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Abstract: 

In knowledge discovery and data mining many measures of interestingness have been proposed in order to reveal different 
characteristics of the discovered knowledge patterns. Among these measures, an important role is played by Bayesian confirmation 
measures, which express in what degree a piece of evidence (premise) confirms a hypothesis (conclusion). In this paper, we are 
considering knowledge patterns in form of “ if…  then… ” decision rules with a fixed conclusion. We are investigating the question of 
monotonic relationship between a particular Bayesian confirmation measure on one side, and rule support and confidence, on the 
other side. We prove that rules which are optimal according to the confirmation measure, are included in the set of non -dominated 
rules with respect to both rule support and confidence.   
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1. Introduction 

In data mining and knowledge discovery, the discovered 
knowledge patterns are often expressed in a form of “ if… , 
then… ” rules. They are consequence relations representing 
correlation, association, causation etc. between independent and 
dependent attributes. If the division into independent and 
dependent attributes has been fixed, the rules mined from data 
are regarded as decision rules, otherwise as association rules. 
Typically, the number of rules generated from massive datasets 
is very large, but only a few of them are likely to be useful for 
the domain expert analysing the data. In order to increase the 
relevance and utility of selected rules, quantitative measures, 
also known as attractiveness or interestingness measures 
(metrics), have been proposed and studied. Among them there 
are: confidence and support [1], gain [7], conviction [3], and 
many others. The proposed measures have been introduced to 
capture different characteristics of rules. Bayardo and Agrawal 
[2] have proved, however, that for a class of rules with fixed 
conclusion, the upper support-confidence Pareto border (i.e. the 
set of non-dominated, Pareto optimal rules with respect to both 
rule support and confidence) includes optimal rules according to 
several different interestingness measures, such as gain [7], 
laplace [4] [17], lift [11], conviction [3], an unnamed measure 
proposed by Piatetsky-Shapiro [15]. This is a practically useful 
result that allows to identify, for a given conclusion, the most 
interesting rules according to several interestingness measures 
by solving an optimized rule mining problem with respect to 
rule support and confidence only. 

Among widely studied interestingness measures, there is, 
moreover, a group of Bayesian confirmation measures, which 
quantify the degree to which a piece of evidence built of the 
independent attributes provides “ evidence for or against” or 
“ support for or against” the hypothesis built of the dependent 
attributes [6]. Among the most well-known Bayesian 
confirmation measures proposed in the literature, an important 
role is played by a confirmation measure denoted in [6] and 
other studies by f, which has the property of hypothesis 
symmetry, found desirable by Eells and Fitelson [5], as well the 

property of monotonicity proposed by Greco et al. [9]. 
However, according to our knowledge, the confirmation 
measure f has not yet been the subject of Bayardo and 
Agrawal’s analysis or any other work of this sort. Therefore, the 
objective of this paper is to verify whether rules, with a fixed 
hypothesis, that are best according to the confirmation measure f 
are included in the set of non-dominated rules with respect to 
rule support and confidence. 

The paper is organized as follows. In the next section there 
are preliminaries on decision rules and their quantitative 
description. In section 3, we investigate the question of 
monotonic relationship between confirmation measure f on one 
side, and rule support and confidence, on the other side. The 
paper ends with conclusions. 

 
2. Preliminaries 

Discovering rules from data is a domain of inductive 
reasoning. To start inference it uses information about a sample 
of larger reality. This sample is often given in a form of an 
information table, containing objects of interest characterized by 
a finite set of attributes. Let us consider information table 
S = (U, A), where U and A are finite, non-empty sets called 
universe and set of attributes, respectively. One can associate a 
formal language L of logical formulas with every subset of 
attributes. Conditions for a subset B⊆A are built up from 
attribute-value pairs (a,v), where a∈B and v∈Va (set Va is a 
domain of attribute a), using logical connectives ¬ (not), ∧ 
(and), ∨ (or). A decision rule induced from S and expressed in L 
is denoted by φ→ψ (read as “ if φ, then ψ”) and consists of 
condition and decision formulas in L, called premise and 
conclusion, respectively.  

In this paper, similarly to [2], at once we only consider 
rules with the same conclusion, not the whole set of all poss ible 
rules induced from a dataset.  

2.1. Monotonicity 

For x belonging to a set ordered by the relation > and for 
the values of g belonging to a set ordered by the relation ≤, a 
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function g(x) is understood to be monotone in x, if x1 < x2 
implies that g(x1) ≤ g(x2). 

2.2. Support and confidence measures of rules  

With every rule induced from information table S measures 
called support and confidence are often associated. The support 
of condition φ, denoted as sup(φ), is equal to the number of 
objects in U having property φ. The support of rule φ→ψ, 
denoted as sup(φ→ψ), is equal to the number of objects in U 
having both property φ and ψ; for those objects, both conditions 
φ and ψ evaluate to true. 

The confidence of a rule (also called certainty), denoted as 
conf(φ→ψ), is defined as follows: 

( ) ( )
( )φ

ψ→φ
=ψ→φ

sup
supconf , sup(φ)>0. 

Note, that it can be regarded as a conditional probability 
(frequency) with which conclusion ψ evaluates to true, given 
that premise φ evaluates to true. 

2.3. Bayesian confirmation measure f  

In general, measures of confirmation quantify the strength 
of confirmation that premise φ gives to conclusion ψ. There are 
many confirmation measures proposed in literature, but the 
confirmation measure f bares a very special place among them 
for having the desirable properties of hypothesis symmetry of 
Eells and Fitelson [5], as well the property of monotonicity of 
Greco et al. [9]. The monotonicity property says that, given an 
information system S, a confirmation measure is a function non-
decreasing with respect to sup(φ→ψ) and sup(¬φ→¬ψ), and 
non-increasing with respect to sup(¬φ→ψ) and sup(φ→¬ψ). 
Among other authors advocating for this measure are Good [8], 
Heckerman [10], Pearl [14], and Fitelson [6]. 

The confirmation measure f is defined as: 

)|Pr()|Pr(
)|Pr()|Pr(

)(
ψ¬φ+ψφ
ψ¬φ−ψφ

=ψ→φf , 

where )|Pr( ψφ  is the conditional probability with which 
premise φ evaluates to true given that conclusion ψ evaluates to 
true. From the Bayes’ theorem we have: 

)Pr(
)Pr()|Pr(

ψ
ψ∧φ

=ψφ .  

If the probability )Pr(o  is understood as the ratio of the 
number of objects in U having property o  to the cardinality of 
U, then it is easy to observe that, )()|Pr( φ→ψ=ψφ conf . 
Thus, the confirmation measure f can be expressed as 

)()(
)()()(

φ→ψ¬+φ→ψ
φ→ψ¬−φ→ψ

=ψ→φ
confconf
confconff   (1) 

2.4. Partial order on rules in terms of rule support and 
confidence 

As in [2], let us denote the partial order on rules in terms of 
rule support and confidence as ≤sc, and define it in the following 
manner: 

given two rules r1 and r2, r1 <sc  r2 if 
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Moreover, r1 =sc r2 if and only if 

)r()r()r()r( 2121 confconfsupsup =∧= . 

2.5. Implication of a total order by ≤sc 

Application of some measures that quantify the 
interestingness of a rule induced from an information table S 
creates a total order, denoted as ≤t, on those rules. In particular, 
measures such as gain, laplace, lift, conviction, one proposed by 
Piatetsky-Shapiro, or confirmation measure f result in such a 
total order on the set of rules with a fixed conclusion, ordering 
them according to their interestingness value. 

A total order ≤t is implied by ≤sc if 
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It has been proved by Bayardo and Agrawal [2] that if a 
total order ≤t  is implied by partial order ≤sc, then the optimal 
rules with respect to ≤t can be found in the set of non-dominated 
rules with respect to support and confidence, i.e. among the 
most interesting rules according to support-confidence partial 
order. Thus, when one proves that a total order defined over a 
new interestingness measure is implied by ≤sc, one can 
concentrate on discovering non-dominated rules with respect to 
rule support and confidence and be sure that the rules optimal 
with respect to that total order are in the discovered set. 

Moreover, Bayardo and Agrawal [2] have showed that the 
following conditions are sufficient for proving that a total order 
≤t defined over a rule value function g(r) is implied by partial 
order ≤sc: 

• g(r) is monotone in rule support over rules with the same 
confidence, and 

• g(r) is monotone in confidence over rules with the same 
rule support. 

Hence, to fulfill the objective of this paper, we shall verify 
whether these conditions hold when the confirmation measure f 
is the g(r) rule value function. Thus, we shall check whether the 
confirmation measure f is monotone in rule support when the 
confidence is held constant, as well as in confidence, when the 
rule support remains unchanged. 

 

3. Analysis of the monotonicity of f in rule support and 
confidence 

Let us consider the confirmation measure f given as in (1). 
Below, we will try to transform confirmation measure f such 
that, for given U and ψ, it only depends on confidence and 
support of rule φ→ψ. 

Remark that: 
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Analysis of the monotonicity of confirmation measure f in rule support and confidence  
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One can make the following observations: 
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Finally, we have 
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For the confirmation measure f we need to verify whether: 

• confirmation measure f is monotone in rule support when 
the confidence is held constant, and 

• confirmation measure f is monotone in confidence when 
the rule support is held constant. 

As we consider a set of rules with a fixed conclusion ψ, the 
values of |U| and sup(ψ) are constant. Thus, for a fixed 

confidence, we have a constant value of the confirmation 
measure f, no matter what the rule support is. Hence, according 
to the definition of monotonicity given in paragraph 2.1, 
confirmation measure f is monotone in rule support when the 
confidence is held constant. Therefore, the first of the sufficient 
conditions for proving that the total order ≤t defined over the 
confirmation measure f is implied by partial order ≤sc is held. 

Now, let us verify whether the confirmation measure f is 
monotone in confidence for a constant value of rule support.  

For the clarity of the presentation, let us express the 
confirmation measure f as a function of confidence, still 
regarding |U| and sup(ψ) as constants greater than 0:  

bcx
baxxf

+
−

=)( , 

where  x= conf(φ→ψ),  a=|U|,  b= sup(ψ),  c=|U|−2 sup(ψ). 

It is easy to observe that:  

• a=|U|>0, and  

• 0<b≤|U|. 

In order to verify the monotonicity of f in confidence, let us 
calculate the derivative of the above function.  
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Since there is a square in the denominator, it must always 

be a positive number. Hence, the sign of the derivative depends 
on the sign of the nominator. The nominator is equal to:  
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As b>0, and a+c=|U|+|U|−2sup(ψ)=2|U|−2sup(ψ)>0 for 
|U|≥ sup(ψ), the whole derivative is always not smaller than 0. 
Therefore, confirmation measure f is monotone in confidence. 

Thus, both of Bayardo and Agrawal’s sufficient conditions 
for proving that a total order ≤t defined over a confirmation 
measure f is implied by partial order ≤sc are held. This means 
that, for a class of rules with a fixed conclusion, rules optimal 
according to the confirmation measure f will be found in the set 
of rules that are best with respect to both rule support and 
confidence.  
 
4. Conclusions 

Bayardo and Agrawal have proved in [2] that total orders 
of many interestingness measures such as gain, laplace, lift, 
conviction, the one proposed by Piatetsky-Shapiro, etc. are 
implied by the support-confidence partial order ≤sc. This result 
showed that the most-interesting rules according to any of the 
above measures, are included in the set of Pareto-optimal (i.e. 
non-dominated) rules with respect to both rule support and 
confidence.  

In this paper, for a class of rules with the same conclusion, 
we have analyzed the monotonicity of the confirmation measure 
f in order to verify whether this measure is also implied by the 
partial order ≤sc. We have shown that the confirmation measure 
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f is constant and independent of the rule support when 
confidence is held fixed, and that it is monotone in confidence. 
Hence, it is implied by the partial order ≤sc. Therefore, rules 
optimal according to this confirmation measure lie on the upper 
support-confidence Pareto-border, i.e. they are included in the 
set of rules that are non-dominated with respect to both rule 
support and confidence, for a fixed conclusion. In other words, 
for a given conclusion, finding the set of support -confidence 
Pareto-optimal rules also guarantees finding rules optimal 
according to the confirmation measure f. 

Let us stress that the above result does not deny the interest 
of the confirmation measure f in expressing the attractiveness of 
decision rules. It just states the monotonicity of f in confidence 
of decision rules for a fixed conclusion. This result does not 
refer, however, to utility of scales in which confirmation 
f(φ→ψ) and confidence conf(φ→ψ) are expressed. While the 
confidence conf(φ→ψ) is the truth value of the knowledge 
pattern “ if φ, then ψ”, the confirmation measure f(φ→ψ) says to 
what extend ψ is satisfied more frequently when φ is satisfied 
rather than when φ is not satisfied. In other words, f says what is 
a “value of information” that φ adds to the credibility of ψ. 
Remark that the semantics of these two values are different (see 
[16]). 

The difference of semantics and utility of the two values, 
conf(φ→ψ) and f(φ→ψ), can be shown on the following 
example. Consider the possible result of rolling a die: 
1,2,3,4,5,6, and let the conclusion ψ="the result is 6". Given 
three different premises: φ1="the result is divisible by 3", 
φ2="the result is divisible by 2" and φ3="the result is divisible 
by 1", we get, respectively: conf(φ1→ψ)=1/2, f(φ1→ψ)=2/3, 
conf(φ2→ψ)=1/3, f(φ2→ψ)=3/7, and conf(φ3→ψ)=1/6, 
f(φ3→ψ)=0. While this example acknowledges the monotonicity 
of confirmation in confidence, it clearly shows that the value of 
f has a more useful interpretation than conf, in particular, in case 
of rule φ3→ψ, which can also be read as “ in any case, the result 
is 6”; indeed, the “ any case” does not add any information 
which could confirm that the result is 6, and this fact is 
expressed by f(φ3→ψ)=0. 

The difference of semantics and utility of the two measures 
can be seen even better when considering two different 
hypotheses and the same premise. Let φ="the result is divisible 
by 2", while ψ1="the result is 6" and ψ2="the result is not 6". 
Then, conf(φ→ψ1)=1/3, f(φ→ψ1)=3/7 and conf(φ→ψ2)=2/3, 
f(φ→ψ2)=−3/7. In this example, rule φ→ψ2 has greater 
confidence than rule φ→ψ1, however, rule φ→ψ2 is less 
interesting than rule φ→ψ1 because premise φ reduces the 
probability of conclusion ψ2 from 5/6=sup(ψ2) to 2/3= 
conf(φ→ψ2), while it augments the probability of conclusion ψ1 
from 1/6=sup(ψ1) to 1/3= conf(φ→ψ1); in consequence, premise 
φ disconfirms conclusion ψ2, which is expressed by a negative 
value of f(φ→ψ2)=−3/7, and it confirms conclusion ψ1, which is 
expressed by a positive value of f(φ→ψ1)=3/7. 

Finally, as semantics of f(φ→ψ) is more useful than that of 
conf(φ→ψ), and as both these measures are monotonically 
linked while being independent of the support, it would be 
reasonable to search for the most interesting rules taking into 
account just confirmation f(φ→ψ) and support sup(φ→ψ). 
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