
Title of the journal. Volume X – no X/2002, pages 1 to n 

 

Analysis of monotonicity properties of new 
normalized rule interestingness measures 
 
 
Słowiński Roman*ª — Salvatore Greco** — Szczęch Izabela* 
 
* Institute of Computing Science, Poznan University of Technology, 

Piotrowo 2, 60–965 Poznań, Poland 

Roman.Slowinski@cs.put.poznan.pl 

Izabela.Szczech@cs.put.poznan.pl 

 

ª Systems Research Institute, Polish Academy of Sciences, 

01–447 Warsaw, Poland 
 

** Faculty of Economics University of Catania, 

Corso Italia, 55, 95129 Catania, Italy 

salgreco@mbox.unicit.it 

ABSTRACT. The paper considers interestingness measures for evaluation of relevance and 

usefulness of “if…, then…” rules induced from data. We propose a way to normalize three 

popular measures: rule interest function of Piatetsky-Shapiro, gain measure of Fukuda et al. 

and dependency factor used by Popper and Pawlak. The normalization transforms the 

measures to the interval [−1, 1], whose bounds correspond to maximal Bayesian confirmation 
and disconfirmation, respectively, and thus make them more meaningful. The new normalized 

measures are analyzed with respect to a valuable property M of monotonic dependency on the 

number of objects in the dataset satisfying or not the premise or the conclusion of the rule. 

The obtained results have a practical application as they lead to efficiency gains while 

searching for the best rules. 

KEY WORDS: Data mining, Normalization, Rule Interest Function, Gain Measure, Dependency 

Factor, Monotonicity property M 

 



2     Title of the journal. Volume X – no X/2002 

1. Introduction 

Rules are popular patterns induced from data using various techniques of data 
mining. In this active research area, rule evaluation has been considered by many 
authors from different perspectives. To guide the data analyst identifying valuable 
rules, various quantitative measures of interestingness (attractiveness measures) 
have been proposed and studied (e.g. support, anti-support, Bayesian confirmation 
measures) (Hilderman et al., 2000). They all reflect some different characteristics of 
rules.  

The problem of choosing an appropriate interestingness measure for a certain 
application is difficult because the number and variety of measures proposed in the 
literature is so wide. Therefore, there naturally arises a need to analyze theoretical 
properties of measures. Properties of measures group them unveiling relationships 
between them, and are helpful in choosing an appropriate measure for a particular 
application (Lenca et al., 2008). Some of the properties have also very practical 
applications. 

In this paper, we focus on three commonly known and used measures: rule 
interest function (Piatetsky-Shapiro 1991), gain measure (Fukuda et al., 1996) and 
dependency factor advocated by (Popper 1959) and (Pawlak2004). We propose a 
way to normalize these measures to the interval [-1, 1], whose bounds correspond to 
maximal Bayesian confirmation and disconfirmation, respectively, and thus make 
them more meaningful. We analyze the new normalized measures with respect to a 
valuable property M, introduced by (Greco et al. 2004), of monotonic dependency 
of the measure on the number of objects satisfying or not the premise or the 
conclusion of the rule. Moreover, on the basis of satisfying the property M, we draw 
some practical conclusions about very particular relationship between these 
measures and two other simple but meaningful measures of rule support and anti-
support.  

The paper is organized as follows. In section 2, there are preliminaries on rules 
and their quantitative description. Next, in section 3, we analyze the normalized rule 
interest function, gain measure and dependency factor with respect to property M. 
Section 4 presents practical application of the obtained results. The paper ends with 
conclusions. 

2. Preliminaries 

Let us consider discovering rules from a sample of larger reality given in a form 
of a data table. Formally, a data table is a pair S = (U, A), where U is a nonempty 
finite set of objects, called universe, and A is a nonempty finite set of attributes. For 
every attribute a ∈ A, let us denote by Va the domain of a. By a(x) we will denote 
the value of attribute a ∈ A for an object x ∈ U. A rule induced from a data table S is 
denoted by φ→ψ (read as “if φ, then ψ”), where φ and ψ are built up from 
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elementary conditions using logical operator ∧ (and). The elementary conditions of a 
rule are defined as (a(x) rel v)) where rel is a relational operator from the set {=, <, 
≤, ≥, >} and v is a constant belonging to Va. The antecedent φ of a rule is also 
referred to as premise or condition. The consequent ψ of a rule is also called 
conclusion, decision or hypothesis. Therefore, a rule can be seen as a consequence 
relation (see critical discussion in (Greco et al., 2004) about interpretation of rules as 
logical implications) between premise and conclusion. The rules mined from data 
may be either decision or association rules, depending on whether the division of A 
into condition and decision attributes has been fixed or not. 

2.1. Support and Anti-support Measures of Rules 

One of the most popular measures used to identify frequently occurring 
association rules in sets of items from data table S is the support. The support of 
condition φ, denoted as sup(φ), is equal to the number of objects in U having 
property φ. The support of rule φ→ψ (also simply referred to as support), denoted as 
sup(φ→ψ), is equal to the number of objects in U having both property φ and ψ; for 
those objects, both premise φ and conclusion ψ evaluate to true. 

Anti-support of a rule φ→ψ (also simply referred to as anti-support), denoted as 
anti-sup(φ→ψ), is equal to the number of objects in U having property φ but not 
having property ψ. Thus, anti–support is the number of counter-examples, i.e. 
objects for which the premise φ evaluates to true, but which miss the property ψ. 
Note that anti-support can also be regarded as sup(φ→¬ψ). Thus, it is considered as 
a cost-type criterion, which means that the smaller the value of anti-support, the 
more desirable the rule is. 

2.2. Piatetsky-Shapiro's Rule Interest Function, Gain and Dependency Factor 

The rule interest function RI introduced by (Piatetsky-Shapiro 1991) is used to 
quantify the correlation between premise and conclusion. It is defined by the 
following formula:  

( ) ( ) ( )
.

||U

 supsup
supRI

ψφ
−ψ→φ=  

[1] 

For rule φ→ψ, when RI=0, then φ and ψ are statistically independent and thus, 
such a rule should be considered as uninteresting. When RI > 0 (RI < 0), then there 
is a positive (negative) correlation between φ and ψ (Hilderman et al., 2000). 

The gain measure of (Fukuda et al., 1996) is defined in the following manner: 

( ) ( ) ( )φΘ−ψ→φ=ψ→φ  supsupgain . 
[2] 
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where Θ is a fractional constant between 0 and 1. Note that, for a fixed value of 
Θ = sup(ψ)/|U|, the gain measure becomes identical to the above RI. 

The dependency factor considered in (Pawlak 2004) and also advocated by 
(Popper 1959), is defined in the following manner: 
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The dependency factor expresses a degree of dependency, and can be seen as a 
counterpart of correlation coefficient used in statistics. When φ and ψ are 
independent on each other, then η(φ→ψ)=0. If −1< η(φ→ψ) <0, then φ and ψ are 
negatively dependent, and if 0< η(φ→ψ) <1, then φ and ψ are positively dependent. 

2.3. Normalization of interestingness measures 

Among widely studied and applied interestingness measures there is also a group 
of Bayesian confirmation measures which quantify the degree to which the premise 
provides “support for or against” the conclusion (Fitelson 2001). Thus, formally, a 
measure c(φ→ψ) can be regarded as Bayesian measure of confirmation if it satisfies 
the following definition: 
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Under the “closed world assumption” adopted in inductive reasoning, and 
because U is a finite set, it is legitimate to estimate probabilities Pr(φ) and Pr(ψ) in 
terms of frequencies sup(φ)/|U| and sup(ψ)/|U|, respectively. In consequence, we can 
define the conditional probability as Pr(ψ|φ) = Pr(φ∧ψ)/Pr(φ), and it can be regarded 
as sup(φ→ψ)/sup(φ). Thus, the above condition can be re–written as: 
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Since RI, gain measure (iff Θ = sup(ψ)/|U|) and dependency factor are Bayesian 
confirmation measures (Szczęch 2007), we propose to normalize them, so that they 
would distinguish between two completely different situations: situation α in which 
confirmation occurs (i.e. when sup(φ→ψ)/sup(φ) ≥ sup(ψ)/|U|) and situation β in 
which disconfirmation occurs (i.e. when sup(φ→ψ)/sup(φ) < sup(ψ)/|U|). Inspired 
by (Crupi et al. 2008), who have analyzed a group of normalized Bayesian 
confirmation measures, we propose to normalize RI, gain and dependency factor by 
dividing them by the maximum value they obtain in case of confirmation, and by the 
absolute minimum value they obtain in case of disconfirmation. In this way, we will 
obtain confirmation measures taking values from the interval [−1, 1]. The issue of 
normalizing measures keeps gaining significance in the literature and has also been 
taken up in (Diatta et al., 2007). 

There are many approaches to determining those maximum and minimum 
values, which eventually lead to different normalizations. In this paper, we present 
the normalization, inspired by the approach of (Nicod 1923), for which we consider 
only cases in which there is the evidence, while we ignore cases where there is no 
evidence. For example, in case of "all ravens are black", the evidence is "raven" and 
the hypothesis is "black". In this situation, a black raven supports the conclusion that 
all ravens are black, non-black ravens are against this conclusion, and everything 
which is not a raven can be ignored.  

For the clarity of presentation of the normalized measures, the following notation 
shall be used from now on: 

We assume that set U is not empty, so that at least one of a, b, c, d is strictly 
positive, and that any value in the denominator of any ratio is different from zero. 

Based on the above notation, the rule interest function [1] can be expressed as:  
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and thus the normalized RI should take the following form: 
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[7] 

 
In case of the gain measure, its definition [2] can be expressed as: 

)( caagain +Θ−=  
[8] 

and the normalized gain should be defined as: 
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[9] 

 
The dependency factor [3] takes the following form in the applied notation: 
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which determines the following definition of the normalized dependency factor: 
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We have also considered, however not included in the further analysis in this 
paper, two other normalization approaches called “Bayesian” and “likelihoodist” 
(Fitelson 2007). The first one is related to the idea that the evidence confirms the 
hypothesis, if the hypothesis is more frequent with the evidence rather than with 
¬evidence, and in this context, analogously, the evidence disconfirms the 
hypothesis, if ¬hypothesis is more frequent with the evidence rather than with 
¬evidence. The second approach is related to the idea that the evidence confirms the 
hypothesis, if the evidence is more frequent with the hypothesis rather than with 
¬hypothesis, and in this context, analogously, the evidence disconfirms the 
hypothesis, if the evidence is more frequent with ¬hypothesis rather than with the 
hypothesis. 

2.4. Property M of monotonicity  

Greco, Pawlak and Słowiński have proposed in (Greco et al., 2004) property M 
of monotonic dependency of an interestingness measure on the number of objects 
satisfying or not the premise or the conclusion of a rule. Formally, an interestingness 
measure F satisfies the property M if:  

( ) ( ) ( ) ( )[ ]           F ψ¬→φ¬ψ¬→φψ→φ¬ψ→φ sup,sup,sup,sup  

[12] 

is a function non-decreasing with respect to ( ) ( )ψ¬→φ¬ψ→φ supsup   and   ,  
and non-increasing with respect to ( ) ( )ψ¬→φψ→φ¬ supsup   and   . 

The property M with respect to )( ψ→φ sup  (or, analogously, with respect to 
)( ψ¬→φ¬sup ) means that any evidence in which φ and ψ (or, analogously, 

neither φ nor ψ) hold together increases (or at least does not decrease) the credibility 
of the rule φ→ψ. On the other hand, the property of monotonicity with respect to 

( )ψ→φ¬sup  (or, analogously, with respect to ( )ψ¬→φsup ) means that any 
evidence in which φ does not hold and ψ holds (or, analogously, φ holds and ψ does 
not hold) decreases (or at least does not increase) the credibility of the rule φ→ψ. 

Let us present the interpretation of property M on the following example used in 
(Hempel 1945). Let us consider a rule φ→ψ:  if x is a raven, then x is black. In this 
case, φ stands for the property of being a raven and ψ is the property of being black. 
If an attractiveness measure F(φ→ψ) possesses the property M, then: 

• the more black ravens there are in the dataset, the more credible is the rule, 
and thus F(φ→ψ) obtains greater (or at least not smaller) values, 

• with the increase of the number of non-black non-ravens F(φ→ψ) also 
obtains greater (or at least not smaller) values,  
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• the more black non-ravens appear in the dataset, the less credible becomes 
the rule and thus, F(φ→ψ) obtains smaller (or at least not greater) values, 

• the more non-black ravens are the dataset, the less credible is the rule and 
thus, F(φ→ψ) obtains smaller (or at least not greater) values. 

2.5. Support–Anti-support Pareto-optimal border  

Let us denote by ps~a a partial preorder given by the dominance relation on a set 
X of rules with the same conclusion, taking into account two interestingness 
measures support and anti-support, i.e. given a set X and two rules r1, r2∈X,  r1 p 

s~a r2  if and only if 

).()()()( 2121 rsup-antirsup-antirsuprsup ≥∧≤  

 
Recall that a partial preorder on a set X is a binary relation R on X that is reflexive 
and transitive. The partial preorder ps~a can be decomposed into its asymmetric part 
ps~a and its symmetric part ∼s~a in the following manner:  
given a set X and two rules r1, r2∈X,  r1 ps~a r2  if and only if 
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[13] 

 
moreover,  r1 ∼s~a r2  if and only if 

).()()()( 2121 rsup-antirsup-antirsuprsup =∧=  

[14] 

If for a rule r∈X there does not exist any rule r'∈X, such that r ps~a r', then r is 
said to be non–dominated (i.e. Pareto-optimal) with respect to support and anti-
support. A set of all non-dominated rules with respect to these measures is also 
referred to as a support–anti-support Pareto-optimal border. In other words, it is the 
set of rules such that there is no other rule with the same conclusion, having a 
greater support and a smaller anti-support. 

The approach to evaluation of a set of rules with the same conclusion in terms of 
two interestingness measures being rule support and anti-support was proposed and 
presented in detail in (Brzezińska et al., 2007), and also studied in (Słowiński et al., 
2006). The idea of combining those two dimensions came as a result of looking for a 
set of rules that would include all rules optimal with respect to any interestingness 
measure with the desirable property M.  
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Theorem 1. (Brzezińska et al., 2007) When considering rules with the same 
conclusion, rules that are optimal with respect to any interestingness measure that 
has the property M must reside on the support–anti-support Pareto-optimal border. 

The above theorem states that the best rules according to any interestingness 
measures with M are in the set of non-dominated rules (i.e. objectively, the best) 
with respect to support–anti-support. This valuable and practical result allows to 
identify a set of rules containing most interesting (optimal) rules according to any 
interestingness measures with the property M, simply by solving an optimized rule 
mining problem with respect to rule support and anti-support. 

3. Analysis of normalized measures with respect to property M  

In order to prove that a normalized measure has property M, we need to show 
that it is non-decreasing with respect to a and d and non-increasing with respect to b 
and c both in case of confirmation and disconfirmation.  

Theorem 2. The normalized rule interest function has the property M. 

Proof: We will only present the proof that the normalized RI is non-decreasing with 
respect to a in case of confirmation, and omit the other proofs as they are analogous. 
Through simple mathematical transformation, we obtain the following form of the 
normalized RI in case of confirmation (for simplicity denoted by RInorm+): 

cdad

bcad
RInorm +

−
=+ . 

[15] 

RInorm+ will be non-deceasing with a if and only if an increase of a by ∆>0 will 
not result in a decrease of RInorm+. Simple algebraic transformations show that: 
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+∆+
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bcad

cdda

bcda
.    ⁪ 

[16] 

Theorem 3. The normalized gain measure has the property M. 

Proof: Analogous to the proof of Theorem 2. 

Theorem 4. The normalized dependency factor does not have property M. 

Proof: The normalized dependency factor in case of confirmation does possess 
property M (the proof is analogous to proof of  Theorem 2), however, we can prove 
by a counterexample that the normalized dependency factor in case of 
disconfirmation (for simplicity denoted as ηnorm-) does not have property M: Let us 
consider case α, in which a=7, b=2, c=3, d=3, and case α', in which a increases to 8 



10     Title of the journal. Volume X – no X/2002 

and b, c, d remain unchanged. The normalized dependency factor in case of 
disconfirmation does not have property M as such increase of a results in the 
decrease of the measure: ψ)('0756.00769.0ψ)( →φη=>=→φη −− normnorm .   ⁪ 

4. Consequences for the user - practical application of the results  

In the previous section, we have proved that the normalized measures of rule 
interest function and gain possess the property M, while the normalized dependency 
factor does not have this property. These results are of practical value as they show 
that rules optimal with respect to normalized RI or gain reside on the Pareto-optimal 
border with respect to support and anti-support (when considering rules with the 
same conclusion). Moreover, they allow potential efficiency gains as: 

•••• rules optimal with respect to normalized RI or gain can be found in the 
support–anti-support Pareto-optimal set instead of searching the set of all rules, 

•••• rule evaluation can be narrowed down to mining only the support–anti-
support Pareto-optimal set instead of conducting rule evaluation separately with 
respect to normalized RI, gain, or any other measure with property M, as we are sure 
that rules optimal according to normalized RI, gain, or any other measure with 
property M, are in that Pareto set. 

To illustrate practical application of the above theoretical results, we have 
conducted several computational experiments analyzing rules optimal with respect 
to normalized RI in case of confirmation. In Figure 1, there is an exemplary diagram 
from those experiments presenting induced rules in the perspective of rule support 
and anti-support. For a real life dataset containing information about technical state 
of buses, a set of all possible rules for which the premise confirms the conclusion 
was generated. A set of rules with the same conclusion was then isolated and rules 
non-dominated with respect to support and anti-support were found (those rules 
form the support–anti-support Pareto-optimal border). The support–anti-support 
Pareto-optimal border is indicated in Figure 1 by circles connected by a line. In the 
generated set of rules, by empty red squares we have distinguished rules optimal 
according to the normalized RI in case of confirmation (these are rules with 
sup(φ→ψ)=49 and anti-sup(φ→ψ)=2, or with sup(φ→ψ)=50 and anti-

sup(φ→ψ)=4). The diagram shows that, indeed, rules optimal with respect to the 
normalized rule interest function in case of confirmation lie on the support–anti-
support Pareto-optimal border. 
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Figure 1.   Support–anti-support Pareto-optimal border 

5. Conclusions  

In this paper, we have considered three popular measures: rule interest function, 
gain measure and dependency factor. The normalization consists in dividing the 
measures by the maximum value they obtain in case of confirmation, and by the 
absolute minimum value they obtain in case of disconfirmation. In this way, while 
keeping the interval of variation [-1, 1], the measures behave differently in case of 
confirmation and in case of disconfirmation. 

A theoretical analysis of the new normalized measures with respect to valuable 
property M has been conducted. It has been proved that the normalized measure RI 
and gain satisfy property M, while the normalized dependency factor does not 
possess this property. The possession of property M implies that rules optimal with 
respect to the normalized RI and gain will be found on the support–anti-support 
Pareto-optimal border (when considering rules with the same conclusion). These 
results have also been illustrated on an exemplary dataset. It is, therefore, legitimate 
to conclude that rule evaluation can be narrowed down to mining only the support–
anti-support Pareto-optimal set instead of conducting rule evaluation separately with 
respect to normalized RI, gain, or any other measure with property M, as we are sure 
that rules optimal with respect to normalized RI, gain, or any other measure with 
property M, are in that Pareto set. 
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