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Abstract. The paper considers evaluation of rules with particular inter-
estingness measures being Bayesian confirmation measures. It analyses
the measures with regard to their agreement with a statistically signifi-
cant dependency between the evidence and the hypothesis. As it turns
out, many popular confirmation measures were not defined to possess
such a form of agreement. As a result, even in situations when there is
only a weak dependency in data, measures could indicate strong con-
firmation (or disconfirmation), encouraging the user to take some un-
justified actions. The paper employs a χ2-based coefficient allowing to
assess the level of dependency between the evidence and hypothesis in
experimental data. A method of quantifying the level of agreement (con-
cordance) between this coefficient and the measure being analysed is
introduced. Experimental results for 12 popular confirmation measures
are additionally visualised with scatter-plots and histograms.

Keywords: Interestingness measures, Bayesian confirmation, statistical
dependency

1 Introduction

Regardless of the application domain, a crucial step in discovering knowledge
from data is the evaluation of induced patterns [2, 10, 17, 23]. Evaluation of pat-
terns in form of if-then rules is often done using quantitative measures of inter-
est (e.g. rule support, confidence, gain, lift) [10, 23]. Among such interestingness
measures, an important role is played by a group called Bayesian confirmation
measures. Generally, they express the degree to which a rule’s premise (also re-
ferred to as the conditional part or evidence) confirms its conclusion (also referred
to as the decision part or hypothesis) [5, 9]. To narrow down the field of avail-
able confirmation measures, various properties of such measures are introduced
and analysed. Popular properties of confirmation measures include monotonicity
property, Ex1 property and its generalization to weak Ex1, logicality L prop-
erty and its generalization to weak L, and a group of symmetry properties (for
a survey refer to [5, 7, 12, 13]).

Let us stress that the property analysis becomes much more complex when we
assume that it is conducted upon data that may be error-prone. But in practice,
the existence of possible data errors is a real phenomenon and must be taken into
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account, so that insignificant, accidental conclusions could be eliminated [14].
Unfortunately, at times the popular confirmation measures may indicate strong
confirmation or strong disconfirmation, while there is only a weak dependency
in data [22]. Such indications are potentially dangerous, since they may lead to
unjustified, and thus inappropriate, user actions. To examine this aspect of the
confirmation measures, the paper assesses the significance of the dependency
between the evidence and the hypothesis in experimental data, and introduces
a method of quantifying the level of agreement (referred to as concordance)
between this assessment and the measure being analysed.

The rest of the paper is organized as follows. Section 2 describes the concept
of Bayesian confirmation and defines popular measures. An overview of common
measure properties is presented in Section 3. Section 4 discusses hazards of using
the confirmation measures under observational errors, including methodology
aimed at assessing the (χ2-based) level of dependency between the evidence
and the hypothesis in data. Moreover, it introduces concordance between the
χ2-based coefficient and confirmation measures. Last but not least, it provides
experimental evaluations of the selected confirmation measures. Final remarks
and conclusions are contained in Section 5.

2 Bayesian Confirmation Measures

In this paper, we consider evaluation of patterns represented in the form of rules.
The starting point for such rule induction process (rule mining) is a sample of a
larger reality, often represented in the form of a data table. Formally, a data table
(dataset) is a pair S = (U,A), where U is a non-empty finite set of objects, called
the universe, and A is a non-empty finite set of attributes providing descriptions
to the objects.

A rule induced from the dataset consists of a premise “if E” (referring to
an existing piece of evidence, E) and a conclusion “then H” (referring to a
hypothesised piece of evidence, H). Below, we shall use the common, shortened
denotation E → H (read as “if E, then H”).

To evaluate the patterns induced from datasets with respect to their rele-
vance and utility, quantitative interestingness measures have been proposed and
analysed [10]. This paper concentrates on a group of interestingness measures
called Bayesian confirmation measures. They quantify the degree to which the
evidence in the rule’s premise E provides support for or against the hypothesised
piece of evidence in the rule’s conclusion H [9].

In the context of a particular dataset, the relation between E and H may be
quantified by four non-negative frequencies a, b, c and d, briefly represented in
a 2 × 2 contingency table (Table 1). As an illustration, let us recall a popular
folk statement that “all ravens are black”, formalized as a rule “if x is a raven,
then x is black”, often used by Hempel [15]. Regarding that rule, the frequencies
may be interpreted as follows: a is the number of black ravens, b is the number
of black non-ravens, c is the number of non-black ravens, and d is the number of
non-black non-ravens. Observe that a, b, c and d can thus be used to estimate
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probabilities: e.g. the probability of the premise is expressed as P (E) = (a+c)/n,
the conditional probability of the conclusion given the premise is P (H|E) =
P (H ∩ E)/P (E) = a/(a+ c), and so on.

Table 1. An exemplary contingency table of the rule’s premise and conclusion.

H ¬H Σ

E a c a+ c

¬E b d b+ d

Σ a+ b c+ d n

The group of confirmation measures that we shall present and analyse consists
of interestingness measures that satisfy the property of Bayesian confirmation.
Formally, for a rule E → H, an interestingness measure c(H,E) has the property
of Bayesian confirmation when it satisfies the following conditions:

c(H,E)

> 0 when P (H|E) > P (H) (confirmation) ,
= 0 when P (H|E) = P (H) (neutrality) ,
< 0 when P (H|E) < P (H) (disconfirmation) .

(1)

Thus, the confirmation is interpreted as an increase in the probability of the
conclusion H provided by the premise E (similarly for the neutrality and the
disconfirmation).

Let us stress that the list of alternative, non-equivalent measures of Bayesian
confirmation is quite large [5, 8]. The commonly used confirmation measures are
presented in Table 2 (for brevity, some definitions are only formulated for two
of the main defined situations: confirmation and disconfirmation; in the case of
neutrality their values default to zero).

3 Properties of Bayesian Confirmation Measures

To discriminate between interestingness measures and help to choose a suitable
one for a particular application, many properties have been proposed and com-
pared in the literature [7, 10, 17, 11]. Properties group the measures according to
similarities in their behaviour. Among commonly used properties of confirmation
measures there are such properties as:

– Property M , ensuring monotonic dependency of a measure on the number
of objects satisfying (supporting) or not the premise and/or the conclusion
of the rule [12, 23], so that the measure is non-decreasing with respect to a
and d, and non-increasing with respect to b and c. Thus, e.g. arrival of new
objects supporting the rule (or counterexamples, respectively) to the dataset
cannot lower (increase) the value of the measure.

– Property Ex1, and its generalization weak Ex1, assuring that any conclu-
sively confirmatory rule is assigned a higher value than any rule which is not
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Table 2. Popular confirmation measures.

D(H,E) = P (H|E)− P (H) =
a

a+ c
− a+ b

n
[6]

M(H,E) = P (E|H)− P (E) =
a

a+ b
− a+ c

n
[18]

S(H,E) = P (H|E)− P (H|¬E) =
a

a+ c
− b

b+ d
[4]

N(H,E) = P (E|H)− P (E|¬H) =
a

a+ b
− c

c+ d
[19]

C(H,E) = P (E ∧H)− P (E)P (H) =
a

n
− (a+ c)(a+ b)

n2
[3]

F (H,E) =
P (E|H)− P (E|¬H)

P (E|H) + P (E|¬H)
=

ad− bc
ad+ bc+ 2ac

[16]

Z(H,E) =


1− P (¬H|E)

P (¬H)
=

ad− bc
(a+ c)(c+ d)

in case of confirmation

P (H|E)

P (H)
− 1 =

ad− bc
(a+ c)(a+ b)

in case of disconfirmation

[5]

A(H,E) =


P (E|H)− P (E)

1− P (E)
=

ad− bc
(a+ b)(b+ d)

in case of confirmation

P (H)− P (H|¬E)

1− P (H)
=

ad− bc
(b+ d)(c+ d)

in case of disconfirmation

[13]

conclusively confirmatory, and any conclusively disconfirmatory rule is as-
signed a lower value than any rule which is not conclusively disconfirmatory
[5, 13].

– Logicality L, and its generalization weak L, indicating conditions under
which measures should obtain their maximal/minimal values [5, 9, 13]. An-
other property closely related to L, Ex1 and their generalizations is maxi-
mality/minimality proposed in [11].

Searching for measures that possess property Ex1, Crupi et al. [5] have proposed
measure Z(H,E). Later, as its likelihoodist counterpart, measure A(H,E) has
been proposed in [13] (for definitions see Table 2). It has been proved in [13] that
neither measure Z(H,E) nor A(H,E) satisfies weak Ex1, however new measures
enjoying weak Ex1 can be derived from Z(H,E) and A(H,E). They are denoted
as c1(H,E), c2(H,E), c3(H,E), and c4(H,E) (for definitions see Table 3; brevity
comments similar to that of Table 2 apply here). Measures c1(H,E) and c2(H,E)
are defined using parameters α and β, where α+β = 1 and α > 0, β > 0. Observe
that parameters α and β can be used to closen the new measure to Z(H,E) or
A(H,E), i.e. to Bayesian or likelihoodist inspirations.
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Table 3. Derived confirmation measures.

c1(H,E) =


α+ βA(H,E) in case of confirmation when c = 0

αZ(H,E) in case of confirmation when c > 0

αZ(H,E) in case of disconfirmation when a > 0

−α+ βA(H,E) in case of disconfirmation when a = 0

c2(H,E) =


α+ βZ(H,E) in case of confirmation when b = 0

αA(H,E) in case of confirmation when b > 0

αA(H,E) in case of disconfirmation when d > 0

−α+ βZ(H,E) in case of disconfirmation when d = 0

c3(H,E) =

{
A(H,E)Z(H,E) in case of confirmation

−A(H,E)Z(H,E) in case of disconfirmation

c4(H,E) =

{
min(A(H,E), Z(H,E)) in case of confirmation

max(A(H,E), Z(H,E)) in case of disconfirmation

4 Using Bayesian Confirmation Measures in Error-Prone
Situations

4.1 The Property of Concordance

In real-life situations the existence of possible errors must be taken into account.
Thus, we should look for a statistically significant dependency between the evi-
dence and the hypothesis, which may be quantified and measured with different
tools. A good and popular one is the two-dimensional χ2 test, often used to test
for the independence of two discrete-valued variables. The popular alternatives
to this test include the Cramer’s V coefficient, the Yule’s Q coefficient or the
Fisher coefficient [20].

For 2 × 2-sized contingency tables, of the form [ a c
b d ], as used in defining

confirmation measures, a coefficient χ2
0 = n(ad−bc)2

(a+b)(c+d)(a+c)(b+d) is defined. This

coefficient is approximately χ2-distributed and ranges from 0 to n. To make it
n-independent, it is scaled down (divided) by n, producing a value belonging to
the interval [0, 1]. This version of the coefficient will be further referred to as the
“scaled-down χ2

0” and denoted as χ2
01.

In practice, two potentially unfavourable situations can concern the confir-
mation measure applied to a contingency table created from error-prone data:

– the value of c(H,E) indicates either weak confirmation or weak disconfir-
mation, while there is a strong dependency between the evidence and the
hypothesis,

– the value of c(H,E) indicates either strong confirmation or strong discon-
firmation, while there is only a weak dependency between the evidence and
the hypothesis.
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To counteract those, there arises a need to evaluate the concordance between
confirmation measures and statistical significance of the evidence-hypothesis de-
pendency. For such an evaluation to be useful, it should provide continuous
measurements, the higher the more the measure c(H,E) ‘agrees’ with the level
of dependency between the evidence and the hypothesis. This evaluation may
be performed using different statistical tools, and in this study we use linear
Pearson correlation between |c(H,E)| (the absolute value of c(H,E)) and χ2

01,
denoted as r(|c(H,E)|, χ2

01). Taking |c(H,E)| into account (thus ignoring the
sign of c(H,E)) is essential, as it is the absolute value of the confirmation mea-
sure, and not its sign, that determines the ‘strength’ of c(H,E) (i.e. the degree to
which the premise of a rule evaluated by the measure confirms or disconfirms its
conclusion). Potential alternatives to the linear Pearson correlation include the
Spearman rank correlation coefficient [21] or mutual information measures [1].

What is specific about the property of concordance is that it is a represen-
tative of continuous-type properties: it can be quantified as the agreement with
the level of dependency between E and H.

The relation between χ2
01 coefficient and a given confirmation measure c(H,E)

may be additionally visualized, which is easily done with a scatter-plot of c(H,E)
against χ2

01. Each such scatter-plot will fit a 2 × 1-sized rectangular envelope,
with its axes ranging from −1 to +1 (horizontal, c(H,E)) and from 0 to 1 (ver-
tical, χ2

01), as illustrated in Figure 1, with lighter and darker regions and graded
transitions between them. Given a measure c(H,E), the points of the c(H,E)-
versus-χ2

01 scatter-plot should possibly occupy the darker regions of the figure,
while possibly avoiding any of the lighter ones.

−1 −0.5 0 0.5 1
0.0

0.5

1.0

Fig. 1. The desirable (darker) and undesirable (lighter) regions of the
c(H,E)-versus-χ2

01 scatter-plot of c(H,E).

4.2 The Experimental Set-up

Given n > 0 (the total number of observations), the dataset is generated as the
set of all possible [ a c

b d ] contingency tables satisfying a+ b+ c+ d = n. The set
is thus exhaustive and non-redundant (i.e. it contains exactly one copy of each
contingency table satisfying the above condition).
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The exact number t of tables in the set is t = (n+ 1)(n+ 2)(n+ 3)/6. This value
grows quickly, although polynomially, not exponentially; e.g. the number of all
tables for n = 128 equals t = 366145. Unfortunately, the number t can become
considerable: for n about 1000 (a typical number of objects in a benchmark
classification data set) t exceeds hundreds of millions.

After having set the total number of observations n to 128, the following
operations were performed:

– the exhaustive and non-redundant set of [ a c
b d ] contingency tables satisfying

a+ b+ c+ d = n was generated,
– the values of the 12 selected confirmation measures (with c1(H,E) and
c2(H,E) defined for α = β = 0.5) for all the generated tables were cal-
culated,

– the values of the χ2
01 coefficient for all the generated tables were computed,

– the correlations between the absolute values of each of 12 selected confirma-
tion measures and the χ2

01 coefficient (i.e. concordances) were established.

Similar steps (but with n decreased to 32 to facilitate the rendering process) led
to the charts, i.e. scatter-plots of c(H,E) against χ2

01 (Figure 2) and so called
triple-region histograms of c(H,E) (Figure 3). The triple-region histograms show
the distribution of the measure, with each bar additionally displaying the number
of points situated above (upper white region), on (dark region) or below (lower
white region) the |c(H,E)| = χ2

01 line. Characteristically, the size of the lower
region always exceeds considerably the size of the upper region, while the dark
region is only a thin, horizontal strip (with the notable exception of c3(H,E),
for which only the dark region exists).

Table 4. The coefficients of the χ2
01-concordance of the 12 selected confirmation mea-

sures.

c(H,E) r(|c(H,E)|, χ2
01) c(H,E) r(|c(H,E)|, χ2

01)

D(H,E) 0.713 Z(H,E) 0.694
M(H,E) 0.713 A(H,E) 0.694
S(H,E) 0.912 c1(H,E) 0.697
N(H,E) 0.912 c2(H,E) 0.697
C(H,E) 0.908 c3(H,E) 1.000
F (H,E) 0.711 c4(H,E) 0.957

4.3 The Experimental Results

The conducted experiments revealed interesting results of both generic and spe-
cific nature [22]. The following remarks concern the χ2

01-concordance (as quan-
tified by the Pearson correlation coefficient r) of the measures (see Table 4 and
Figures 2 and 3):
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Fig. 2. Scatter-plots of the 12 selected confirmation measures against χ2
01 (left-hand

column: measures D(H,E), M(H,E), S(H,E), N(H,E), C(H,E), F (H,E); right-
hand column: measures Z(H,E), A(H,E), c1(H,E), c2(H,E), c3(H,E), c4(H,E);
c1(H,E) and c2(H,E) defined with α = β = 0.5).

– measure c3(H,E) enjoys an ideal χ2
01-concordance, which is due to the fact

that |c3(H,E)| = χ2
01,

– the concordance of the other measures ranges from 0.957 (c4(H,E)) down to
0.694 (Z(H,E) and A(H,E)), in result of which all of them can be referred
to as approximately concordant,

– the absolute values of the approximately concordant measures tend to exceed
those of χ2

01.

A conclusion is that not all of the measures possess ideal concordance. The less
concordant measures should thus be used with some care, especially when applied
to real-life, error-prone data, as the may express either strong confirmation or
strong disconfirmation in statistically insignificant situations.

It is especially interesting that measures c1(H,E) and c2(H,E), which de-
pend on the value of the α parameter, i.e. the free parameter that is used to
define these measures (the β parameter is, on the other hand, constrained, as
β = 1 − α), evince varying shapes of their corresponding scatter-plots, see Fig-
ure 4. This will necessarily influence their correlations with the χ2

01 coefficient.



The Property of χ2
01-Concordance for Bayesian Confirmation Measures 9

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

Fig. 3. Triple-region histograms of the 12 selected confirmation measures c(H,E) in
relation to χ2

01 (left-hand column: measures D(H,E), M(H,E), S(H,E), N(H,E),
C(H,E), F (H,E); right-hand column: measures Z(H,E), A(H,E), c1(H,E), c2(H,E),
c3(H,E), c4(H,E); c1(H,E) and c2(H,E) defined with α = β = 0.5).

Because, by definition, most values of these measures belong to the interval
(−α,+α), see Figure 4 (more details can be found in [22]), their concordances
are then also changed accordingly, see Figure 5. This means that the α parameter
can be directly used to control this aspect of these two measures. In particular,
when α → 1.0, measures c1(H,E) and c2(H,E) approach measures Z(H,E)
and A(H,E), respectively, in which case they also acquire their corresponding
concordances (which is, in both cases, 0.694).

For more detailed analyses of these (and other) properties of the confirmation
measures see [22].

5 Conclusions

The paper considers Bayesian confirmation measures, which have become the
subject of numerous, intensive studies. What is characteristic of these studies is
that virtually all of them were confined to environments that had been explicitly
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Fig. 4. Scatter-plots of measures c1(H,E) and c2(H,E) against χ2
01, defined for various

values of α (left-hand column: α = 0.2, α = 0.4; right-hand column: α = 0.6, α = 0.8),
see Figure 2 for α = 0.5.

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

Fig. 5. The concordances of c1(H,E) and c2(H,E), as influenced by the changing α.

or implicitly assumed to be free from observational errors. In real-life situations,
however, the existence of such errors must be taken into account and properly
approached. This goal is in this paper accomplished with the χ2 test, commonly
used to examine for the dependence between two discrete-valued variables.

The actual amount of how concordant a confirmation measure is with the
level of dependency between the evidence and the hypothesis is quantified with
the Pearson correlation coefficient between the measure and an introduced χ2

01

coefficient. The relations between the measures and χ2
01 are additionally illus-

trated by scatter-plots and specialized, triple-region histograms.
The general conclusion is that most measures possess rather high, although

not ideal, concordance. The scatter-plots and the triple-region histograms of
these measures reveal particular situations in which they express either strong
confirmation or strong disconfirmation in statistically insignificant situations.
This means that they should be used with special care in error-prone environ-
ments. Interestingly enough, the concordance of the parametrized confirmation
measures, c1(H,E) and c2(H,E), is influenced by the parameters used in their
definitions, so it may be controlled to some extent. Measure c3(H,E), a notable
exception amongst the 12 selected confirmation measures, enjoys full concor-
dance, so its indications may assumed to be safest in this particular respect.
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23. Szczȩch, I.: Multicriteria attractiveness evaluation of decision and association rules.

Transactions on Rough Sets X, LNCS series 5656, 197–274 (2009)


