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Abstract—As each imbalanced classification problem comes
with its own set of challenges, the measure used to evaluate
classifiers must be individually selected. To help researchers make
this decision in an informed manner, experimental and theo-
retical investigations compare general properties of measures.
However, existing studies do not analyze changes in measure
behavior imposed by different imbalance ratios. Moreover, sev-
eral characteristics of imbalanced data streams, such as the
effect of dynamically changing class proportions, have not been
thoroughly investigated from the perspective of different metrics.
In this paper, we study measure dynamics by analyzing changes of
measure values, distributions, and gradients with diverging class
proportions. For this purpose, we visualize measure probability
mass functions and gradients. Additionally, we put forward a
histogram-based normalization method that provides a unified,
probabilistic interpretation of any measure over datasets with dif-
ferent class distributions. The results of analyzing eight popular
classification measures show that the effect class proportions have
on each measure is different, and should be taken into account
when evaluating classifiers. Apart from highlighting imbalance-
related properties of each measure, our study shows a direct
connection between class ratio changes and certain types of
concept drift, which could be influential in designing new types
of classifiers and drift detectors for imbalanced data streams.

Index Terms—classification measures, class imbalance, data
streams, concept drift, measure histograms, measure gradients

I. INTRODUCTION

ERFORMANCE of most classifiers can be considerably

deteriorated when they are learned from imbalanced data.
Over the last years, the problem of improving classifier per-
formance on such skewed data has received much interest,
resulting in several proposals of specialized data preprocessing
methods and classifier modifications [1], [2]. Nevertheless,
class imbalance is still treated as a challenging problem,
especially when co-occurring with other data difficulty factors
such as small dataset size, high feature dimensionality, or
complex instance distributions [3], [4].

One of the important aspects of tackling imbalanced data is
the selection of an appropriate classification performance mea-
sure. Since standard evaluation measures, such as accuracy,
tend to focus on recognizing all target classes, several other
measures addressing class imbalance have been proposed [5].
The number of such dedicated measures, commonly defined
on the basis of confusion matrices, is relatively high. Each of
them may represent different aspects of classification predic-
tions and may lead to contrasting interpretations. Therefore,
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the selection of the right metric for a particular task requires
careful thought. Unfortunately, such a choice is often driven by
the measure’s popularity rather than resulting from a thorough
discussion of its properties. Moreover, comprehensive studies
analyzing measure properties are rare [6]—-[10] and focus on
the measure as a whole, omitting analyses of changes of
measure values imposed by different class proportions. In our
opinion, questions such as: How may the measure’s values
change with respect to various class proportions?, How should
one interpret a particular measure value for a given class
proportion?, Is it potentially easy to improve a measure’s value
by modifying class distributions?, are still worth investigating.

Answering these questions would facilitate the proper in-
terpretation of measure behavior for different class imbalance
ratios. For instance, a researcher carrying out experiments
on several datasets characterized by various imbalance ratios
should be able to truly understand measure values for the given
data. Fi-score equal to 0.7 may convey different amounts
of information for different class distributions. Moreover,
this value may be easier to improve upon for some class
proportions than others. Finally, the particular combinations of
predictions in the confusion matrix may infer distinct direc-
tions of the fastest changes of the measure’s value (gradients).
This, in turn, may relate to specialized preprocessing methods
and classifier modifications for imbalanced data.

Changes in measure behavior can constitute a challenge not
only for binary imbalanced data, but also for multi-class [11],
[12] and multi-label [13] scenarios, including specific prob-
lems such as the concurrence of minority and majority classes
in the same instance [14]. However, the aforementioned anal-
yses are particularly important for classification of concept-
drifting data streams, i.e., sequences of continuously generated
data items with class and feature distributions changing (drift-
ing) over time [15]. In imbalanced streams, one of the aspects
that can drift is the class imbalance ratio. This in turn may lead
to problems in interpreting classifier performance over time.
Moreover, in such streams the role of classes may change,
i.e., the majority class may become the minority one. These
phenomena cause difficulties for developing re-sampling-based
stream ensembles [16]. Even more so, the presented challenges
are critical for designing drift detectors [17], which identify
changes in the stream by tracking the dynamics of classifier
predictions. Current solutions exploit measures such as recall
or G-mean [18], however, the principle differences between
their performance are still to be explained. Therefore, the ap-
propriate interpretation of measure values and their dynamics
in response to fast evolving class distributions is of particular
interest to the field of data stream mining.
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In this paper, we consider the above issues in interpreting
measure dynamics, i.e., changes of measure values, distribu-
tions, and gradients with diverging class proportions. To ana-
lyze such dynamics we propose a histogram-based approach,
which illustrates frequencies of possible values aggregated
over all combinations of predictions in confusion matrices.
Furthermore, we visualize changes in these histograms for
different class proportions. Contrary to approaches focused on
changes in classifier performance, such as cost-curves [19], the
presented approach is independent of any particular classifier
or dataset and, therefore, corresponds to general measure
properties. Additionally, we put forward and experimentally
validate a histogram-based normalization method that allows
to unify measure interpretation over datasets with different
class distributions. In an experiment involving seven classifiers
and 12 benchmark datasets, we show how the proposed
normalization method can help set a common ground for com-
paring multiple models on multiple problems and re-interpret
which datasets offer most space for classifier improvement.
Finally, to extend the knowledge on the dynamics of measure
values we demonstrate how to exploit measure gradients
using barycentric visualization [20] and how they relate to
changes occurring in imbalanced streams. All these analyses
are performed on eight popular classification measures. To
the best of our knowledge, the presented approaches have
not been considered in previous works on classifier evaluation
measures.

The paper is organized as follows. In Section II, we discuss
related works on classification measures for imbalanced data.
In Section III we analyze measure behavior on the basis of
their probability mass functions visualized as histograms. In
particular, Section III-A discusses the dynamics of measure
values with respect to class proportions and Section III-B
presents a new method for measure normalization. Addition-
ally, in Section IV we interpret measure gradients in the con-
text of class imbalance and concept drift. Finally, Section VI
concludes the paper and draws lines of future research.

II. RELATED WORKS

Good recognition of the minority class is a key requirement
for most imbalanced classification problems, however, its trade
off with predictions of other classes can be addressed in
different ways [6], [9], [21], [22]. Although several measures
have been already considered, there is no single measure that
is the best in all imbalanced problems and its choice for a
given dataset is not an obvious task.

In this paper, we focus on analyzing and visualizing mea-
sures that evaluate crisp classifier predictions based on the
binary confusion matrix. Therefore, measures calculated using
probability estimates and label rankings, such as for example
Brier score or the area under the ROC curve, are out of the
scope of this study. We note, however, that the tackled subject
is relevant not only to binary classification problems, but may
also apply to muti-class and multi-label scenarios. Finally, we
would like to underline that this study should not be confused
with analyses and visualizations of classifier performance. Our
main intention is to study general properties of measures rather

than visualize the predictive performance of a classifier on a
given dataset. To achieve this goal, we dissect the effect of
class imbalance on performance measures, regardless of any
particular classifier, dataset, feature dimensionality or instance
distribution.

A. Classification Measures for Imbalanced Data

The considered measures are functions of predictions rep-
resented in the confusion matrix for two-class problems (Ta-
ble 1), where the minority class is typically referred to as the
positive class (P) and the majority class is referred as the
negative one (IN). The TP (True Positive) and TN (True
Negative) entries denote the number of examples classified
correctly by the classifier as positive and negative, while
the F'N (False Negative) and FP (False Positive) indicate
the number of misclassified positive and negative examples.
Additionally, TP + TN is denoted as 7', while FN + FP is
denoted as F'.

TABLE I: Confusion matrix for two-class classification

Actual Predicted Positive Negative total
Positive TP FN P
Negative FP TN N
total P N n

For further analysis, we selected eight measures which
are commonly applied in experimental studies [S]. Precision,
recall (sensitivity), and specificity, are the most popular single-
class measures, out of which we will focus on precision and
recall. We also chose the most commonly used aggregations
of single-class measures: Fi-score, the harmonic mean of
precision and recall; G-mean, the geometric mean of sensi-
tivity and specificity; and balanced accuracy, the arithmetic
mean of sensitivity and specificity. The domains of all these
measures are between O and 1, where 1 is the preferred
value. Furthermore, Matthews Correlation Coefficient (MCC),
strongly recommended in [9] and [22], is a measure expressing
correlation between the actual and predicted classification,
which returns values between —1 (total disagreement) and
+1 (perfect agreement). Additionally, we analyze the Kappa
statistic [5], which corrects accuracy for chance predictions,
strongly related to class imbalance. Kappa can achieve values
from —1 to +1, where zero means that the classifier is no
better than a chance prediction and values above/below zero
indicate how much better/worse the predictions are. Finally,
to complement the analysis of measures for imbalanced data,
we also take into account classification accuracy, which is
the basic reference measure for any classification task. The
definitions of all the considered measures are the following:

TP + TN 0
r =
accuracy = rp TN + FP + FN
1. TP TN
balanced = o 2
alanced accuracy 2( 2 + N) 2
1

Kappa = =
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G B \/ TP TN @
M= \TP + FN TN + FP
F-score = 2- reca.ll'oprecision 5)
precision + recall
TP
precision = TP+ FP (6)
TP
recall = TP+ FN (N
TP-TN — FP-FN
MCC = — (8)

VP-P-N-N

It is worth noting that most of the above measures have been
used as a basis for evaluating and designing drift detectors for
imbalanced streams [18], [23], [24].

B. Measure Analyses and Visualizations

The measures presented in the previous section were com-
pared in many surveys [6]-[9], however, usually with the aim
of discussing the main differences in their definitions. Addi-
tionally, the F1-score was thoroughly analyzed by Powers [25]
who claimed that some of its properties, such as focusing only
on the minority class and assuming that actual and predicted
distributions are identical, may be critical flaws. Another theo-
retical study showed that aggregating sensitivity and specificity
presented more suitable behavior than aggregating precision
and recall [6]. Nevertheless, all of the mentioned theoretical
analyses did not focus on the changes of measure properties
with diverging class proportions.

Apart from theoretical studies, other related works concern
visual-based analyses of measures. One of such works dis-
cusses measure visualizations in 3D ROC space [26], where
the author mentions skew invariance as one of the properties
a measure may possess. Skew invariance is indeed a property
related to changing class proportions, yet one that does not
quantify or categorize changes in measures for consecutive
class ratios. A more recent study [10] introduces visualizations
in barycentric space and puts forward ten general properties
with an attempt to facilitate measure selection for imbalanced
data. In parts of this paper, we also make use of the barycentric
space, but visualize measure gradients instead of measure
values and focus on measure dynamics, normalization, and
applications to stream mining. Moreover, the properties pro-
posed in [10] concentrate on symmetries, minima, maxima,
and undefined values, which do not directly describe measure
dynamics with respect to class proportions.

We re-iterate that, although related, this study should not
be confused with visualizations of classifier performance, e.g.,
using ROC graphs [27], precision-recall curves [28], or other
attempts to graphically present experimental comparisons of
classifiers. The works of Curuana et al. [29] and Alaiz-
Rodriguez et al. [30], use multidimensional scaling to present
the results of several classifiers on multiple datasets according
to more than one measure. This can be considered somewhat
related to the histogram-based measure normalization pro-
posed in this paper, however, our normalization focuses on a
single measure, outputs a numerical value, and is independent
of the classifier and particular dataset. Finally, contrary to
methods presented in this study, cost-curves [19], [31] focus

on classifier dynamics on a given (static) dataset, rather than
on the general dynamics of a performance measure, regardless
of any concrete classifier or dataset.

III. HISTOGRAM-BASED MEASURE PROPERTIES

The goal of this study is to analyze the behavior of measure
values for varying imbalance ratios. These values are functions
of confusion matrices, which correspond to outcomes of clas-
sification on experimental data. If one interprets the training
data as a result of a random process, one can give a proba-
bilistic interpretation to classification measures. In particular,
measures based on confusion matrices can be considered as
discrete random variables, which map a confusion matrix to
a numerical value. Discrete random variables are commonly
described by their probability mass functions (pmfs), which
are functions that give the probability that a discrete random
variable is exactly equal to some value [32]. Probability mass
functions are often displayed as histograms, where the x-axis
represents measure values and the y-axis the probability of
achieving a given value. We will use such visualizations to
analyze the considered classification measures.

In this section, we study the dynamics of eight classification
measures (1)—(8) by means of their probability mass functions
depicted as histograms. In our analysis, we abstract from con-
crete classifiers or datasets, and, therefore, assume that each
possible confusion matrix is equally probable. Consequently,
we generate all possible confusion matrices for a dataset size n
with class proportion i = P:N, and calculate the measure’s
value for each matrix. Using the calculated measure values,
we analyze the pmf-based histograms of each measure for
varying class imbalance ratios.

In our visualizations, we use n = 160 with ir € {1:15, 1:4,
1:1,4:1,15:1}. Class proportions ir were selected to represent
class balance (1:1), low imbalance (1:4/4:1), and moderate
imbalance (1:15/15:1) [33], and span a range similar to that
of real-world imbalanced datasets used in our experiments
(Section III-B). The dataset size n was chosen to corre-
spond to the selected class proportions and to ensure that
for high imbalance (1:15/15:1) only few examples of the
minority class are available. To complement the analysis, we
also demonstrate histograms incorporating all possible class
proportions for a given n. The resulting figures are presented in
Table II. Additional visualizations for higher imbalance ratios
ir € {1:159,1:79,1:31} and a larger dataset n = 16000 are
available in the online supplementary material (Appendix B).

Based on the presented histograms, in Section III-A we an-
alyze how the measures’ pmfs change with varying imbalance
ratios. Next, in Section III-B we propose a histogram-based
measure normalization method.

A. Measure Dynamics Based on Imbalance-wise Distributions

The visual analysis of histograms gathered in Table II
and Supplementary Tables B.1-B.2 allows us to identify
differences between measure behavior occurring when the
imbalance ratio changes. In particular, accuracy starts with
a triangular distribution for the 1:1 class ratio and tends
towards a uniform distribution when the imbalance in data


http://dx.doi.org/10.1109/TNNLS.2019.2899061

NOTICE: this is the author’s version of a work that was accepted for publication in IEEE TNNLS. Changes resulting from the publishing process,
such as Rccr review, c(lilinﬁ. corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. (‘hungcz’

[EEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, .
may have been made to this work since it was submitted for publication. DOI: http://dx.doi.org/10.1109/TNNLS.2019.2899061

TABLE II: Histograms of values of eight classification measures. The x-axis spans between the minimum and maximum of
each measure and is divided into 256 bins of equal width. The y-axis shows the probability of obtaining a given measure
value. The y-axis was set up equally for all the measures, introducing minor clipping for G-mean (large number of zeros) and
Precision (large number of low/high values for 1:15/15:1 class ratios).

Measure 1:15 class ratio 1:4 class ratio 1:1 class ratio 4:1 class ratio 15:1 class ratio \ All class ratios

Accuracy

o010

Balanced ™

accuracy
Kappa ‘“ H

G-mean
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increases. Balanced accuracy and G-mean keep the same
shape of the histogram regardless of the class proportion.
Observe that even the high number of zeros remain the same
for all imbalance ratios of G-mean. On the other hand, Kappa
is a measure characterized by an almost triangular distribution
when the classes are balanced, but changes considerably with
diverging class proportions. Increasing imbalance results in
a compression of the left-hand side of Kappa’s histograms
corresponding to low measure values, keeping, however, the
right-hand side almost unaffected. This means, that the range
of possible values changes with class proportions, making it
increasingly more difficult to obtain high values. Next, F-
score and precision can be grouped together as similarly
behaving, because their histograms’ mass gradually shifts
towards the right-hand side (high measure values) as the
number of positive examples increases (compare, e.g., class
ratios for 1:15 and 15:1). On the other hand, recall does not
change the shape of its histograms, which resemble a uniform
distribution, but their resolution is heavily affected by the
number of positive examples. Notice how few measure values
are obtained for the 1:15 class ratio, compared to 15:1. In fact,
the number of different measure values is in direct proportion
to the number of positive examples in the data (see also
Supplementary Table B1-B.2). Finally, the histograms of MCC
resemble a Gaussian-like distribution with ¢ = 0. Increasing
class imbalance results in decreasing the distribution’s width
(standard deviation).

The shapes of the histograms portray the probability mass
function of the analyzed measures. Therefore, the presented
plots depict probabilities of obtaining certain measure values
for a given class proportion. Since the histograms differ con-
siderably, it follows that value distributions differ between and
within measures for different imbalance ratios. In particular,
the histograms often contain regions where certain values
are underrepresented (harder to obtain). For example, for
ir = 1:15 it is much more difficult to achieve an F;-score
higher than 0.90, whereas that same value is fairly common
when ¢r = 15:1. This observation can have a direct impact
on classifier evaluation in scenarios where the imbalance ratio
changes dynamically. Such situations can occur, for example,
in concept-drifting data streams, where class definitions and
their proportions can fluctuate with time. A common task in
data stream mining that is connected with classifier evaluation
is the detection of changes in class definitions by using drift
detectors.

The basic task of any drift detector is to signal a significant
change (drift) in the incoming data (concept). Drift detectors
are often implemented using statistical tests based on sequen-
tial analysis and process control charts [17]. If such a test
checks whether a selected performance measure is signifi-
cantly different from its previous values, the probability of
obtaining a given value, depicted in the analyzed histograms,
sheds light on how “smoothly” a detector works for a given
imbalance ratio. For example, a drift detector monitoring the
F1-score of a classifier characterized by Fp-score = 0.90
will work smoothly when the number of positive examples
is large, e.g., for a 15:1 class ratio presented Table II. This is
because for such a class ratio the number of confusion matrices

producing Fi-score values around 0.90 is fairly large, thus,
making the chance of a sudden value change rather small.

Moreover, if we assume that class proportions in the data
stream can change with time [24], the awareness of the differ-
ences in measure distributions becomes even more important.
If a measure’s histogram changes with the imbalance ratio,
then so does the performance of a drift detector. The detector
monitoring the classifier’s F;-score that worked well when the
number of positive examples was large will potentially suffer
from more false alarms when the number of positive examples
decreases, e.g. to a 1:15 class ratio presented in Table II.

Finally, apart from the shape of the histogram its resolution
can also be influenced by class proportions. This effect can
be easily observed for recall, which obtains very few different
values when the number of positive examples is low. As a
result, a drift detector based on recall [18] has to cope with
sudden jumps of the measure’s values when the number of
positive examples is very low.

To experimentally validate the above observations, we per-
formed an experiment involving a drift detector monitoring the
eight considered measures. Our hypothesis was that on a static
stream with no concept changes a drift detector should produce
fewer false alarms (incorrect detections) when the value it
oversees corresponds to a dense region in the pmf. In other
words, we expect the drift detector to be less susceptible to
noise when many confusion matrices produce similar measure
values. To verify this hypothesis, we used the PH test drift
detector [23] to monitor the changes in classifier performance
according to measures (1)—(8). To oversee the metrics, we
used a window size w = 100 and default PH test parameters
implemented in the MOA stream testing environment [34].
The experiments monitored the performance of a Hoeffding
Tree classifier on streams generated using the Agrawal gener-
ator [34].' The streams had a constant imbalance ratio and did
not contain any concept drift. We used the Agrawal generator
since, as our previous study has shown [35], the PH test is
susceptible to false alarms on this dataset. Tables III and IV
present the mean measure values and number of false alarms
for the five analyzed imbalance ratios, respectively. The results
refer to prequentially calculated [23] means and false alarm
ratios over 100 streams generated with different random seeds.

TABLE III: Prequentially calculated mean measure values
from 100 repetitions of the drift detector experiment; standard
deviations are given in parentheses.

Measure 1:15 1:4 1:1 4:1 15:1

Accuracy 0.93(.01) 0.86(.03) 0.87(.03) 0.93(.02) 0.97(.02)
Bal. acc. 0.53(.08) 0.77(.08)  0.87(.03)  0.83(.04) 0.78(.10)
Kappa 0.09(.18)  0.53(.13)  0.74(.06)  0.73(.07)  0.66(.18)
G-mean 0.14(.22)  0.74(.13)  0.87(.03)  0.81(.05) 0.73(.14)
F1-score 0.09(.19)  0.62(.13)  0.88(.03)  0.96(.01)  0.98(.01)
Precision 0.28(.37)  0.66(.09)  0.83(.04) 0.92(.02) 0.97(.01)
Recall 0.07(.16)  0.63(.17)  0.94(.04)  0.99(.03)  1.00(.01)
MCC 0.11(.19)  0.54(.11)  0.75(.06)  0.75(.07)  0.70(.15)

The results confirm our hypothesis and directly relate
to observations made during the histogram analysis. The

'Source codes, datasets and reproducible scripts for all experiments are
available at: https://github.com/dabrze/measure_dynamics
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TABLE IV: Ratio of false alarms within 100 runs of the PH
test monitoring the eight considered measures.

Measure 1:15 1:4 1:1 4:1 15:1
Accuracy 0.00 0.12 0.27 0.03 0.00
Bal. acc. 0.09 0.11 0.26 0.27 0.25
Kappa 0.68 0.44 0.50 0.43 0.49
G-mean 0.91 0.59 0.24 0.33 0.47
F1-score 0.82 0.50 0.24 0.01 0.00
Precision 0.94 0.80 0.50 0.11 0.00
Recall 0.70 0.44 0.27 0.04 0.01
MCC 0.76 0.49 0.48 0.40 0.50

detector monitoring accuracy, produces more false alarms
when the classes are more balanced. This is in accordance
with histograms presented in Table II, where high values
of accuracy (~0.9) are underrepresented for the balanced
distribution compared to class imbalance. On the other hand,
measures that maintain similar histogram shapes through vary-
ing imbalance ratios (balanced accuracy, Kappa, G-mean,
MCC), also maintain similar levels of false alarms for the
tested ratios. The slightly higher number of false alarms when
7r = 1:15 is due to the fact that for this class proportion the
values of the aforementioned measures where much lower,
placing the analysis in a different part of the histograms.
Finally, the remaining measures have false alarm rates directly
proportional to the number of positives in the data stream. This
relates to the moving mass of Fy-score and precision, and the
resolution-effect of recall.

B. Histogram-based Measure Normalization

The observed differences in histogram shapes suggest that
the measure’s value should be interpreted differently de-
pending on the class proportion. To address this issue, we
propose a normalization method that takes into account the
class imbalance in a given dataset and standardizes measure
values according to their frequencies. The resulting normalized
measure values gain a probabilistic interpretation that remains
true for varying imbalance ratios. Therefore, one will be able
to compare normalized measure values between datasets with
different class proportions, and potentially display different
measure values on the same scale.

Our approach is based on cumulative distribution functions
(cdfs). A cdf of a discrete random variable x is defined as:

= pmf x(t) ©)

t<x

Fx(z)=P(X <x)

where the right-hand side represents the probability that the
random variable X takes on a value less than or equal
to x, which can be computed by summing the values of
X’s probability mass function pmf () up to x. Since the
histograms presented in Table II are based on the measures’
pmfs, the cdf of each measure X can be visually interpreted
as the proportion of the histogram (proportion of confusion
matrices) with a value less than or equal to z.

Therefore, we propose the following normalization method:
For a given measure M on a dataset with a class ratio ir, the

measure’s value z is normalized according to:

= Z pme,ir(t)

t<x

N(M,ir,x) (10)

where pmf ; ;,.() is the probability mass function of measure
M for proportion 4r. The resulting value of the normalization
is always between O and 1, and represents the probability that
measure M takes on a value less than or equal to . Thus, the
higher N (M), the smaller the chance of improving a classifier,
in terms of M, for a given dataset.

We will illustrate the normalization method on a simple
example. Let us assume we have a dataset with n = 160
examples, where the number of positives and negatives are
P =150 and N = 10, respectively. Next, let us assume that a
classifier achieved a value of precision x = 0.9. For any given
P and N, the number of all possible confusion matrices is ¢ =
(N+1)(P+1). In our example, ¢ = (1504+1)(10+1) = 1661.
The number of confusion matrices for which the value is lower
than x depends on the measure and class proportions, and
has to be computed by applying the measure to the confusion
matrices. In our case, by applying (6) to ¢ confusion matrices
we get 506 matrices for which precision is less than or equal
to 0.9. Therefore, N (precision,150:10,0.9) = 506/1661 ~
0.3. If one performed a similar operation for P = 10 and
N = 150, the result would be N (precision,10:150,0.9) =
1650/1661 ~ 0.99. As the example shows, it is much more
difficult to improve a classifier that achieved 0.9 precision on
a dataset with few positive examples than it is to improve that
result when the number of positives is high (even though in
both cases precision was the same).

To verify how the normalization method works for different
measures on real data, we performed an experiment on 12
benchmark imbalanced datasets from the UCI repository [36]
(Table V). The datasets were selected to represent various
sizes, various imbalance ratios, and feature characteristics [4].

TABLE V: Characteristic of real-world benchmark datasets
used to analyze the proposed histogram-based measure nor-
malization.

Dataset Examples Features Imbalance ratio  Minority class
arcene 200 10000 ~1:1 positive
breast-w 699 9 ~1:2 malignant
colon 62 2000 ~1:2 1
credit-g 1000 61 ~1:2 bad
ecoli 336 7 ~1:9 imU
glass 213 9 ~1:12 v-float
ionosphere 350 34 ~1:2 bad
micromass 571 1300 ~1:10 AUG.AEX
new-thyroid 214 5 ~1:5 hyper
solar—-flare 1066 10 ~1:5 F
transfusion 747 4 ~1:3 yes
yeast 1484 8 ~1:32 ME2

Using the selected datasets, we performed 10 repetitions of
stratified 10-fold cross-validation [5] to evaluate seven types
of learning algorithms, chosen for their diversity: k-Nearest
Neighbors (k-NN), Support Vector Machines (SVM), Naive
Bayes (NB), Decision Tree (CART), Logistic Regression
(LR), Random Forest (RF), and Gradient Boosting Machines
(GBM). Since our goal is only to illustrate the effect of
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Fig. 1: Comparison of CART performance on 12 imbalanced datasets using standard measures M (left panel) and their
normalized counterparts N (M) (right panel). Mean results from 10 repetitions of stratified 10-fold cross-validation. The values
of standard MCC and Kappa were 0-1 scaled to obtain a common scale for all measures; no scaling was necessary for

normalized measures.

measure normalization, we left the classifiers with default
parameters in their Python implementation in the scikit-learn
library [37]. Figure 1 presents a parallel coordinate plots
comparing CART results obtained for the analyzed measures
(left panel) and their normalized counterparts (right panel).
Detailed tabular results and plots for the remaining classifiers
are available in Supplementary Tables A.1-A.2 and Figures
A.1-A.6, respectively.

As the results show, the effect of the normalization depends
on the measure being normalized and the class proportion in
a dataset. For example, the evaluation of CART (Figure 1, left
panel) suggests that with 0.30 precision yeast is the dataset
with second lowest performance. However, the normalized
value of precision is 0.84 (Figure 1, right panel), which
means that it is in fact a dataset for which CART obtained
a confusion matrix better than 84% of all possible confusion
matrices. When comparing this result with other values of
normalized precision, we can see that this makes yeast one
of the datasets on which CART performs well. Analogously,
normalized Fi-score uncovers fairly good performance of
CART on datasets such as yeast, ecoli, credit—g, not
evident when analyzing standard Fi-score. A similar, yet
milder effect can be observed when comparing standard and
normalized versions of MCC and Kappa. On the other hand,
since the histograms of recall resemble a uniform distribution,
normalization has almost no effect on its value. Finally, nor-
malized versions of accuracy, G-mean, and balanced accuracy
tend to promote good recognitions for balanced datasets, a
phenomenon which can be noticed when comparing the results
on ionosphere with those obtained on ecoli. These
examples illustrate that the proposed normalization method
can give new perspective to results obtained for each measure.

The effects of normalization were clearly noticeable for all
7 analyzed classifiers (Figure 1, Supplementary Figures A.1-
A.6). The comparison of parallel coordinate plots of different
classifiers shows how the normalization method takes into
account both the datasets imbalance ratio and the obtained
measure value. For example, NB is the only classifier that
succeeds at classifying glass better than other datasets,
according to the normalized measure values. Since this rein-

terpretation of results on glass is not consistent for all the
classifiers, it clearly shows that the proposed normalization
is not a simple 0-1 scaling procedure but a method that
takes into account the measures characteristic, imbalance ratio,
and concrete confusion matrix. Additionally, experiments on
synthetic data with varying class proportions and numbers
of features (supplementary material, Appendix C) show that,
although some classifiers perform better than others for certain
data, measure values are indeed affected by the imbalance
ratio, regardless of other data characteristics.

We note that the proposed normalization method will not
affect model selection based on a single measure using a
single dataset. On a single dataset all classifier results for a
single measure are normalized according to the same pmf,
therefore, while the interpretation of classifier performances
will change, their ordering will not. However, since the nor-
malization gives a probabilistic interpretation to each measure,
it allows to compare several measures on the same scale on
several datasets. This, in turn, could be used to visually and
numerically compare multiple classifiers on multiple datasets,
in a fashion similar to that proposed by Curuana et al. [29]
and Alaiz-Rodriguez et al. [30].

The histograms and normalization method discussed in
this section highlighted the dynamics of measures related to
varying class proportions. In the following section, we study
the speed of measure changes by analyzing their gradients
and show the connection between gradients for different class
ratios and concept drift.

IV. MEASURE GRADIENTS

To analyze measure gradients we use a recently proposed
visualization technique for analyzing classification measures in
a barycentric space [10]. In Section IV-A we recall the basics
of this technique, and extend it to study measure gradients in
Section IV-B.

A. Barycentric Measure Visualization

The barycentric coordinate system is a coordinate system
in which point locations are specified relatively to hyper-sides
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of a simplex. A 4D barycentric coordinate system is a tetrahe-
dron, where each dimension may be thought of as represented
by one of the four vertices. Choosing vectors that represent
TP, FP, FN, TN as vertices of a regular tetrahedron in a 3D
space, one arrives at a barycentric coordinate system depicted
in Fig. 2.

Fig. 2: A skeleton visualization of the tetrahedron with four
(red) points corresponding to four exemplary confusion ma-
trices and two rectangular (blue) cross-sections corresponding
to two class proportions.

In this system, every confusion matrix [ 25 FN7 is repre-
sented as a point of the tetrahedron. Let us illustrate this
fact with a few examples. Figure 2 shows a skeleton of a
tetrahedron with four exemplary points:

« one located in vertex TP, which represents [7 9],

« one located in the middle of edge TP-FP, which repre-
sents [zgg ,
o one located in the middle of face ATP-FP-FN, which

n/3n/3
represents | 30 |
e one located in the middle of the tetrahedron, which
n/4 n/4
represents | anya |

One way of understanding this representation is to imagine a
point in the tetrahedron as the center of mass of the examples
in a confusion matrix. If all n examples are true positives,
then the entire mass of the predictions is at 7P and the point
coincides with vertex TP. If all examples are false negatives,
the point lies on vertex FN, etc. Points corresponding to
all possible confusion matrices for a given class ratio are
represented as rectangular cross-sections in the tetrahedron.
Figure 2 depicts two cross-sections: one for class balance
(middle of the tetrahedron) and one for a 1:5 imbalance ratio
(lower part of the tetrahedron).

Using the barycentric coordinate system makes it possible to
depict the originally 4D data (two-class confusion matrices) as
points in 3D. In the following section, we will use this property
to visualize measure gradients for different class proportions.

B. Class Proportion Gradient Components

Visualizations in the barycentric coordinate system have
been already used to analyze entire ranges of classification

measures by color-coding measure values [10]. Here, instead
of static measure values we investigate the measures’ dynamics
by studying their gradients.

Since every possible confusion matrix and its corresponding
measure value can be visualized as a point in the barycentric
space, one can also calculate the gradient of the analyzed
measure and depict it as a vector. The gradient shows the
direction of the greatest rate of increase of the measure and its
magnitude is the rate itself. In our case, this can be translated
to the direction of changes in the confusion matrix that causes
the greatest increase in the measure’s value. To decipher the
gradients of measures in the barycentric space, we first explain
the meaning of their components.

Looking at Fig. 2, one can notice that the tetrahedron with
vertices representing vectors TP, FP, FN, TN is placed in
a 3D space defined by axes z, y, and z. Moving along the z-
axis corresponds to moving from confusion matrices with all
examples in vertices TP and F'P to confusion matrices where
all predictions are F'N or T'N. Recalling the notation from
Table I, this means that the direction of the x-axis rglates to
changes in the proportions of classifier predictions: P % N.
Analogously, moving along the y-axis corresponds to changing
the proportion of correct predictions in the confusion matrix
(F EN T), whereas the z-axis can be associated with changes
in class proportions (N = P). Therefore, each z cross-section
(Fig. 2) corresponds to all possible confusion matrices for
a given imbalance ratio i for a dataset of size n, whereas
the entire tetrahedron encapsulates confusion matrices with n
examples for all class ratios.

Another interpretation of the described directions z, v,
z corresponds to rearranging the confusion matrix without
changing the number of examples n. For the z-axis, the
rearrangement involves changing the predictions of the clas-
sifier— moving examples from the left to the right column
of the confusion matrix (Table I). On the other hand, the y-
axis corresponds to changing incorrect predictions into correct
ones. However, from the point of this study we are particularly
interested in the movement along the z-axis, which can be
implemented by relabeling negative examples to positive ones.
Therefore, moving up and down the tetrahedron generally
corresponds to varying class proportions, but if z changes
while z and y remain constant the movement corresponds
to example relabeling (concept drift) that also results in a
change of class proportions. It is also worth noting that some
preprocessing methods relabel training examples to enhance
classifier predictions on imbalanced data [38].

Figure 3 presents gradients of the eight considered mea-
sures. To facilitate the analysis of z components of the
gradients, we color-coded the gradients: red arrows have their
z component pointing toward proportions with more positive
examples (up), whereas blue arrows point toward proportions
with more negative examples (down).

As the visualizations presented in Fig. 3 show, there are
notable differences in the measure’s gradients. Interestingly,
accuracy is the only measure for which all the z gradient
components are zero. This means that when the test data are
relabeled in such a way that only the class proportion changes,
the measure’s value remains the same. Precision and F-score,
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(a) Accuracy (b) Balanced accuracy

(e) F1-score (f) Precision

(c) Kappa (d) G-mean

(h) MCC

(g) Recall

Fig. 3: Measure gradients depicted in barycentric space. Gradients are represented as arrows with their length corresponding
to the gradients norm and their color depicting the magnitude and direction of their ‘vertical’ element; red arrows have their
vertical element pointing toward proportions with more positive examples (up), whereas blue arrows point toward proportions

with more negative examples (down).

on the other hand, only have gradients with z components
pointing towards distributions with more positive examples.
Therefore, regardless of the class ratio, it is always, albeit
not equally, beneficial in terms the values of these measures
to relabel the test data in such a way that there are more
positive examples. Since recall focuses on the positive class,
for ratios with very few positives it is much more beneficial
if the proportions change. On the other hand, the gradients of
balanced accuracy indicate that for imbalanced data a change
in class proportions is helpful when the classifier predicts
mostly one class, ignoring the other. The remaining three
measures (G-mean, Kappa, MCC) have symmetrical gradients
with large z components mostly for confusion matrices where
only the majority class is recognized correctly. In such cases,
a change in class proportion will improve these measures’
values.

To validate the presented findings, we performed an exper-
iment involving dynamic class ratio changes in a data stream.
Our hypothesis was that measure values obtained by an online
classifier learning from a dataset with a dynamically chang-
ing imbalance ratio should reflect the presented gradients.
To verify this hypothesis, we prequentially evaluated [23] a
Hoeffding Tree classifier on two data streams created using the
SEA generator in MOA [34]. The first stream (Fig. 4) contains
two sudden class ratio changes (1:15/1:4/1:1) appearing after

30 k and 40 k examples; upper axis of the plot presents the
ranges of each class proportion. The second stream (Fig. 5)
was created analogously, but with negatives serving as the
minority class (15:1/4:1/1:1).

1:15 14 1:1
1.00 T P T
1 ; ; \4 A ¢
0.80 \/ O z x,\;\ o V\'
A . ((“‘ \ \x//i VAW *\ \X‘/\:\ b“,\\, /\W DA
o) XA T e X X /\
= 0.60 V A R ? A
S A=\ VV\]\/ ‘(\V L2}
o d | :’\ /\ / ] \ A '\\y
2 NAVAR w
‘g 0.40 [ /\V/ AN /\ Y i MN--A
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Fig. 4: The impact of changing the class ratio from 1:15 (un-
derrepresented positives), through 1:4, to 1:1 (class balance).
Results of prequential evaluation of a Hoeffding Tree classifier
on a stream created using the SEA generator.
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Results of prequential evaluation of a Hoeffding Tree classifier
on a stream created using the SEA generator.

Figures 4 and 5 confirm that the effect of class ratio changes
is related to the measure’s gradients. On both plots, precision
and accuracy maintain almost the same level, regardless of
the imbalance ratio. This directly translates to the gradients
of these measures (Fig. 3), which have zero or close-to-zero
z components. It is also worth noting that the variability
of precision is in accordance with observations made on
the measure’s histograms — for ratios with a small number
of positives high values of precision are underrepresented,
thus, increasing the fluctuations of its values. F;-score and
recall have asymmetric gradients. For ratios with few positive
examples the gradients have strong z components, whereas
for datasets with many positive examples, the z component is
close to zero. Due to this asymmetry, the changes in values of
F1-score and recall are much more prominent in Fig. 4 than
in Fig. 5. Finally, the remaining measures (balanced accuracy,
Kappa, G-mean, MCC) have symmetric gradients, therefore,
their plots in Fig. 4 and Fig. 5 are exactly the same.

The experiments have shown a direct connection between
measure gradients and the impact of sudden class ratio
changes. We believe that the presented gradients could be also
potentially used to estimate the effects of over- and under-
sampling methods for classifiers producing concrete confusion
matrices. By artificially modifying class proportions, sampling
methods change the measures’ dynamics. This connection,
however, is still to be investigated and is out of the scope
of this study.

V. DISCUSSION

As related studies show, each of the eight analyzed measures
represents different aspects of classification performance often
leading to quite different interpretations [21]. This shows
that there is no single measure that is the best choice in
all situations. Nevertheless, the preformed study of measure
dynamics provides some guidelines how to choose and use
the analyzed measures in particular sub-cases.

One interesting observation from this study is that recall has
a pmf that resembles a uniform distribution. Therefore, recall
does not need any histogram-based normalization and can be
safely compared between multiple static datasets. However,
for very high imbalance ratios recall has a very small range
of different values it can achieve. This phenomenon might
be considered a problem when recall is used to for model
selection or drift detection. Nevertheless, for data streams were
new examples arrive continuously this issue is less important.

Precision and F-score are clearly two measures that require
histogram-based normalization if their values are to be com-
pared across multiple datasets. As experiments in Section I1I-B
have shown, the interpretation of dataset difficulty can change
dramatically after normalization. Moreover, precision and
F1-score only have gradients pointing towards distributions
with more positive examples. Therefore, their response to
dynamically changing class ratios is asymmetric and they are
potentially more susceptible to simple oversampling than other
measures. It is worth noting that the similarity of these two
measures results from the fact that precision is “incorporated”
in the definition of Fy-score.

Kappa and MCC behave very similarly for value ranges
equal or greater than zero. Indeed, the histograms of these
two measures have similar shapes for values between 0 and
1, and the gradients of both measures are also very similar.
That is why, in experiments from Section III-B the effect
of normalization was very similar for both measures. We
note however, that this would not be true if the classifiers
achieved very poor performance (below zero). In such cases,
MCC seems to be a more symmetrical and more interpretable
measure.

Finally, accuracy, balanced accuracy, and G-mean share
some similarity in their pmfs, with most confusion matrices
being associated with middle-range values. However, bal-
anced accuracy and G-mean have stable histograms across
varying class ratios, making these measures more suitable
for tracking the performance of online classifiers trained on
drifting imbalanced streams. Nevertheless, accuracy has a
unique asset among all the studied measures—its gradients
are independent of the class ratio. Therefore, if the fraction of
correct predictions does not change, accuracy will not change.
This is in contrast to other measures, which tend to react
strongly to class ratio changes, as manifested by experiments
in Section IV-B.

VI. CONCLUSIONS

The analyses presented in this paper have shown that
changes in class proportions have direct effects on measure
values. Moreover, we have demonstrated that measure value
interpretation should not disregard the imbalance ratio, espe-
cially in data streams where the data is prone to concept drift or
sudden class ratio changes. As the performed experiments have
shown, these observed changes in measure behavior directly
translate to the performance of drift detectors monitoring
imbalanced streams. Consequently, our findings support the
process of measure selection for a particular classification
task and imbalance ratio. They help to interpret the mea-
sure values through the normalization method and raise the
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awareness of possible value changes caused solely by evolving
class proportions. In this context, the realization that values
of accuracy and precision remain unchanged through class
ratio changes, F1-score and recall are susceptible to changes
mainly when positives are underrepresented, and that balanced
accuracy, Kappa, G-mean, MCC have symmetric gradients,
can be essential for proposing new classifiers for imbalanced
streams.

As future work, we plan to investigate the relation between
measure gradients and specialized preprocessing methods for
imbalanced data. Such preprocessing methods could take into
account the class proportions, confusion matrix, and target
evaluation measure. Moreover, it would be interesting to
expand the analysis of measure dynamics to other classi-
fication scenarios, such as multi-label data, where minority
and majority classes can concur [14], or window-based object
detection using deformable part-base models, where the class
proportions can vary significantly [12]. Finally, an interesting
avenue of future research involves modeling the measure’s
probability mass function through general formulas, rather
than by generating confusion matrices and counting value
frequencies.
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