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Abstract. With the rapid growth of available data, learning models are
also gaining in sizes. As a result, end-users are often faced with classi-
fication results that are hard to understand. This problem also involves
rule-based classifiers, which usually concentrate on predictive accuracy
and produce too many rules for a human expert to interpret. In this pa-
per, we tackle the problem of pruning rule classifiers while retaining their
descriptive properties. For this purpose, we analyze the use of confirma-
tion measures as representatives of interestingness measures designed to
select rules with desirable descriptive properties. To perform the analy-
sis, we put forward the CM-CAR algorithm, which uses interestingness
measures during rule pruning. Experiments involving 20 datasets show
that out of 12 analyzed confirmation measures c1, F , and Z are best for
general-purpose rule pruning and sorting. An additional analysis com-
paring results on balanced/imbalanced and binary/multi-class problems
highlights also N , S, and c3 as measures for sorting rules on binary imbal-
anced datasets. The obtained results can be used to devise new classifiers
that optimize confirmation measures during model training.

Keywords: rule classifiers, interestingness measures, Bayesian confir-
mation, rule pruning

1 Introduction

Recent years have seen the rise of such terms as big data and data science, which
brought many machine learning and data mining methods to public attention.
This growing popularity of pattern mining methods results in numerous practical
applications, such as healthcare, online education, social network analysis, or
smart houses [20,18]. Many of these applications involve cooperation with human
experts, who often have to understand not only direct algorithm results, but also
entire learning models.
Arguably the most studied data mining task is classification [18]. Various

types of classifiers have been developed over the years, however rules are contin-
uously regarded as one of the most popular approaches to practical applications
involving non-data-mining experts. It is due to the symbolic form of rules, which
makes them comprehensible. Thus, when both pattern usage and understanding
are key goals, rules are a common form of knowledge representation.
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Nevertheless, in most studies data miners tend to focus solely on the predic-
tive performance of learning models [13,6,2]. This is also the case of rule mining.
As a result, the descriptive value that rules can carry is often neglected. Unques-
tionably, a compilation of good predictive and descriptive abilities of a classifier
is sought for in many applications. Preferably, these abilities should also be ac-
companied by a compact representation. In particular, for rule-based classifiers
this requirement can be achieved by limiting the number of rules, since otherwise
the set of rules could exceed the human-expert’s understanding capabilities. For
example, in medical applications, doctors are usually interested in a reduced set
of rules that describes the patients well and offers good predictions [26].
The evaluation and, thus, pruning of rule sets is usually done by interesting-

ness measures; for a survey see e.g. [14,24]. In classification, these measures are
used to improve the predictive performance of learning models, often neglecting
the descriptive value of each rule. Nonetheless, many interestingness measures
were designed especially for evaluating the descriptive properties of rules. In
particular, Bayesian confirmation measures [12] constitute a group of measures
that quantify the degree with which the rule’s premise supports the conclusion.
Confirmation measures obtain positive values only when the premise widens our
knowledge about the conclusion, thus, they allow to swiftly choose meaningful
rules and filter out the misleading ones. Additionally, the usefulness of confirma-
tion measures in the descriptive context has been depicted with many desirable
properties they possess [7,12,15,16].
In this paper, we analyze the impact of using confirmation measures in rule-

based classification. For this purpose, we put forward the CM-CAR algorithm,
which uses confirmation measures to sort and prune a list of rules. As a result,
the proposed algorithm is capable of producing a concise set of descriptive rules,
while retaining high predictive performance. Summarizing, the main contribu-
tions of this paper are as follows:

– the analysis of interestingness measures with good descriptive properties in
the context of predictive classification problems;
– the proposal of the CM-CAR algorithm for discovering and pruning decision
rules with high confirmation;
– a comprehensive series of experiments analyzing 12 Bayesian confirmation
measures for sorting and pruning rule lists.

The remainder of this paper is organized as follows. Section 2 provides basic
notation, definitions, reviews Bayesian confirmation measures, and discusses re-
lated works. Section 3 presents the CM-CAR algorithm. In Section 4, we discuss
experimental results, which demonstrate the properties of the analyzed mea-
sures. Finally, Section 5 concludes the paper and draws lines of future research.

2 Preliminaries and Related Works

Among various knowledge representations, patterns in the form of rules are
known and appreciated for their high comprehensibility and interpretability.
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Such form of knowledge representation is often found easy to understand and
use by decision makers.
Rules are usually induced from a dataset being a set of objects characterized

by a set of attributes. Rules are consequence relations, denoted as E → H
(“if E then H”), between the condition E and conclusion H formulas built from
attribute-value pairs. The condition formulas are called the premise (or evidence)
and the conclusion formulas are referred to as the conclusion (or hypothesis) of
the rule. If the set of attributes that can occur in the conclusion is limited to a
predefined class attribute, then the rule is regarded as a decision rule.
The evaluation of the quality and utility of rules induced from data is most

commonly done by means of interestingness measures, which quantify the rela-
tionship between E and H. In the context of a particular dataset, interestingness
measures can be usually defined on the basis of four non-negative values: a, b, c
and d, briefly represented in Table 1.

Table 1: An exemplary contingency table of the rule’s premise and conclusion

H ¬H Σ

E a c a+ c

¬E b d b+ d

Σ a+ b c+ d n

The number of objects in a dataset that satisfy both the rule’s premise and
conclusion is quantified by a. The number of objects for which the premise is
not satisfied, but the conclusion is, will be denoted by b, etc. This notation can
be effectively used for defining such interestingness measures as, for example,
confidence: conf (H,E) = a/(a+ c) or support: sup(H,E) = a.
In this paper we focus on a particular group of interestingness measures

that are referred to as Bayesian confirmation measures (or simply confirmation
measures). Their common feature is that they obtain:

– positive values when P (H|E) > P (H),
– 0 when P (H|E) = P (H),
– negative values when P (H|E) < P (H).

Observe that the notation based on a, b, c, and d can also be used to estimate
probabilities, e.g. P (H) = (a+b)/n or P (H|E) = a/(a+c). Thus, the conditions
that a confirmation measure, denoted as cm(H,E), must satisfy can be expressed
as follows:

cm(H,E)







> 0 when a
a+c

> a+b
n

,

= 0 when a
a+c

= a+b
n

,

< 0 when a
a+c

< a+b
n

.

(1)

Thus, confirmation measures quantify the degree to which E provides support
for or against H [12].
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Due to the fact that the above conditions do not favor any single measure
as the most adequate, there are many alternative, ordinally non-equivalent mea-
sures of confirmation [7,12]. Definitions of 12 popular confirmation measures are
listed in Table 2.

Table 2: Popular confirmation measures

D(H,E) = P (H|E)− P (H) =
a

a+ c
−

a+ b

n
=

ad− bc

n(a+ c)
[11]

M(H,E) = P (E|H)− P (E) =
a

a+ b
−

a+ c

n
=

ad− bc

n(a+ b)
[25]

S(H,E) = P (H|E)− P (H|¬E) =
a

a+ c
−

b

b+ d
=

ad− bc

(a+ c)(b+ d)
[5]

N(H,E) = P (E|H)− P (E|¬H) =
a

a+ b
−

c

c+ d
=

ad− bc

(a+ b)(c+ d)
[27]

C(H,E) = P (E ∧H)− P (E)P (H) =
a

n
−

(a+ c)(a+ b)

n2
=

ad− bc

n2
[3]

F (H,E) =
P (E|H)− P (E|¬H)

P (E|H) + P (E|¬H)
=

a

a+ b
−

c

c+ d
a

a+ b
+

c

c+ d

=
ad− bc

ad+ bc+ 2ac
[21]

Z(H,E) =















1−
P (¬H|E)

P (¬H)
=

ad− bc

(a+ c)(c+ d)
in case of confirmation

P (H|E)

P (H)
− 1 =

ad− bc

(a+ c)(a+ b)
in case of disconfirmation

[7]

A(H,E) =















P (E|H)− P (E)

1− P (E)
=

ad− bc

(a+ b)(b+ d)
in case of confirmation

P (H)− P (H|¬E)

1− P (H)
=

ad− bc

(b+ d)(c+ d)
in case of disconfirmation

[16]

c1(H,E) =



















α+ βA(H,E) in case of confirmation when c = 0

αZ(H,E) in case of confirmation when c > 0

αZ(H,E) in case of disconfirmation when a > 0

−α+ βA(H,E) in case of disconfirmation when a = 0

[16]

c2(H,E) =



















α+ βZ(H,E) in case of confirmation when b = 0

αA(H,E) in case of confirmation when b > 0

αA(H,E) in case of disconfirmation when d > 0

−α+ βZ(H,E) in case of disconfirmation when d = 0

[16]

c3(H,E) =

{

A(H,E)Z(H,E) in case of confirmation

−A(H,E)Z(H,E) in case of disconfirmation
[16]

c4(H,E) =

{

min(A(H,E), Z(H,E)) in case of confirmation

max(A(H,E), Z(H,E)) in case of disconfirmation
[16]
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The selected confirmation measures obtain values ranging from −1 to +1,
except for measures D(H,E) and M(H,E), whose values approach −1 or +1
only for n approaching +∞. Moreover, measure C(H,E) originally obtains val-
ues from −1/4 to +1/4 (regardless of n), so a simple linear transformation (a
multiplication by 4) has been introduced and all further results concern the
transformed C(H,E). For brevity and clarity of presentation, the definitions
of measures Z(H,E), A(H,E), c1(H,E), c2(H,E), c3(H,E) and c4(H,E) in
Table 2 omit the situation of neutrality, in which the measures default to 0.
Moreover, measures c1(H,E) and c2(H,E) have been computed for the values
of α = β = 1/2.

Our interest in confirmation measures results mostly from their valuable scale
semantics. Notice, how easy it is to filter out misleading rules (i.e., those for which
the premise actually disconfirms the conclusion) only by observing the value of
the measure. Especially when working with imbalanced data, it is important not
to give credit to rules in which the probability of the conclusion given the premise
is smaller than the genuine probability of the conclusion itself. Nevertheless
not all popular interestingness measures depict such situations, e.g. confidence,
support. That is why, we direct our interest to confirmation measures. They have
been widely studied as measures in single-rule evaluation [7,12,16] for descriptive
purposes, neglecting however their potential usefulness in classifiers. Thus, our
experimental study intentionally focuses only on confirmation measures, which in
our opinion should gain in popularity in the context of rule-based classification.

Although classical approaches to rule classification concentrate on predictive
performance and rule coverage [6,9,13,28], there have already been studies on us-
ing interestingness measures in rule-based classification. The algorithm that par-
ticularly inspired our work is CBA [23]. The Classification Based on Associations
(CBA) algorithm is based on applying association rule induction approaches to
finding classification rules. In CBA the classifier construction process starts by
generating association rules characterized by minimal support. Next, the ob-
tained associations are transformed to classification rules by selecting only those
rules where the conclusion is the class attribute. Furthermore, these classifica-
tion rules are filtered and limited only to those with confidence equal or greater
than a user-defined threshold. Finally, the set of rules is ordered on the basis of
their confidence, support, and length.

Other attempts to use frequent patterns/association rules in classification
include the CAEP classifier [10], which is based on emerging patterns. Emerging
patterns are defined as patterns whose supports increase significantly from one
class to another and, as the CAEP method shows, prove to work well even with
high dimensional problems [10]. Among more recent proposals, Ceci and Ap-
pice [4] focus on propositional and structural approaches to spatial classification
in multi-relational data mining. This work also studies an associative classifica-
tion framework, one that employs spatial association rules. Nevertheless, none
of the cited works investigates the use of Bayesian confirmation measures, which
are the main focus of this paper.
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3 The CM-CAR Algorithm

In this paper, we analyze the potential of using confirmation measures in classi-
fication. However, existing rule classifiers [13,6,28,9] try to optimize accuracy or
instance coverage rather than the descriptive value of the created rules. There-
fore, we put forward a new algorithm called Confirmation Measure Class Asso-
ciation Rules (CM-CAR), which creates a user-defined number of decision rules
based on Bayesian confirmation measures. The pseudocode of CM-CAR is pre-
sented in Algorithm 1.

Algorithm 1 CM-CAR

Input: D: data set, minsup: minimal support, k: number of rules, C: class attribute,
Qs: ordered set of sorting measures, Qp: ordered set of pruning measures
Output: CAR: decision rule list of length k

1: CAR ← ∅
2: L ← itemsets with support ≥ minsup ⊲ Find frequent associations
3: for all subsets lk of itemsets l ∈ L do ⊲ Create decision rules
4: if l − lk = {C} then
5: r ← decision rule lk → C

6: CAR ← CAR ∪ r

7: Sort CAR according to Qs ⊲ Create decision list
8: Leave in CAR k-best rules according to Qp ⊲ Prune decision list

First, the CM-CAR algorithm finds frequent itemsets. For this purpose we
use the Apriori algorithm [1], however, in practice any frequent itemset mining
algorithm could be used. Next, CM-CAR creates decision rules based on those
frequent sets that contain the class attribute C. Finally, two sets of interesting-
ness measures, Qs and Qp, are used to sort and filter the rules, respectively. As
its classification model, the algorithm outputs a list of k decision rules, where k
is a user-defined value.
CM-CAR can be considered a generalization of the CBA algorithm proposed

by Liu et al. [23], where instead of using support and confidence, we use arbitrary
interestingness measures to create a list of rules. As in the CBA algorithm, the
time performance of CM-CAR depends mostly on the frequent pattern mining
phase which has a complexity of O(2n), n being the dataset size.
It is worth noting that the proposed algorithm uses two sets of measures

for two distinct purposes. Qs is a set of measures that order the rules and,
therefore, decide which rule is used if more than one rule covers an example. If
Qs = {sup, conf }, rules are sorted according to their support and then, in case
of ties, confidence. On the other hand, Qp prunes the sorted rules. For example,
if Qp = {S,N} then the rule list is limited to k best rules according to measure
S and, in case of ties, N .
With two separate sets of measures, CM-CAR is capable of dividing the

responsibility for the predictive (Qs) and descriptive (Qp) properties of its clas-
sification model. In the following section, we use this feature to compare various
confirmation measures in a series of experiments.
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4 Experimental Study

The goal of this paper is to perform a comparison of confirmation measures. For
this purpose, we use the CM-CAR algorithm with varying values of Qs and Qp.
The use of other rule-based classifiers is out of the scope of this study.
The experiments are divided into two groups. In the first group, we are

interested in assessing confirmation measures in the context of rule pruning.
Therefore, we set Qs = {conf , sup, length} and Qp = {CM }, where length sig-
nifies the number of conditional attributes in a rule and CM is one of the 12
confirmation measures from Table 2. For reference, we also analyzed the usage
of conf as a pruning measure. It is worth noting that using conf for pruning
makes CM-CAR work exactly like the CBA algorithm. Therefore, conf can be
considered a baseline against which the remaining measures can be compared.
By keeping Qs fixed in this group of experiments, we ensure that differences in
model performance are only due to the measure used for pruning.
In the second group of experiments, we focus on verifying the utility of

confirmation measures in the context of classification. To achieve this, we set
Qs = {CM , sup, length} and Qp = {CM }, making one of the 12 confirmation
measures (or conf ) a key factor responsible for the predictive and descriptive
performance. As in the first group of experiments, conf serves as a baseline
approach against which other measures can be compared.
The minsup parameter for frequent pattern mining was set to obtain a num-

ber of rules close to 10 000 for each dataset. Such a number was selected to
ensure that it is possible to perform a long series of rule prunings. The use of
each confirmation measure was evaluated on a holdout test set consisting of 34%
of the original dataset using [19]:

– Balanced accuracy: 1

2
(sensitivity+ specificity),

– G-mean:
√
sensitivity · specificity,

– F1-score: 2 · sensitivity·precisionprecision+sensitivity
,

– AUC: area under the Receiver Operator Characteristic curve [19].

For multi-class problems, performance was calculated using macro averaging, i.e.,
evaluation measures where computed “one-vs-all” for each class and averaged
without weighting. All four measures were chosen based on their ability to assess
classifiers on imbalanced data. The CM-CAR algorithm was written in Java as
part of the WEKA [17] framework.1

4.1 Datasets

In our study, we used 20 datasets with various numbers of classes, imbalance
ratios, and containing nominal as well as numeric attributes. All of the used
datasets are publicly available, mostly through the UCI machine learning repos-
itory [22]. Table 3 presents the main characteristics of each dataset.

1 Sources available at: http://www.cs.put.poznan.pl/dbrzezinski/software.php

http://www.cs.put.poznan.pl/dbrzezinski/software.php
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Table 3: Dataset characteristics

Dataset Size Num.

Attr.

Nom.

Attr.

Classes Maj.

class

Mined

rules

Bala-

nced

Binary

adult-census 32,561 6 8 2 75.90% 4,299 × X

autos 205 15 10 7 32.68% 8,109 × ×
cmc 1,473 2 7 3 43.70% 10,001 X ×
credit-g 1,000 7 13 2 70.00% 8,540 × X

diabetes 768 8 0 2 64.10% 10,085 X X

electricity 45,312 7 1 2 57.50% 9,210 X X

hepato 536 9 0 4 33.20% 5,055 X ×
king-and-rook 28,056 0 6 18 16.20% 10,266 × ×
kr-vs-kp 3,196 0 36 2 52.20% 10,542 X X

lymph 148 3 15 4 54.73% 8,934 × ×
madelon 2,600 500 0 2 50.00% 2,431 X X

mushroom 8,124 0 22 2 51.80% 6,468 X X

nursery 12,960 0 8 5 33.30% 9,642 × ×
poker-hand 829,201 5 5 10 50.10% 9,267 × ×
spect 267 0 22 2 79.40% 9,290 × X

splice 3,190 0 61 3 51.88% 8,313 × ×
tic-tac-toe 958 0 9 2 65.34% 9,134 × X

vowel 990 10 3 11 9.09% 6,921 X ×
waveform 5,000 40 0 3 33.80% 10,644 X ×
wine 153 13 0 3 39.87% 4,697 X ×

Out of all the datasets, 10 can be considered balanced, whereas 10 suffer from
class-imbalance. Similarly, 9 datasets represent binary classification problems,
while 11 have more than two classes. Most datasets have from few hundred to
few thousand examples, with the notable exception of poker-hand which contains
829,201 instances. It is also worth highlighting madelon as the dataset with
most descriptive attributes (500) and king-and-rook as the one with most class
attribute values (18).
Due to the fact that CM-CAR creates rules from frequent itemsets, it re-

quires instances described only by nominal attributes. Therefore, all numerical
attributes were discretized into ten equal-frequency bins. Datasets preprocessed
in this way were used in all the discussed experiments.

4.2 Rule Pruning

In this group of experiments, the generated rule set was pruned subsequently
by: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99% of
the original model size. Thus, at the extremes the rule set was not pruned at all
or was limited to only 1% of the initial set. Due to the large number of tested
measures and datasets, we will only present the most interesting results; detailed
tables and additional plots are available in the supplementary materials.2

2 Supplement: http://www.cs.put.poznan.pl/dbrzezinski/software/CMCAR.html

http://www.cs.put.poznan.pl/dbrzezinski/software/CMCAR.html
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For evaluations using the G-mean measure, it was observed that since G-
mean multiplies the true positive rate of each class, in situations where the rules
did not cover examples from one of the classes the reported performance was
zero. This shows that for highly imbalanced data coverage should be additionally
controlled. Partially due to this phenomenon, on some of the datasets (made-
lon, spect, tic-tac-toe, poker-hand, kr-vs-kp, king-and-rook) the differences in
performance were very small and did not discriminate confirmation measures in
terms of pruning capabilities. However, on the remaining data clear differences
were visible, and two cohesive groups of measures were identified: 1) A and c2;
2) F , Z, and c1. Figure 1 presents measure performance on two datasets, which
exemplify the relations between these two groups.
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Fig. 1: CM-CAR’s AUC on the mushroom dataset and F1-score on adult-census
for different pruning levels with Qs = {conf , sup, length} and Qp = {CM },
where CM is one of the measures listed in the legend.

The dependency between measures A and c2 can be explained by the fact
that the value of c2 is in some cases proportional to the value of A. Such a
situation occurs in the case of confirmation and when additionally b (the number
of objects not supporting the premise, but supporting the conclusion) is greater
than 0. Indeed, analyzing the obtained frequent itemsets we noticed that these
two requirements were met for most datasets.

The relation between measures in the second group is more difficult to ex-
plain. Under certain conditions, c1 is proportional to Z, however the interdepen-
dence with F is not expressed in any way in the definitions of these measure. It
is worth noting that all three measures were among the best performing pruning
measures, when evaluated using balanced accuracy, G-mean, AUC, and F1-score.

To verify the significance of the observed differences, we performed the non-
parametric Friedman test [8]. The null-hypothesis of the Friedman test (that
there is no difference between the performance of all the tested confirmation
measures) can be rejected for balanced accuracy, G-mean, and the F1-score
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with p < 0.05, but not for AUC. To verify which confirmation measures per-
form better than the other, we computed the critical difference (CD) chosen by
the Nemenyi post-hoc test [8] at α = 0.05. Figure 2 depicts the results of the
test for balanced accuracy, F1-score, and G-mean by connecting the groups of
measures that are not significantly different (the lower the rank the better).

3 4 5 6 7 8 9 10 11

CD

c1
Z

conf
F

c3
C

S
D
N
c4
A
c2
M

(a) Balanced accuracy

3 4 5 6 7 8 9 10 11

CD

c1
F
Z

conf
c3
D

S
C
N
c4
A
c2
M

(b) F1-score

5 6 7 8 9

CD

F
c3
C
N
Z

c1

conf
c4
M
S
A
c2
D

(c) G-mean

Fig. 2: Performance ranking of all measures (Qs = {conf, sup, length}, Qp =
{CM}) averaged over all the analyzed pruning levels. Measures that are not
significantly different according to the Nemenyi test (at α = 0.05) are connected.

As mentioned earlier, F , Z, c1 are among the best measures according to
balanced accuracy and the F1-score. Similar rankings were found for G-mean,
however, due to the large number of compared measures the post-hoc test for
these measures was unable to distinguish groups of measures performing signif-
icantly differently. For balanced accuracy and F1-score, the test was not able to
showcase a significant difference with conf , S,D and c3, however, at α = 0.05 the
three highlighted measures pruned significantly better than C, N , c4,M , c2, and
A. It is also worth noticing, that according to G-mean conf performs much worse
than according to balanced accuracy or F1-score. This may suggest that conf
promotes focusing on overall accuracy potentially neglecting underrepresented
minority classes.

4.3 Classification using Confirmation Measures

In the second group of experiments, we used confirmation measures to sort the
rule list and, thus, influence the classification procedure. Tables with balanced
accuracy, G-mean, AUC, and F1-score performance for CM-CAR using each of
the analyzed measures are available in the supplementary material2, whereas
below we summarize the main findings.
In terms of average predictive performance for all pruning levels, F , Z, c1

were once again the best performing measures. It is also worth highlighting S and
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c3, which were also among the best measures. This is particularly interesting as
these measures possess desirable properties, such as minimality/maximality or
evidence symmetry and evidence-hypothesis symmetry, which are not showcased
by F , Z, or c1 [16]. Another consistent observation was that of M , A, and c2
being the worst measures for rule sorting. Two exemplary datasets where these
relations can be seen are presented in Fig. 3.
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Fig. 3: CM-CAR’s G-mean on the splice dataset and AUC on nursery for different
pruning levels with Qs = {CM , sup, length} and Qp = {CM }.

As in the first group of experiments, we performed the Friedman test. The
null-hypothesis of the Friedman test can be rejected for all four evaluation mea-
sures (balanced accuracy, G-mean, AUC, F-score) with p < 0.001. Figure 4
visually presents the results of the Nemenyi test.
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Fig. 4: Performance ranking of all measures (Qs = {CM , sup, length}, Qp =
{CM }) averaged over all the analyzed pruning levels. Measures that are not
significantly different according to the Nemenyi test (at α = 0.05) are connected.
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As the results show, F , Z, c1 are once again the best measures, and are
significantly better at rule sorting than c4, M , c2, and A.

4.4 The Impact of Imbalance Data and Multiple Classes

The previous two subsections analyzed the potential of using Bayesian confir-
mation measures for rule list pruning and sorting. However, datasets selected
for this study allow us to differentiate the performance of the measures on bal-
anced/imbalanced and binary/multi-class problems. The last two columns of
Table 3 distinguish both types of dataset categorizations.
Figures 5 and 6 present the results of Nemenyi post-hoc tests at α = 0.05,

with performance on balanced/binary in the left column and imbalanced/multi-
class data in the right column. Due to space limitations we only show results
for strategies where the confirmation measure was used for both pruning and
sorting; for additional plots please refer to the supplementary materials.2
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Fig. 5: Performance ranking of all measures (Qs = {CM , sup, length}, Qp =
{CM }) analyzed separately for balanced and imbalanced datasets. Measures
that are not significantly different according to the Nemenyi test (at α = 0.05)
are connected.



Bayesian Confirmation Measures in Rule-based Classification 13

3 4 5 6 7 8 9 10 11 12 13

CD

F
c1
Z

conf
c3
S

C
N
D
M
c4
c2
A

(a) Bal. accuracy (binary datasets)

2 3 4 5 6 7 8 9 10 11 12

CD

c1
Z
F

conf
S
D

c3
C
c4
N
M
A
c2

(b) Bal. accuracy (multi-class datasets)

2 3 4 5 6 7 8 9 10 11 12

CD

F
c1
Z

c3
conf

C

N
S
D
M
c4
c2
A

(c) F1-score (binary datasets)

2 3 4 5 6 7 8 9 10 11 12

CD

F
c1
Z

conf
S
D

c3
C
c4
N
M
c2
A

(d) F1-score (multi-class datasets)

3 4 5 6 7 8 9 10 11 12

CD

c3
C
N
S
F
D

c1
Z
c4
conf
M
c2
A

(e) AUC (binary datasets)

2 3 4 5 6 7 8 9 10 11 12

CD

F
Z

conf
c1
S
D

c3
C
c4
N
M
c2
A

(f) AUC (multi-class datasets)

3 4 5 6 7 8 9 10 11

CD

c3
C
N
F

c1
Z

S
c4
D
M
conf
c2
A

(g) G-mean (binary datasets)

2 3 4 5 6 7 8 9 10 11

CD

F
Z

conf
c1
c3
S

D
c4
N
C
M
c2
A

(h) G-mean (multi-class datasets)

Fig. 6: Performance ranking of all measures (Qs = {CM , sup, length}, Qp =
{CM }) analyzed separately for binary and multi-class problems. Measures that
are not significantly different at α = 0.05 are connected.

Considering balanced datasets, the results are fairly similar to those obtained
when analyzing all datasets and highlight F , Z, and c1. However, when looking
at critical distance plots for AUC and G-mean it is also worth mentioning S, N ,
and c3 as highly ranked measures. This is interesting as all three measures possess
minimality/maximality, evidence symmetry, and evidence-hypothesis symmetry
properties, mentioned previously [16].
Comparing measure rankings on binary and multi-class problems we can see

that most evaluations still promote F , Z, and c1. A slight deviation from this
pattern can be seen on critical distance plots of AUC and G-mean for binary
datasets, where c3,N , and C are the three highest ranked confirmation measures.

5 Conclusions

Mining a concise set of descriptive rules that is characterized by good predictive
performance is a challenging task. In this paper, to tackle this problem we pro-
posed the CM-CAR algorithm, which uses confirmation measures to sort and
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prune a list of rules. Using the proposed algorithm we reviewed the applicability
of 12 confirmation measures to rule pruning and sorting.
The results of the experiments show that Bayesian confirmation measures can

be successfully applied to reduce the set of rules while maintaining satisfactory
predictive performance. In particular, the F , Z, c1 measures consistently showed
better performance than the popularly used confidence measure.
An additional analysis comparing results for balanced and imbalanced data-

sets highlighted N , c3, and S as promising measures for imbalanced data. This
result is particularly interesting as all three measures are well established in the
field of interestingness measures and possess additional properties compared to
F , Z, c1, such as: evidence symmetry, evidence-hypothesis symmetry, or mini-
mality/maximality. A similar analysis comparing results for binary and multi-
class problems revealed that F , Z, c1 are ranked highest on both types of prob-
lems, with the exception of AUC and G-mean results for binary datasets where
c3, N , and C were the three best confirmation measures.
The results of the research described in this paper inspire us to continue

working with confirmation measures in the context of rule-based classification.
In particular, we plan to analyze the impact that confirmation measures can
have on the coverage of the training set of objects, as in certain applications it is
advisable to propose a set of rules that covers the whole or the vast part of the
training set. Moreover, based on the results of the comparison performed in this
paper, we plan to use selected measures as components of more specialized rule-
based classifiers. Finally, a possible extension of CM-CAR can include optimizing
the set of classification association rules to those that are not contained by other
discovered rules.
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