Group decision making by voting

Roman Słowiński

Zakład Inteligentnych Systemów
Wspomagania Decyzji
Instytut Informatyki
Politechniki Poznańskiej

Group decision making by voting

- In democracy most decisions are made in groups or by the community
- Voting is a possible way to make the decisions
- Allows large number of decision makers
- All DMs are not necessarily satisfied with the result
- The size of the group doesn't guarantee the quality of the decision
- Competence and expertise are not always taken into account (one person = one vote)

Voting - a social choice

- n alternatives $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$
- k voters - decision makers $\mathrm{DM}_{1}, \mathrm{DM}_{2}, \ldots, \mathrm{DM}_{\mathrm{k}}$
- each DM has preferences for the alternatives
- which alternative the group should choose?

Social choice rule - SCR

- Preference of a single voter is expressed as a ranking of alternatives (the ranking may not be complete), e.g., the preference profile:
- DM1: A > B > C
- DM2: $B>C>A$
- DM3: $C>B>A$
- Social choice rule (SCR) aggregates the preference profiles into a social outcome, i.e., ranking indicating the winner (ties allowed)
- Examples: political and corporate elections, selection of employees, selection of projects, competition for grants, family vote for vacation, etc.
- SCR is imposing a voting rule

Plurality rule

- Plurality rule : each voter has one vote; the alternative that was ranked first by the greatest number of voters is the winner:

$$
\begin{aligned}
& \text { 3: } A>B>C \\
& \text { 1: } A>C>B \\
& \text { 3: } B>C>A \\
& \text { 2: } C>B>A
\end{aligned}
$$

Decision: 4 for $A, 3$ for $B, 2$ for C - A is the winner

- This is the only rule that is:
- anonimous - each vote has the same value,
- neutral - labels of alternatives do not influence the ranking,
- monotonic - if a voter improves the rank of alternative x , which is a winner, then x remains the winner
- Examples: Great Britain, USA, Kanada, Kenia, Iran, Kuweit, Nepal, Singapore, South Korea, ...-40 countries in total

Antiplurality rule and approval voting

- Antiplurality rule : each but the last alternative in individual rankings is awarded:

```
3: \(\mathrm{A}>\mathrm{B}>\mathrm{C}\) (the ranking may not be complete)
1: \(A>C\)
3: \(B>C>A\)
2: \(\mathrm{C}>\mathrm{B}>\mathrm{A}\)
Decision: 4 for \(\mathrm{A}, 8\) for \(\mathrm{B}, 5\) for \(\mathrm{C}-\mathrm{B}\) is the winner
```

- Approval voting: each voter votes for a subset of alternatives; each alternative from a given subset gets one point; the alternative with the greatest number of points is the winner:

4: A
3: B, C
2: C
Decision: 4 for $\mathrm{A}, 3$ for $\mathrm{B}, 5$ for C - C is the winner
Examples: conclave (1294-1621), general secretary of UN

Antiplurality rule and approval voting

- Antiplurality rule : each but the last alternative in individual rankings is awarded:

```
3: \(\mathrm{A}>\mathrm{B}>\mathrm{C}\) (the ranking may not be complete)
1: \(A>C\)
3: \(\mathrm{B}>\mathrm{C}>\mathrm{A}\)
2: \(\mathrm{C}>\mathrm{B}>\mathrm{A}\)
Decision: 4 for \(A\), 8 for \(B, 5\) for \(C-B\) is the winner
```

- Approval voting: each voter votes for a subset of alternatives; each alternative from a given subset gets one point; the alternative with the greatest number of points is the winner:

	$D M_{1}$	$D M_{2}$	$D M_{3}$	$D M_{4}$	$D M_{5}$	$D M_{6}$	DM_{7}	DM_{8}	DM_{9}	total	
A	X	-	-	X	-	X	-	X	-	4	
B	X	X	X	X	X	X	-	X	-	7	the winner
C	-	-	-	-	-	-	X	-	X	2	

Examples: conclave (1294-1621), general secretary of UN

Run-off election

- Plurality run-off : the winner must get over 50% of the votes; if the condition is not met, keep only two best alternatives and repeat the voting:

$$
\begin{aligned}
& \text { 4: } A>B>C \\
& \text { 3: } B>C>A \\
& \text { 2: } C>B>A
\end{aligned}
$$

Decision: 4 for $\mathrm{A}, 3$ for $\mathrm{B}, 2$ for C - none got 50%, keep A, B
4: $A>B$
3: $B>A$
2: $B>A$
Decision: 4 for $\mathrm{A}, 5$ for $\mathrm{B}-\mathrm{B}$ is the winner

- Examples: presidential elections in Poland, France, Brazil, Portugal, Ukraine, ...

Run-off election

- Single transferable vote: the winner must get over 50% of the votes; if the condition is not met, eliminate one alternative with the lowest number of votes and repeat the voting; continue until conclusion:

5: $A>B>C>D$
7: $\mathrm{B}>\mathrm{D}>\mathrm{C}>\mathrm{A}$
7: $\mathrm{C}>\mathrm{B}>\mathrm{A}>\mathrm{D}$
4: $D>C>B>A$
Stage 1: 5 for $\mathrm{A}, 7$ for $\mathrm{B}, 7$ for C, 4 for D - none got 50%, remove D
5: $A>B>C$
7: $\mathrm{B}>\mathrm{C}>\mathrm{A}$
7: $C>B>A$
4: $C>B>A$
Stage 2: 5 for A, 7 for B, 11 for C - none got 50\%, remove A
5: $B>C$
7: $\mathrm{B}>\mathrm{C}$
7: $C>B$
4: $C>B$
Stage 3: 12 for $B, 11$ for $C-B$ is the winner

- Examples: presidential election in Australia and New Zealand

Some paradoxes (1/2)

- Winner-turns-loser paradox: the winner may become loser if some voters increase its rank:

27: $A>B>C$
42: $C>A>B$
24: $B>C>A$
Plurality run-off: in stage 1, keep A and C, then C beats A 66:27
Assume that 4 voters improved the rank of C from 3rd to 1st:
23: $A>B>C$
46: $C>A>B$
24: $B>C>A$
Plurality run-off: in stage 1, keep B and C, then B beats C 47:46 even if C got an additional support

Some paradoxes (2/2)

- No-show paradox: alternative that did not win until now, becomes the winner after adding additional votes where it is ranked the last:

> 23: $A>B>C$
> 46: $C>A>B$
> 24: $B>C>A$

Plurality run-off: in stage 1, keep B and C, then B beats C 47:46
Assume that 42 additional voters vote: $A>B>C$
65: $A>B>C$
46: $C>A>B$
24: $B>C>A$
Plurality run-off: in stage 1, keep A and C, then C beats A 70:65 even if C was ranked the last in 42 additional votes

Jean Condorcet (1743-1794) - Condorcet rule

- Each pair of alternatives is compared
- The alternative which is the best in all comparisons is the winner
- There may be no solution

Consider alternatives A, B, C, 33 voters and the following voting result

	A	B	C
A	-	18,15	18,15
B	15,18	-	32,1
C	15,18	1,32	-

- A is better than B by 18:15, and better than C by 18:15
$\Rightarrow A$ is the Condorcet winner
- Similarly, C is the Condorcet loser

Jean Condorcet (1743-1794) - Condorcet rule

- Example 1:

> 1: $\mathrm{B}>\mathrm{C}>\mathrm{A}>\mathrm{D}$
> $1: \mathrm{D}>\mathrm{A}>\mathrm{C}>\mathrm{B}$
> $1: A>C>B>D$

A is the winner
D is the loser

vs.	A	B	C	D
A	-	2,1	2,1	2,1
B	1,2	-	1,2	2,1
C	1,2	2,1	-	2,1
D	1,2	1,2	1,2	-

- Example 2:

$$
\begin{aligned}
& \text { 1: } \mathrm{B}>\mathrm{C}>\mathrm{D}>\mathrm{A} \\
& 1: \mathrm{D}>\mathrm{A}>\mathrm{C}>\mathrm{B} \\
& 1: A>C>B>D
\end{aligned}
$$

There is no Condorcet winner

vs.	A	B	C	D
A	-	2,1	2,1	1,2
B	1,2	-	1,2	2,1
C	1,2	2,1	-	2,1
D	2,1	1,2	1,2	-

The Condorcet paradox

- Consider the following comparison of the three alternatives

1: $\mathrm{A}>\mathrm{B}>\mathrm{C}$	
1: $\mathrm{B}>\mathrm{C}>\mathrm{A}$	Every alternative
1: $\mathrm{C}>\mathrm{A}>\mathrm{B}$	has a supporter!

vs.	A	B	C
A	-	2,1	1,2
B	1,2	-	2,1
C	2,1	1,2	-

Paired comparisons:

- A is preferred to $B(2-1)$
- B is preferred to C (2-1)
- C is preferred to A (2-1)
- The paired comparisons are cycling: $\mathrm{A}>\mathrm{B}>\mathrm{C}>\mathrm{A}$

Escaping the Condorcet paradox

- Pairwise voting in a given order:

1) $(A-B) \Rightarrow A$ wins, $(A-C) \Rightarrow C$ is the winner
2) $(B-C) \Rightarrow B$ wins, $(B-A) \Rightarrow A$ is the winner
3) $(A-C) \Rightarrow C$ wins, $(C-B) \Rightarrow B$ is the winner

	DM_{1}	DM_{2}	DM_{3}
A	1	3	2
B	2	1	3
C	3	2	1

vs.	A	B	C
A	-	2,1	1,2
B	1,2	-	2,1
C	2,1	1,2	-

The voting result depends on the pairing order

Strategic voting in case of known voting order

- DM_{1} knows the preferences of the other voters and the voting order ($\mathrm{A}-\mathrm{B}, \mathrm{B}-\mathrm{C}, \mathrm{A}-\mathrm{C}$)
- The favourite A of DM_{1} cannot win*
- If D_{1} votes for B instead of A in the first round

	DM_{1}	DM_{2}	DM_{3}
A	1	3	2
B	2	1	3
C	3	2	1

- B is the winner
- DM_{1} avoids the least preferred alternative C

	DM_{1}	DM_{2}	DM_{3}
A	2	3	2
B	1	1	3
C	3	2	1

vs.	A	B	C
A	-	2,1	1,2
B	1,2	-	2,1
C	2,1	1,2	-

\longmapsto| vs. | A | B | C |
| :---: | :---: | :---: | :---: |
| A | - | 1,2 | 1,2 |
| B | 2,1 | - | 2,1 |
| C | 2,1 | 1,2 | - |

* If DM_{2} and DM_{3} vote according to their preferences

In case there is no Condorcet winner

- Copeland rule : the alternative for which the difference between the number of won and the number of lost pairwise comparisons with other alternatives is the greatest, is the winner:

$$
\begin{aligned}
& \text { 31: } \mathrm{A}>\mathrm{E}>\mathrm{C}>\mathrm{D}>\mathrm{B} \\
& \text { 30: } \mathrm{B}>\mathrm{A}>\mathrm{E}>\mathrm{C}>\mathrm{D} \\
& \text { 29: } \mathrm{C}>\mathrm{D}>\mathrm{B}>\mathrm{A}>\mathrm{E} \\
& \text { 10: } \mathrm{D}>\mathrm{A}>\mathrm{B}>\mathrm{C}>E
\end{aligned}
$$

vs.	A	B	C	D	E
A	-	41,59	71,29	61,39	100,1
B	59,41	-	40,60	30,70	69,31
C	29,71	60,40	-	90,10	39,61
D	39,61	70,30	10,90	-	39,61
E	0,100	31,69	61,39	61,39	-

- Decision: A (won 3, lost 1), B (2 vs. 2), C (2 vs. 2), D (1 vs. 3), E (2 vs. 2) - Copeland winner: A

In case there is no Condorcet winner

- Kemeny rule : among all permutations, choose the ranking being the closest to the voters' profiles, i.e. maximizing the total number of concordant pairwise comparisons:

$$
\begin{aligned}
& 7: M>W>B \\
& 9: W>B>M \\
& 4: B>M>W
\end{aligned}
$$

vs.	M	W	B
M	-	11	7
W	9	-	16
B	13	4	-

Kemeny number of concordant pairwise comparisons:
M W B : $(M$ vs. $W=11)+(M$ vs. $B=7)+(W$ vs. $B=16)=34$
M B W : (M vs. $B=7$) $+(\mathrm{M}$ vs. $\mathrm{W}=11)+(\mathrm{B} v \mathrm{~s} . \mathrm{W}=4)=22$
W M B: $(W$ vs. $M=9)+(W$ vs. $M=16)+(M$ vs. $B=7)=32$
W B $M:(W$ vs. $B=16)+(W$ vs. $M=9)+(B$ vs. $M=13)=38$
$B M W:(B$ vs. $M=13)+(B$ vs. $W=4)+(M$ vs. $W=11)=28$
$B W M:(B$ vs. $W=4)+(B$ vs. $M=13)+(W v s . M=9)=26$

- Decision: W > B > M

In case there is no Condorcet winner

- Maxmin rule : rank the alternatives in the order of decreasing minimum numbers of pairwise comparisons being won by them:

$$
\begin{aligned}
& \text { 7: } M>W>B \\
& \text { 9: } W>B>M \\
& \text { 4: } B>M>W
\end{aligned}
$$

vs.	M	W	B	min won
M	-	11	7	7
W	9	-	16	9
B	13	4	-	4

- Let score (X, Y) be the number of voters who prefer X over Y

$$
\text { winner }=\operatorname{argmax}_{X}\left(\min _{Y} \operatorname{score}(X, Y)\right)
$$

- Decision: W > M > B

In case there is no Condorcet winner

- Coombs rule : similar to single transferable vote; eliminate the alternative which is ranked last by the greatest number of voters, until one remaining alternative gets over 50\% of votes:
7: $M>W>B$
9: $W>B>M$
4: $B>M>W$

\square| Stage 1: eliminate M |
| :--- |
| Stage 2: eliminate B, W is the winner |

- Example: choice of the host of olympic games
- Each DM gives n-1 points to the most preferred alternative, $\mathrm{n}-2$ points to the second most preferred, ..., and 0 points
 to the least preferred alternative
- The alternative with the highest total number of points is the winner
- An example: 3 alternatives, 9 voters

4 states that $A>B>C$	$A: 4 \cdot 2+3 \cdot 0+2 \cdot 0=8$ votes
3 states that $B>C>A$	$B: 4 \cdot 1+3 \cdot 2+2 \cdot 1=12$ votes
2 states that $C>B>A$	$C: 4 \cdot 0+3 \cdot 1+2 \cdot 2=7$ votes

B is the Borda winner

Generalization of Borda rule

- Positional scoring rule :
- Vector of position scores: $\mathrm{s}=<\mathrm{s} 1, \mathrm{~s} 2, \ldots, \mathrm{sn}>$, where $\mathrm{sl} \geq \mathrm{s} 2 \geq \ldots \geq \mathrm{sn}$
- Borda rule: <n-1, n-2, ..., 0>
- Plurality rule: <1, 0, .., 0>
- Antiplurality rule: <1, .., 1, 0>
- Baldwin rule : in consecutive stages, eliminate the alternative with the worst Borda score:

7 : $\mathrm{M}>\mathrm{W}>\mathrm{B}$
9: $\mathrm{W}>\mathrm{B}>\mathrm{M}$

4 : $\mathrm{B}>\mathrm{M}>\mathrm{W}$

Stage 1: $M=18, W=25, B=17$, eliminate B
Stage 2: $M=11, W=9, M$ is the winner
Ranking: $\mathrm{M}>\mathrm{W}>\mathrm{B}$

Allocating seats in party-list proportional representation

- D'Hondt method (Poland, Austria, Finland, Israel, Spain, Netherlands) :
- divide the number of obtained votes by natural numbers, $n=1,2,3, \ldots$

party:	A	B	C
$n=1$	240	360	150
$n=2$	120	180	75
$n=3$	80	120	50
$n=4$	60	90	37.5
$n=5$	48	72	30

The number of seats to be shared $\mathbf{s}=8$

- if \mathbf{s} is the number of seats, order \mathbf{s} results of the division according to decreasing values:
360(B), 240(A), 180(B), 150(C), 120(B), 120(A), 90(B), 80(A)
- assign to party X as many seats as the number of times X appears in the above order:

$$
B=4 \text { seats, } A=3 \text { seats, } C=1 \text { seat }
$$

- in case of tie, take the party with the greatest number of votes, and then with the greatest number of winning electoral districts

Allocating seats in party-list proportional representation

- Sainte-Laguë method (Norway, Sweden, Danmark, Bosnia, Latvia, Kosowo, Germany, New Zealand, Poland in 2001) :
- divide the number of obtained votes by odd numbers, $\mathrm{n}=1,3,5, \ldots$

party:	A	B	C
$n=1$	240	360	150
$n=3$	80	120	50
$n=5$	48	72	30
$n=7$	34.28	51.43	21.43

The number of seats to be shared $\mathbf{s}=8$

- if \mathbf{s} is the number of seats, order \mathbf{s} results of the division according to decreasing values:
360(B), 240(A), 150(C), 120(B), 80(A), 72(B), 51.43(B), 50(C)
- assign to party X as many seats as the number of times X appears in the above order:

$$
B=4 \text { seats, } A=2 \text { seats, } C=2 \text { seats }
$$

Coalitions

- If the voting procedure is known voters may form coalitions that serve their purposes
- Eliminate an undesired alternative
- Support a commonly agreed alternative

Weak preference order

- The opinion of the DM_{i} about two alternatives is called a weak preference order R_{i} :

The $D M_{i}$ thinks that x is at least as good as $y \Leftrightarrow x R_{i} y$ (outranking)

- How the collective preference R should be determined when there are k decision makers?
- What is the social choice function f that gives $R=f\left(R_{1}, \ldots, R_{k}\right)$?
- Voting procedures are potential choices for social choice functions

Requirements on the social choice function (1/2)

1) Non trivial

There are at least two DMs and three alternatives
2) Complete and transitive R_{i} 's

If $x \neq y \Rightarrow x R_{i} y \vee y R_{i} x$ (i.e. all DMs have an opinion)
If $x R_{i} y \wedge y R_{i} z \Rightarrow x R_{i} z$
3) f is defined for all R_{i} 's

The group has a well defined preference relation, regardless of what the individual preferences are

Requirements on the social choice function (2/2)

4) Independence of irrelevant alternatives

The group's choice doesn't change if we add an alternative that is

- considered inferior to all other alternatives by all DMs, or
- is a copy of an existing alternative

5) Pareto principle

If all group members prefer x to y, the group should choose the alternative x
6) Non dictatorship

There is no $D M_{i}$ such that $\times R_{i} y \Rightarrow x R y$

There is no complete and transitive social choice function f satisfying the conditions 1-6

Arrow's theorem - an example

Borda voting procedure:

	DM_{1}	DM_{2}	DM_{3}	DM_{4}	DM_{5}	total
x_{1}	3	3	1	2	1	10
\mathbf{x}_{2}	2	2	3	1	3	11
x_{3}	1	1	2	0	0	4
x_{4}	0	0	0	3	2	5

Alternative x_{2} is the winner!

Suppose that DMs' preferences do not change. A ballot between the alternatives 1 and 2 gives

	DM_{1}	DM_{2}	DM_{3}	DM_{4}	DM_{5}	total
\mathbf{x}_{1}	1	1	0	1	0	3
\mathbf{x}_{2}	0	0	1	0	1	2

Alternative x_{1} is the winner!

The fourth condition is not satisfied!

Theorem (Harsanyi [1994 Nobel Prize] 1955, Keeney 1975):

Let $v_{i}(\cdot)$ be a measurable marginal value function describing the preferences of DM_{i}. There exists a k -dimensional differentiable function $\mathrm{v}_{\mathrm{g}}()$ with positive partial derivatives describing group preferences $>_{g}$ in the definition space, such that
$a>_{g} b \Leftrightarrow v_{g}\left[v_{1}(a), \ldots, v_{k}(a)\right] \geq v_{g}\left[v_{1}(b), \ldots, v_{k}(b)\right]$
and conditions 1-6 are satisfied.

Value aggregation (2/2)

- In addition to the weak preference order also a cardinal scale describing the strength of the preferences is required

- Value function describes also the strength of the preferences

Problems in value aggregation

- There is a function describing group preferences but it may be difficult to define in practice
- Comparing the values of different DMs is not straightforward
- Solution:
- Each DM defines her/his own value function
- Group preferences are calculated as an aggregate (weighted sum?) of the individual preferences
- Unequal or equal weights?
- Should the chairman get a higher weight
- Group members can weight each others' expertise
- Defining the weight is likely to be politically difficult (e.g. in EU)
- Are the DMs preferentially independent?
- Use more complex aggregation models - loose in transparency?

