Bayesian Confirmation Measures in Rule-based Classification

Dariusz Brzeziński, Zbigniew Grudziński, Izabela Szczęch

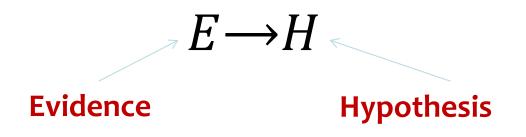
Poznan University of Technology, Poland

Outline

- Rule-based classification
- Confirmation measures
- CM-CAR algorithm
- Experiments
- Conclusions

Classification rules

- One the most popular classification models when working with human experts
- Consequence relation: *if E then H*



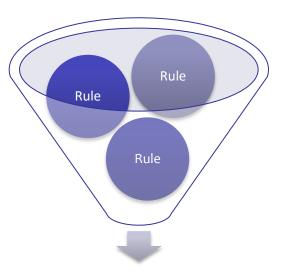
- In classification rules *H* is a class label
- Ex: talk=*short* and slides=*funny* → audience=*happy*

Association rules

- Used to find associations rather than predict
- Same $E \rightarrow H$ relation, but H can be any attribute
- Usually (too) many rules are found

Common task:

filter out only the most interesting rules



Interestingness measures

Height	Hair	Eyes	Nationality]					
				-				Н	
tall	blond	blue	Swede		¬Ε	¬Η			
medium	dark	hazel	German		¬Ε	Н	E	1	
medium	blond	blue	Swede		¬Ε	$\neg H$	-, F	2	
tall	blond	blue	German		¬Ε	Н	_		
short	red	blue	German		Е	Н			
medium	dark	hazel	Swede		¬Ε	¬Η			

if (Hair = red) & (Eyes = blue) then (Nationality = German) if Evidence then Hypothesis

The contingency table is a form used to calculate the value of interestingness measures

$$sup(E \rightarrow H) = a$$

 $conf(E \rightarrow H) = \frac{a}{a+c}$

	Н	$\neg H$	
Ε	а	С	<i>a</i> + <i>c</i>
$\neg E$	b	d	b+d
	a + b	c+d	n

Confirmation measures

• Measures that satisfy

 $c(H,E) \begin{cases} > 0 \text{ if } \mathbb{R}/(\mathbb{H} + \mathbb{E}) > (\mathbb{R}(\mathbb{H}))/n, \text{ Good} \\ = 0 \text{ if } \mathbb{R}/(\mathbb{H} + \mathbb{E}) = (\mathbb{R}(\mathbb{H}))/n, \text{ Neutral} \\ < 0 \text{ if } \mathbb{R}/(\mathbb{H} + \mathbb{E}) < (\mathbb{R}(\mathbb{H}))/n. \text{ Bad} \end{cases}$

- Confirmation measures say what is a "value of information" that *E* adds to the credibility of *H*
- Intuition: evidence should support the hypothesis

Ex: talk=long and slides=boring → audience=happy confidence > 0, confirmation definitely < 0 ...

Confirmation measures

	Н	$\neg H$	
Ε	а	С	a + c
$\neg E$	b	d	b+d
	a + b	c+d	n

The values of the presented measures range from -1 to 1

Bayesian Confirmation Measures in Rule-based Classification

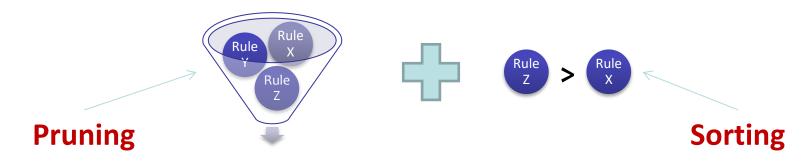
- 1. Can confirmation measures be applied to predictive classification problems?
- 2. How to discover and prune decision rules with high confirmation?
- 3. Which confirmation measures are best suited for classification?

CM-CAR

- Algorithm for creating classification association rules
- Generalization of CBA algorithm
- Tries to create predictive and descriptive rule lists

Main idea

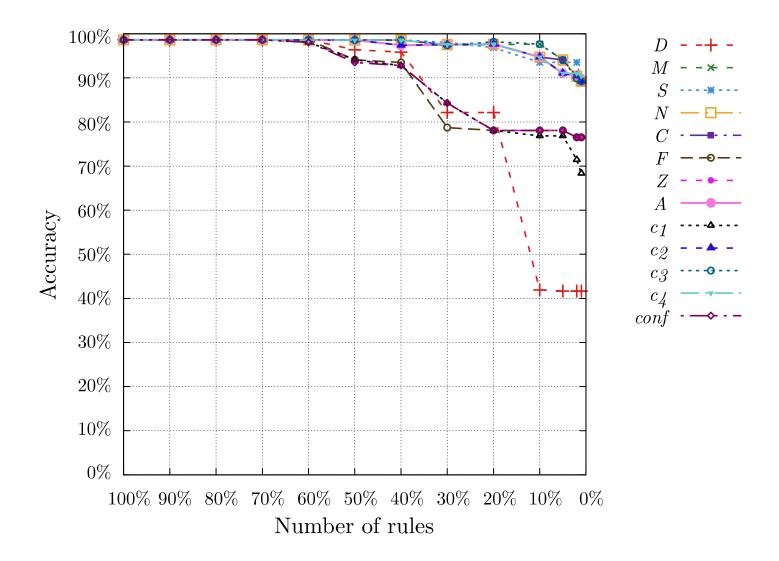
Use two seperate sets of (confirmation) measures to select and sort classification association rules



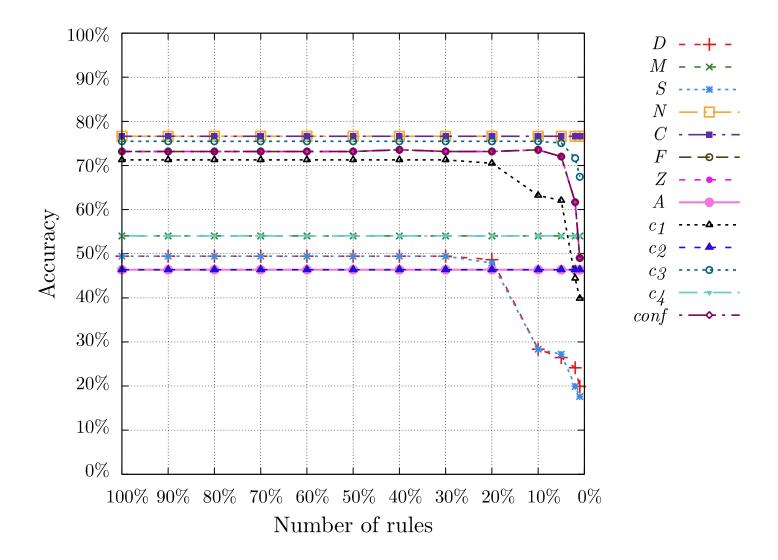
Experimental setup

- 12 confirmation measures
- 20 datasets: 10 balanced, 10 imbalanced
- ~10,000 rules generated per dataset
- 1%-100% rules left after pruning
- Comparison of accuracy, AUC, F1-score, and G-mean
- CM-CAR:
 - Confirmation measure used only for rule list pruning
 - Confirmation measure used for rule sorting and pruning

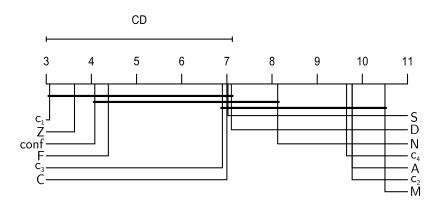
Results – rule sorting (mushroom)



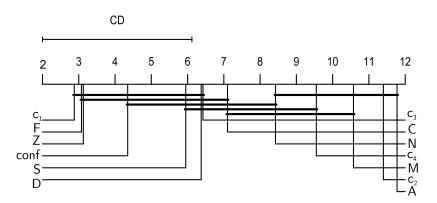
Results – rule pruning (diabetes)



Results (Accuracy)



Critical distance plot for rule pruning



Critical distance plot for rule sorting

Results summary

- Confirmation measures influenced the predictive performance of decision rule lists
- Slightly different results for rule sorting and pruning
- To achieve good performance on imbalanced data *coverage* should be additionally controlled
- F, Z, c₁, S performed better/comparable to the baseline

Full results for accuracy, AUC, F1-score, and G-mean: http://www.cs.put.poznan.pl/dbrzezinski/software/CMCAR.html

Conclusions

- **CM-CAR**: algorithm for sorting and pruning rule lists based on any interestingness measure
- The 12 analyzed **measures differed** in terms of resulting classifier performance
- Measures F, Z, c₁, S comparable or better than conf in terms of rule sorting and pruning
- Future work: algorithms using confirmation measures during rule generation

Thank you!

Bayesian Confirmation Measures in Rule-based Classification

Bayesian Confirmation Measures in Rule-based Classification

Property of monotonicity M

Desirable property of c(H,E) = f(a,b,c,d) : monotonicity (M)*

f should be non-decreasing with respect to *a* and *d* and non-increasing with respect to *b* and *c*

- Interpretation of (M): $(E \rightarrow H \equiv if x is a raven, then x is black)$
 - a) the more black ravens we observe, the more credible becomes $E \rightarrow H$
 - b) the more black non-ravens we observe, the less credible becomes $E \rightarrow H$
 - c) the more non-black ravens we observe, the less credible becomes $E \rightarrow H$
 - d) the more non-black non-ravens we observe, the more credible becomes $E \rightarrow H$

*S.Greco, Z.Pawlak, R.Słowiński: Can Bayesian confirmation measures be useful for rough set decision rules? Engineering Applications of Artificial Intelligence, 17 (2004) no.4, 345-361

Property of maximality/minimality

• Desirable property of *c*(*H*,*E*): maximality/minimality*

c(H,E) is maximal if and only if $P(E,\neg H) = P(\neg E,H) = 0$ and

c(H,E) is minimal if and only if $P(E,H) = P(\neg E, \neg H) = 0$.

• Interpretation of maximality/minimality:

a measure obtains its maximum iff c=b=0 and its minimum iff a=d=0.

*Glass, D.H.: Confirmation measures of association rule interestingness, Knowledge-Based Systems 44, (2013) 65–77

Property of hypothesis symmetry HS

• Desirable property of c(H,E): hypothesis symmetry (HS)*

 $c(H,E) = -c(\neg H,E)$

• Interpretation of (HS): $(E \rightarrow H \equiv if x is a square, then x is rectangle)$

the strength with which

the premise (x is a square) confirms the conclusion (x is rectangle)

is the same as the strength with which

the premise disconfirms the negated conclsuion (*x* is not a rectangle).

*Carnap, R.: Logical Foundations of Probability, second ed. University of Chicago Press, Chicago (1962) Eells, E., Fitelson, B.: Symmetries and asymmetries in evidential support. Philosophical Studies, 107 (2) (2002), 129-142