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• One the most popular classification models when 
working with human experts 

• Consequence relation: if E then H 
 

𝐸
     

𝐻 
 

 

• In classification rules H is a class label 

• Ex: talk=short and slides=funny 
     

 audience=happy 

 

Evidence Hypothesis 



• Used to find associations rather than predict 

• Same 𝐸
     

𝐻 relation, but H can be any attribute 

• Usually (too) many rules are found 

 

Common task:  

filter out only the  
most interesting rules 
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 if   (Hair = red) & (Eyes = blue)   then   (Nationality = German) 

 if                Evidence                  then             Hypothesis  
  

The contingency table is a form used to calculate 
the value of interestingness measures 
 

𝑠𝑢𝑝 𝐸
     

𝐻 = 𝑎 

𝑐𝑜𝑛𝑓 𝐸
     

𝐻 =
𝑎

𝑎 + 𝑐
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Height Hair Eyes Nationality 
tall blond blue Swede 

medium dark hazel German 
medium blond blue Swede 

tall blond blue German 
short red blue German 

medium dark hazel Swede 

¬E ¬H 
¬E H 
¬E ¬H 
¬E H 
E H 

¬E ¬H 

H ¬ H 

    E a c 

¬ E b d 

H ¬ H 

    E 1 0 

¬ E 2 3 

𝐻 ¬𝐻 

𝐸 𝑎 𝑐 𝑎 + 𝑐 

¬𝐸 𝑏 𝑑 𝑏 + 𝑑 

𝑎 + 𝑏 𝑐 + 𝑑 𝑛 



• Measures that satisfy 

 

 

 

• Confirmation measures say what is a “value of 
information” that E adds to the credibility of H 

• Intuition: evidence should support the hypothesis 
 

Ex: talk=long and slides=boring 
     

 audience=happy 

       confidence > 0, confirmation definitely < 0 … 
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𝐻 ¬𝐻 

𝐸 𝑎 𝑐 𝑎 + 𝑐 

¬𝐸 𝑏 𝑑 𝑏 + 𝑑 

𝑎 + 𝑏 𝑐 + 𝑑 𝑛 

The values of the presented 
measures range from -1 to 1 



1. Can confirmation measures be applied to predictive 
classification problems? 

 

2. How to discover  and prune decision rules with high 
confirmation? 

 

3. Which confirmation measures are best                
suited for classification? 
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• Algorithm for creating classification association rules 

• Generalization of CBA algorithm 

• Tries to create predictive and descriptive rule lists 
 

Main idea 

Use two seperate sets of (confirmation) measures to 
select and sort classification association rules 
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• 12 confirmation measures 

• 20 datasets: 10 balanced, 10 imbalanced 

• ~10,000 rules generated per dataset 

• 1%-100% rules left after pruning 

• Comparison of accuracy, AUC, F1-score, and G-mean 

 

• CM-CAR: 

– Confirmation measure used only for rule list pruning 

– Confirmation measure used for rule sorting and pruning 
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Critical distance plot for rule sorting 

Critical distance plot for rule pruning 



• Confirmation measures influenced the predictive 
performance of decision rule lists 

• Slightly different results for rule sorting and pruning 

• To achieve good performance on imbalanced data 
coverage should be additionally controlled 

• F, Z, c1, S performed better/comparable to the baseline 

 

 
Full results for accuracy, AUC, F1-score, and G-mean: 
http://www.cs.put.poznan.pl/dbrzezinski/software/CMCAR.html 
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http://www.cs.put.poznan.pl/dbrzezinski/software/CMCAR.html
http://www.cs.put.poznan.pl/dbrzezinski/software/CMCAR.html


• CM-CAR: algorithm for sorting and pruning rule lists 
based on any interestingness measure 

• The 12 analyzed measures differed in terms of 
resulting classifier performance 

• Measures F, Z, c1, S comparable or better than conf 
in terms of rule sorting and pruning 

• Future work: algorithms using confirmation measures 
during rule generation 
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Thank you! 
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• Desirable property of  c(H,E) = f(a,b,c,d) : monotonicity (M)* 

  f should be non-decreasing with respect to a and d  
     and non-increasing with respect to b and c  

• Interpretation of (M):  (EH  if x is a raven, then x is black) 

a) the more black ravens we observe, the more credible becomes EH 

b) the more black non-ravens we observe, the less credible becomes EH  

c) the more non-black ravens we observe, the less credible becomes EH 

d) the more non-black non-ravens we observe, the more credible becomes 
EH 
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*S.Greco, Z.Pawlak, R.Słowiński: Can Bayesian confirmation measures be useful for rough set 
    decision rules? Engineering Applications of Artificial Intelligence, 17 (2004) no.4, 345-361 



• Desirable property of  c(H,E): maximality/minimality* 

  c(H,E) is maximal if and only if P(E,¬H) = P(¬E,H) = 0 and 
 
 c(H,E) is minimal if and only if P(E,H) = P(¬E, ¬ H) = 0. 

  

• Interpretation of maximality/minimality: 

a measure obtains its maximum iff c=b=0 and its minimum iff a=d=0. 
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*Glass, D.H.: Confirmation measures of association rule interestingness, Knowledge-Based Systems 44, (2013) 65–77 



• Desirable property of  c(H,E): hypothesis symmetry (HS)* 

     c(H,E) = −c(¬H,E)  

  

• Interpretation of (HS):  (EH  if x is a square, then x is rectangle) 

the strength with which  

the premise (x is a square) confirms the conclusion (x is rectangle)  

is the same as the strength with which  

the premise disconfirms the negated conclsuion (x is not a rectangle). 
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*Carnap, R.: Logical Foundations of Probability, second ed. University of Chicago Press, Chicago (1962) 
Eells, E., Fitelson, B.: Symmetries and asymmetries in evidential support. Philosophical Studies, 107 (2) (2002), 129-142 


