Appendix

Theorem 3. The only normalizations that transform all of the analyzed measures into measures Z and A satisfying the symmetries of Ex_2 are the normalization of Crupi et al. and its likelihoodist counterpart. Moreover, measures D, R and G normalized using the Bayesian approach satisfy all symmetries gathered up in Ex_2 .

Proof:

Considering the formulation of a confirmation measure in terms of quantities *a*, *b*, *c*, *d*, and denoting by $f^+(a,b,c,d)$ the formulation of the confirmation measure in case of confirmation, and by $f^-(a,b,c,d)$ the formulation of the confirmation measure in case of disconfirmation, the Ex₂ conditions of symmetry properties can be expressed as follows:

(E^{+})	$f^{+}(a,b,c,d) \neq -f^{-}(b,a,d,c),$	(H^{+})	$f^{+}(a,b,c,d) = -f^{-}(c,d,a,b),$
(EI^{+})	$f^{+}(a,b,c,d) \neq -f^{-}(b,d,a,c),$	(HI^{+})	$f^{+}(a,b,c,d) = -f^{-}(c,a,d,b),$
(I^{+})	$f^{+}(a,b,c,d) \neq f^{+}(a,c,b,d),$	(EH^{+})	$f^{+}(a,b,c,d) \neq f^{+}(d,c,b,a),$
(EHI^{+})	$f^{+}(a,b,c,d) = f^{+}(d,b,c,a),$	(E^{-})	$f^{-}(a,b,c,d) \neq -f^{+}(b,a,d,c),$
(H)	$f^{-}(a,b,c,d) = -f^{+}(c,d,a,b),$	(EI ⁻)	$f^{-}(a,b,c,d) = -f^{+}(b,d,a,c),$
(HI^{-})	$f^{-}(a,b,c,d) \neq -f^{+}(c,a,d,b),$	(Γ)	$f^{-}(a,b,c,d) = f^{-}(a,c,b,d),$
(EH)	$f^{-}(a,b,c,d) \neq f^{-}(d,c,b,a),$	(EHI ⁻)	$f^{-}(a,b,c,d) \neq f^{-}(d,b,c,a).$

Let us observe that in the above formulation, "=" means that the corresponding symmetry is desirable, while " \neq " means that the corresponding symmetry is undesirable. To verify if a desirable symmetry holds, we have to prove that it is true for all combinations of *a*, *b*, *c*, *d* values. In case of an undesirable symmetry, it is enough to prove that it does not hold for at least one combination of *a*, *b*, *c*, *d* values.

The Tables A-D contain the results of verification of the above symmetries for measures normalized in different ways. Some of the symmetries hold unconditionally, like symmetry H^{\dagger} for D_N measure. Such cases are marked as "always" in Tables A-D. Measures that do not always satisfy symmetries EHI^{\dagger} , H^{\dagger} , HI^{\dagger} , EI, I do not fulfil Ex₂ conditions as a whole.

As for undesirable symmetries E^+ , EI^+ , I^+ , HI^- , EH^- , EH^- , EHI^- , however, we are looking for at least one case of *a*, *b*, *c*, *d* values in which the equation describing them is not satisfied. Thus, measures for which such a combination never occurs (like in case of symmetry I^+ for measure M_N) also do not satisfy Ex_2 .

Looking at the results gathered in Tables A-D, we can conclude that the normalization of Crupi et al. and its likelihoodist counterpart, transform all of the analyzed measures into measures Z and A (respectively) satisfying the symmetries of Ex₂. Moreover, measures D, R and G normalized using the Bayesian approach satisfy all symmetries gathered up in Ex₂.

		D _N	S _N	M _N	N _N	C _N	R _N	G _N
E^+	$c(H, E) \neq -c(H, \neg E)$	iff	iff <i>ab</i> ≠cd	iff	iff $b^2 + bd \neq c^2 + ac$	iff <i>ab≠cd</i>	iff	iff
		ab≠cd		<i>b</i> ≠0			<i>b</i> ≠0	<i>c</i> ≠0
H^+	$c(H, E) = -c(\neg H, E)$	always	always	iff	always	always	iff	iff
				c=0			c=0	<i>c=</i> 0
EI^+	$c(H, E) \neq -c(\neg E, H)$	iff	iff	iff	iff	iff	iff	iff
		$b \neq c$	$b \neq c$	<i>b</i> ≠0	$b \neq c$	$b \neq c$	<i>b</i> ≠0	<i>c</i> ≠0
HI^+	$c(H, E) = -c(E, \neg H)$	iff	iff	iff	iff	iff	iff	iff
		a=d	a=d	c=0	a=d	a=d	c=0	c=0
<u>I</u> ⁺	$c(H, E) \neq c(E, H)$	iff	iff	never	iff	iff	never	iff
		$b \neq c$	$b \neq c$		$b \neq c$	$b \neq c$		$b \neq c$
EH^+	$c(H, E) \neq c(\neg H, \neg E)$	iff	iff <i>ab≠cd</i>	*)	$\inf b^2 + bd \neq c^2 + ac$	iff <i>ab≠cd</i>	*)	iff
		ab≠cd						$b \neq c$
EHI^+	$c(H, E) = c(\neg E, \neg H)$	iff	iff	**)	iff	iff	**)	always
		a=d	a=d		a=d	a=d		
<u>E</u>	$c(H, E) \neq -c(H, \neg E)$	111	iff <i>ab≠cd</i>	111	$\inf d^2 + bd \neq a^2 + ac$	iff <i>ab≠cd</i>	ıff	111
		ab≠cd	-	<i>a</i> ≠0			<i>a</i> ≠0	<i>d</i> ≠0
H	$c(H, E) = -c(\neg H, E)$	always	always	iff	always	always	iff	iff
		: 00	: 00	<i>a</i> =0	: 00	: 00	<i>a</i> =0	<i>a=</i> 0
	$c(H, E) = -c(\neg E, H)$	111	111	111	111	111	111	111
	(b=c	b=c	<i>a</i> =0	b=c	b=c	<i>a</i> =0	<i>a</i> =0
HI	$c(H, E) \neq -c(E, \neg H)$	111	111	111	111	111	111	111
		a≠d	a≠d	<i>a</i> ≠0	a≠d	a≠d	<i>a</i> ≠0	d≠0
Γ	c(H, E) = c(E, H)	111	111	always	111	111	always	***)
EII-		b=c	b=c	:	b=c	b=c	:	****)
EH	$c(H, E) \neq c(\neg H, \neg E)$		iff <i>ab≠cd</i>	111	$\operatorname{iff} d^{-} + bd \neq a^{-} + ac$	1ff <i>ab≠cd</i>	111	****)
		ab≠cd	:	a≠a	: 00	:00	a≠a	
	$c(H, E) \neq c(\neg E, \neg H)$	111	111	111	111	111	111	never
		a≠d	a≠d	a≠d	a≠d	a≠d	a≠d	

Table A. Symmetries for measures normalized using the approach inspired by Nicod

*) iff $a^2bc+ab^2c+abc^2 \neq b^2cd+bc^2d+bcd^2$,

i.e. iff $a \neq d$ and $b \neq 0$ and $c \neq 0$

**) iff $a^{2}bc+ab^{2}c+abc^{2} = b^{2}cd+bc^{2}d+bcd^{2}$,

i.e. iff a = d or b = 0 or c = 0***) iff $a^2cd+ac^2d+acd^2 = a^2bd+ab^2d+abd^2$,

i.e. iff b = c or a = 0 or d = 0****) iff $a^2cd+ac^2d+acd^2 \neq a^2bd+ab^2d+abd^2$, *i.e. iff* $b \neq c$ and $a \neq 0$ and $d \neq 0$

Table B. Symmetries for measures normalized using the Bayesian approach

		D _B	SB	M _B	N _B	C _B	R _B	G _B
E^+	$c(H, E) \neq - c(H, \neg E)$	$\inf b \neq c$	never	never	never	never	$\mathrm{iff}b\!\neq c$	$\inf b \neq c$
H^+	$c(H, E) = -c(\neg H, E)$	always	always	always	always	always	always	always
EI^+	$c(H, E) \neq -c(\neg E, H)$	$\inf b \neq c$	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	$\mathrm{iff}b{\neq}c$	$ iff \ b \neq c \\$
HI^+	$c(H, E) = -c(E, \neg H)$	always	iff a=d	iff <i>a</i> = <i>d</i>	iff <i>a=d</i>	iff <i>a</i> = <i>d</i>	always	always
I^+	$c(H, E) \neq c(E, H)$	$\operatorname{iff} b \neq c$	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	$\mathrm{iff}b{\neq}c$	$ iff \ b \neq c \\$
EH^+	$c(H, E) \neq c(\neg H, \neg E)$	$\inf b \neq c$	never	never	never	never	$\inf b \neq c$	$\mathrm{iff} \ b \neq c$
EHI^+	$c(H, E) = c(\neg E, \neg H)$	always	iff a=d	iff a=d	iff a=d	iff a=d	always	Always
_ <i>E</i> ⁻	$c(H, E) \neq -c(H, \neg E)$	iff <i>a≠d</i>	never	never	never	never	iff <i>a≠d</i>	iff <i>a≠d</i>
H	$c(H, E) = -c(\neg H, E)$	always	always	always	always	always	always	Always
EF	$c(H, E) = -c(\neg E, H)$	always	iff <i>a</i> = <i>d</i>	iff <i>a=d</i>	iff <i>a=d</i>	iff <i>a=d</i>	always	Always
ΗΓ	$c(H, E) \neq -c(E, \neg H)$	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>
_Г	c(H, E) = c(E, H)	always	iff <i>a</i> = <i>d</i>	iff <i>a</i> = <i>d</i>	iff <i>a=d</i>	iff <i>a</i> = <i>d</i>	always	Always
EH	$c(H, E) \neq c(\neg H, \neg E)$	iff <i>a≠d</i>	never	never	never	never	iff <i>a≠d</i>	iff <i>a≠d</i>
EHI	$c(H, E) \neq c(\neg E, \neg H)$	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>

Table C. Symmetries for measures normalized using the likelihoodist approach

		D _L	SL	ML	NL	CL	R _L	GL
E^+	$c(H, E) \neq - c(H, \neg E)$	never	never	never	never	never	never	never
H^+	$c(H, E) = -c(\neg H, E)$	always	always	iff <i>b=c</i>	always	always	iff <i>b=c</i>	iff <i>b=c</i>
EI^+	$c(H, E) \neq -c(\neg E, H)$	iff <i>a≠d</i>	iff <i>a≠d</i>	never	iff <i>a≠d</i>	iff <i>a≠d</i>	never	never
HI^+	$c(H, E) = -c(E, \neg H)$	iff a=d	iff <i>a=d</i>	iff <i>b=c</i>	iff <i>a</i> = <i>d</i>	iff <i>a</i> = <i>d</i>	iff <i>b=c</i>	iff <i>b=c</i>
I^+	$c(H, E) \neq c(E, H)$	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>b≠c</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>b≠c</i>	iff <i>b≠c</i>
EH^+	$c(H, E) \neq c(\neg H, \neg E)$	never	never	iff <i>b≠c</i>	never	never	iff <i>b≠c</i>	iff <i>b≠c</i>
EHI^+	$c(H, E) = c(\neg E, \neg H)$	iff a=d	iff <i>a=d</i>	always	iff <i>a</i> = <i>d</i>	iff <i>a</i> = <i>d</i>	always	always
E	$c(H, E) \neq -c(H, \neg E)$	never	never	never	never	never	never	never
H	$c(H, E) = -c(\neg H, E)$	always	always	iff a=d	always	always	iff a=d	iff a=d
Eľ	$c(H, E) = -c(\neg E, H)$	iff a=d	iff a=d	iff <i>a=d</i>	iff <i>a</i> = <i>d</i>	iff <i>a</i> = <i>d</i>	iff <i>a=d</i>	iff <i>a=d</i>
ΗΓ	$c(H, E) \neq -c(E, \neg H)$	iff <i>a≠d</i>	iff <i>a≠d</i>	never	iff <i>a≠d</i>	iff <i>a≠d</i>	never	never
Γ	c(H, E) = c(E, H)	iff a=d	iff <i>a=d</i>	always	iff a=d	iff <i>a</i> = <i>d</i>	always	always
EH	$c(H, E) \neq c(\neg H, \neg E)$	never	never	iff <i>a≠d</i>	never	never	iff <i>a≠d</i>	iff <i>a≠d</i>
ЕНГ	$c(H, E) \neq c(\neg E, \neg H)$	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>

Table D. Symmetries for measures normalized using the approach of Crupi et al. and for measures normalized using the likelihoodist counterpart of the approach of Crupi et al.

		D _C	S _C	M _C	N _C	C _C	R _C	G _C
E^+	$c(H, E) \neq - c(H, \neg E)$	$\inf b \neq c$	$\mathrm{iff}b\!\!\neq c$	$\inf b \neq c$	$\inf b \neq c$	$\inf b \neq c$	$\mathrm{iff}b{\neq}c$	$\inf b \neq c$
H^+	$c(H, E) = -c(\neg H, E)$	always	always	always	always	always	always	Always
	$c(H, E) \neq -c(\neg E, H)$	$\inf b \neq c$	$\mathrm{iff}b\!\neq c$	$\inf b \neq c$	$\inf b \neq c$	$\inf b \neq c$	$\mathrm{iff}b{\neq}c$	$\inf b \neq c$
	$c(H, E) = -c(E, \neg H)$	always	always	always	always	always	always	Always
I^+	$c(H, E) \neq c(E, H)$	$\inf b \neq c$	$\mathrm{iff}b\!\!\neq c$	$\inf b \neq c$	$\inf b \neq c$	$\inf b \neq c$	$\operatorname{iff} b \neq c$	$\mathrm{iff}b{\neq}c$
$_EH^+$	$c(H, E) \neq c(\neg H, \neg E)$	$\inf b \neq c$	$\mathrm{iff}b\!\!\neq c$	$\inf b \neq c$	$\inf b \neq c$	$\mathrm{iff}b\!\neq c$	$\mathrm{iff}b{\neq}c$	$\mathrm{iff}b{\neq}c$
EHI^+	$c(H, E) = c(\neg E, \neg H)$	always	always	always	always	always	always	Always
E	$c(H, E) \neq -c(H, \neg E)$	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>
H	$c(H, E) = -c(\neg H, E)$	always	always	always	always	always	always	always
EI	$c(H, E) = -c(\neg E, H)$	always	always	always	always	always	always	always
HI	$c(H, E) \neq -c(E, \neg H)$	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>
Γ	c(H, E) = c(E, H)	always	always	always	always	always	always	always
EH	$c(H, E) \neq c(\neg H, \neg E)$	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>
ЕНГ	$c(H, E) \neq c(\neg E, \neg H)$	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>	iff <i>a≠d</i>