical implication or refutation of ψ by φ, and
the conditional probability of ψ subject to φ should go further and demand
fulfillment of the principle Ex1 [4]:

if v(φ1, ψ1) > v(φ2, ψ2), then c(φ1 → ψ1) > c(φ2 → ψ2). (4)

Property Ex1 is desirable for any interestingness measure as it guarantees
that the measure will assign a greater value to any conclusively confirmatory
rule (i.e. such that φ |= ψ, e.g., if x is seven of spades then x is black) than to
any rule which is not conclusively confirmatory (e.g., if x is black then x is seven
of spades). Moreover, rules that are conclusively disconfirmatory (i.e. such that
φ |= ¬ψ, e.g., if x is seven of spades then x is red) will obtain smaller values
of interestingness measures than rules which is not conclusively disconfirmatory
(e.g., if x is black then x is seven of spades).

5 Normalization of confirmation measures

Having observed that confirmation measures D, S, M , N , C, R, G (defined
earlier on) are contrary to Ex1, Crupi et al. [4] proposed to normalize them by
dividing each of them by the maximum (minimum, respectively) the measure
obtains when φ |= ψ, i.e. when the rule’s premise entails its conclusion (φ |=
¬ψ, respectively). Determining the maximum or minimum that a confirmation
measure obtains in case of confirmation or disconfirmation has, however, no
unique interpretation, and the approach applied by Crupi et al. is only one of
many ways to handle this issue. We shall now propose and analyze four (including



the approach of Crupi et al.) alternative schemas allowing to determine the
maximum (or minimum) of any confirmation measure in those two situations.
We denote by a′, b′, c′ and d′ the values of a, b, c and d, respectively, in case
of maximizing or minimizing the confirmation. Each of the analyzed schemas
eventually leads to a different normalization, as we divide the original measures
by their maximum or minimum calculated using alternative schemas. Therefore
next, we will present and discuss results of normalization of measures D, S, M ,
N , C, R, G using those approaches.

5.1 Approach inspired by Nicod

The Nicod’s criterion presented in [15] says that an evidence confirms a rule
φ→ ψ if and only if it satisfies both the premise and the conclusion of the rule,
and disconfirms it if and only if it satisfies the premise but not the conclusion of
the rule. Thus, objects for which the premise and the conclusion is supported are
considered as positive examples for the rule and objects satisfying the premise
but not the conclusion are counter-examples. Moreover, according to Nicod’s
criterion, an evidence that does not satisfy the premise is neutral with respect to
the rule. It means that objects for which the premise is not satisfied are irrelevant
to the rule, no matter whether they support the conclusion or not. Now, let us
propose a schema, based on Nicod’s criterion, for determination of maximum
(or minimum) of a confirmation measure. Following Nicod’s directives, the only
objects that are relevant to a rule are positive examples and counter-examples.
It brings us to an observation that a measure will obtain its maximum when all
counter-examples change into positive examples. It means that the number of
positive examples should take over all counter-examples (i.e. a′ = a + c), and
the number of counter-examples should drop to 0 (i.e. c′ = 0). The number of
evidence which are irrelevant to the rule should remain unchanged (i.e. b′ = b and
d′ = d). The schema for determination of the minimal value is analogous. Putting
all the considerations together we obtain the approach, inspired by Nicod, to
determine the extremes of any measure (Table 2).

Table 2. Schemas for determination of the extremes of any measure

Nicod’s Bayesian Likelihoodist Crupi’s et al.

Max Min Max Min Max Min Max Min

a′ = a+ c a′ = 0 a′ = a+ b a′ = 0 a′ = a+ c a′ = 0 a′ = a+ c a′ = 0

b′ = b b′ = b b′ = 0 b′ = a+ b b′ = 0 b′ = b+ d b′ = b− c b′ = a+ b

c′ = 0 c′ = a+ c c′ = 0 c′ = c+ d c′ = 0 c′ = a+ c c′ = 0 c′ = a+ c

d′ = d d′ = d d′ = c+ d d′ = 0 d′ = b+ d d′ = 0 d′ = c+ d d′ = d− a

5.2 Bayesian approach

Bayesian approach is related to the idea that the evidence confirms the hypoth-
esis, if the hypothesis is more frequent with the evidence rather than without



the evidence. Analogously, the evidence disconfirms the hypothesis, if ¬ hypoth-
esis is more frequent with the evidence rather than without the evidence. Thus,
determination of measure’s extremes based on this approach should consider a
rule from the perspective of its conclusion. Following Bayesian approach, let us
observe that for a rule if x is a raven then x is black [12] a measure will obtain
its maximum if all black non-ravens change into black ravens (i.e. a′ = a+ b and
b′ = 0), and all non-black ravens change into non-black non-ravens (i.e. d′ = c+d
and c′ = 0). It is due to the fact that when there are no black non-ravens (i.e.
b′ = 0), the hypothesis of being black is more frequent with the premise of being
a raven rather than with ¬premise of being a non raven, which means that the
premise confirms the rule’s conclusion. Moreover, when there are no non-black
ravens (i.e. c′ = 0), the ¬hypothesis of being non-black is disconfirmed as it
is more frequent with the ¬premise of being a non-raven rather than with the
premise of being a raven. Disconfirmation of ¬hypothesis is desirable as it re-
sults in confirmation of the hypothesis. The considerations about determination
of the minimal value are analogous. The Bayesian approach to determination of
a measure’s maximum or minimum is summarized in Table 2.

5.3 Likelihoodist approach

The likelihoodist approach is based on the idea that the evidence confirms the
hypothesis, if the evidence is more frequent with the hypothesis rather than
without the hypothesis, and in this context, analogously, the evidence disconfirms
the hypothesis, if the evidence is more frequent without the hypothesis rather
than with the hypothesis. Thus, one can informally say that likelihoodists look at
the rule from the perspective of its premise. According to likelihoodist approach,
for a rule if x is a raven then x is black [12] a measure will obtain its maximum if
all non-black ravens change into black ravens (i.e. a′ = a+ c and c′ = 0), and all
black non-ravens change into non-black non-ravens (i.e. d′ = b+ d and b′ = 0).
It results from the fact that when there are no non-black ravens (i.e. c′ = 0), the
evidence of being a raven is more frequent with the hypothesis of being black
rather than with ¬hypothesis of being non black, which means that the premise
confirms the rule’s conclusion. Moreover, when there are no black non-ravens
(i.e. b′ = 0), the ¬evidence of being a non-raven is more frequent with the
¬hypothesis of being non-black rather than with the hypothesis of being black.
Thus, we can conclude that hypothesis is disconfirmed by the ¬premise and as
a result of that the hypothesis is confirmed by the premise. Determination of
the minimal value of confirmation measure is analogous. The whole likelihoodist
approach to calculating the measure’s extremes is presented in Table 2.

5.4 Approach of Crupi et al.

Having proved that none of the measures: D, S, M , N , C, R nor G satisfies
the desirable property Ex1, Crupi et al. [4] showed an easy way to transform
them into measures that do fulfill Ex1. They presented formulas to which the
considered measures boil down when φ |= ψ and when φ |= ¬ψ, and proposed



to normalize the measures by dividing them by the obtained formulas. Their
article, however, does not provide any methodological schema to determine the
measure’s extremes - only the calculated formulas are given. Since, the approach
of Crupi et al. brings such interesting results, we have analyzed it thoroughly in
terms of our notation, i.e. a, b, c and d, and came up with a clear schema (see
Table 2) that can be used to determine the extremes of any measure.

According to Crupi et al., dividing a measure by the formula obtained when
φ |= ψ produces the normalized measure in case of confirmation (i.e. when
Pr(ψ|φ) ≥ Pr(ψ)), and the division by absolute value of the formula obtained
when φ |= ¬ψ gives the normalized measure in case of disconfirmation (i.e.
when Pr(ψ|φ) < Pr(ψ)). Interestingly, it turned out that the considered mea-
sures all gave the same result after that transformation, i.e. Dnorm = Snorm =
Mnorm = Nnorm = Cnorm = Rnorm = Gnorm. Crupi et al. labeled the newly
obtained measure of confirmation Z. In case of confirmation Z = G and in case
of disconfirmation Z = R. Crupi et al. [4] have proved that measure Z and all
confirmation measures ordinally equivalent to Z satisfy property Ex1.

6 Results of applying normalization schemas to measures

Each of the schemas presented by us to determine the extremes of measures even-
tually results in a different normalization. Table 3 presents them all. For the sake
of the presentation, the definitions of the analyzed measures were simplified by
basic mathematical transformations (column 1). The next four columns contain
results for different normalization schemas, for each measure there are two rows
containing the normalized measure in case of confirmation (the first row) and
disconfirmation (the second row). The notation we used assumes that lower in-
dexes signify the applied normalization (N stands for Nicod, B for Bayesian, L
for likelihoodist, and C for Crupi et al.), and that the case of confirmation is
marked by a ”+” and the case of disconfirmation by a ”-” (e.g., DN+ stands for
measure D normalized in case of confirmation, using the approach inspired by
Nicod).

Since the normalization of Crupi et al. was introduced as a tool for trans-
forming the measures so they would satisfy the property Ex1, we have analyzed
the results of different normalizations of measures D, S, M , N , C, R, G from the
view point of this property. Let us observe, that Ex1 is satisfied by any confirma-
tion measure that obtains its maximal value when there are no counterexamples
to the rule and its minimal value when there are no positive examples to the rule.
These two conditions can be regarded as sufficient for proving the possession of
Ex1 by measure c(φ→ ψ).

Theorem 1. All confirmation measures D, S, M , N , C, R, G normalized using
approach inspired by Nicod or approach of Crupi et al. satisfy property Ex1.
Moreover normalization using Bayesian approach gives measures satisfying Ex1
only in case of measure D, R and G, whereas using likelihoodist approach, Ex1
does not hold for any of the considered measures.



Table 3. Results of alternative normalization approaches

Original measure Nicod’s norm.
Bayesian
norm.

Likelihoodist
norm.

Crupi
et al
norm.

D(φ→ ψ) = ad−bc
|U|(a+c)

DN+ = ad−bc
d(a+c)

DN− = ad−bc
b(a+c)

G

R

S

S

G

R

S(φ→ ψ) = ad−bc
(a+c)(b+d)

DN+

DN−

S

S

S

S

G

R

M(φ→ ψ) = ad−bc
|U|(a+b)

MN+ = (ad−bc)(a+b+c)
d(a+b)(a+c)

R

N

N

ML+ = ad−bc
(a+b)(b+d)

R

G

R

N(φ→ ψ) = ad−bc
(a+b)(c+d)

NN+ = (ad−bc)(a+b+c)
(a+b)(a+c)(c+d)

NN− = (ad−bc)(a+c+d)
(a+b)(a+c)(c+d)

N

N

N

N

G

R

C(φ→ ψ) = ad−bc
|U|2

DN+

DN−

N

N

S

S

G

R

R(φ→ ψ) = ad−bc
(a+b)(a+c)

MN+

R

G

R

ML+

R

G

R

G(φ→ ψ) = ad−bc
(a+c)(c+d)

G

GN− = (ad−bc)(a+c+d)
b(a+c)(c+d)

G

R

G

GL− = ad−bc
(c+d)(b+d)

G

R

Proof. Possession of property Ex1 can be verified by putting c = 0 and a = 0
in the normalized measure and checking whether it’s formula boils down to 1 in
case c = 0 and to -1 in case a = 0. The considered measures normalized using
approach inspired by Nicod or approach of Crupi et al. are equal to 1 (or -1)
when c = 0 (or a = 0).

The new measures obtained during normalization inspired by Nicod can be
regarded as alternative ones with respect to measure Z advocated by Crupi et
al. [4]. DN , SN , MN , NN , CN , RN , and GN are as valuable as Z in terms of
possession of Ex1 and, generally, produce different rankings on rules than Z. It
is an important result widening the group of non-equivalent measures satisfying
property Ex1.

Theorem 2. Measures DN , SN , MN , NN , CN , RN , and GN (resulting from
application of normalization inspired by Nicod) are ordinally non-equivalent to
measure Z.



Proof. Measure f is ordinally equivalent to measure g iff for any rules r1, r2:

f(r1)

>
=
<

 g(r1) iff f(r2)

>
=
<

 g(r2). (5)

The above condition needs to be fulfilled both in case of confirmation and
disconfirmation. For Table 3 it is enough to consider measures DN+ , MN+ , NN+

and GN− . The situation in which the number of objects in U is distributed over
a, b, c and d is called scenario α. In scenario α, rule r : φ → ψ is supported
by a objects from U . Table 4 contains a counterexample proving that in two
exemplary scenarios α1 and α2 measures DN+ , and MN+ produce rankings dif-
ferent than measure G. Measure G assigns r2 greater value than to r1, whereas
measures DN+ , and MN+ rank those rules the other way round. Thus, DN and
MN are ordinally non-equivalent to measure Z. By the next counterexample in
Table 4, let us show that in scenarios α3 and α4 measure NN+ produces differ-
ent ranking than measure G. Observe that measure G assigns r1 greater value,
whereas measures NN+ favors r2, thus we can conclude that NN is ordinally non-
equivalent to Z. Finally, scenarios α1 and α2 from Table 4 prove that measure
GN− produces different ranking than measure R. Here, GN− assigns r1 greater
value, whereas R favors r2. Thus, GN is ordinally non-equivalent to Z.

Table 4. Counterexamples showing ordinal non-equivalence of measures DN , MN , NN ,
GN and measure Z

Counterexample concerning measures DN+ and MN+

α1 a = 90 b = 8 c = 1 d = 1 |U | = 100 DN+(r1)=0.90 MN+(r1)=0.91 G(r1) = 0.45

α2 a = 70 b = 16 c = 4 d = 10 |U | = 100 DN+(r2) = 0.86 MN+(r2) = 0.90 G(r1)=0.61

Counterexample concerning measure NN+

α3 a = 70 b = 1 c = 19 d = 1 |U | = 100 NN+(r1) = 0.33 G(r1)=0.26

α4 a = 55 b = 2 c = 26 d = 17 |U | = 100 NN+(r2)=0.37 G(r1) = 0.25

Counterexample concerning measure GN−

α1 a = 90 b = 8 c = 1 d = 1 |U | = 100 GN−(r1)=5.18 R(r1) = 0.009

α2 a = 70 b = 16 c = 4 d = 10 |U | = 100 GN−(r2) = 3.22 R(r1)=0.099

7 Conclusions

Analysis of interestingness measures with respect to their properties is an impor-
tant research area helping to identify groups of measures that are truly meaning-
ful. In this article, we have focused on possession of property Ex1 in a group of
popular confirmation measures. Normalization of measures as a way to transform
them so that they would obtain property Ex1 has been considered. A crucial step
of such normalization is determination of the extremes of the measures in case of



confirmation and disconfirmation. In this article, we have introduced three alter-
native approaches to this problem, i.e. an approach inspired by Nicod, Bayesian,
and likelihoodist approach. All these approaches, as well as that of Crupi et
al., lead to different results and normalizations, as they consider the concept of
confirmation from different perspectives. A set of seven confirmation measures,
earlier analyzed by Crupi et al., has been normalized using those four schemas.
We have analyzed the results of the normalizations with respect to property
Ex1. The conclusions that we obtained show that approach inspired by Nicod,
as well as approach of Crupi et al., give normalized measures with property Ex1
in cases of all of the considered measures. Moreover, we have proved that mea-
sures obtained through those normalizations are ordinally non-equivalent. Thus,
we have extended the group of measures possessing valuable property Ex1.
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