

Group decision making by voting

Roman Słowiński

Zakład Inteligentnych Systemów Wspomagania Decyzji Instytut Informatyki Politechniki Poznańskiej

© Roman Słowiński

Group decision making by voting

- In democracy most decisions are made in groups or by the community
- Voting is a possible way to make the decisions
 - Allows large number of decision makers
 - All DMs are not necessarily satisfied with the result
- The size of the group doesn't guarantee the quality of the decision
- Competence and expertise are not always taken into account (one person = one vote)

Voting - a social choice

- *n* alternatives x₁, x₂, ..., x_n
- k voters decision makers DM_1 , DM_2 , ..., DM_k
- each DM has preferences for the alternatives
- which alternative the group should choose?

Social choice rule - SCR

- Preference of a single voter is expressed as a ranking of alternatives (the ranking may not be complete), e.g., the preference profile:
 - DM1: A > B > C
 - DM2: B > C > A
 - DM3: C > B > A
- Social choice rule (SCR) aggregates the preference profiles into a social outcome, i.e., ranking indicating the winner (ties allowed)
- Examples: political and corporate elections, selection of employees, selection of projects, competition for grants, family vote for vacation, etc.
- SCR is imposing a voting rule

Plurality rule : each voter has one vote; the alternative that was ranked first by the greatest number of voters is the winner:

> 3: A > B > C1: A > C > B3: B > C > A2: C > B > A

Decision: 4 for A, 3 for B, 2 for C - A is the winner

- This is the only rule that is:
 - anonimous each vote has the same value,
 - neutral labels of alternatives do not influence the ranking,
 - monotonic if a voter improves the rank of alternative x, which is a winner, then x remains the winner
- Examples: Great Britain, USA, Kanada, Kenia, Iran, Kuweit, Nepal, Singapore, South Korea, ... – 40 countries in total

Antiplurality rule and approval voting

- Antiplurality rule : each but the last alternative in individual rankings is awarded:
 - 3: A > B > C (the ranking may not be complete)
 - 1: A > C
 - 3: B > C > A
 - 2: C > B > A

Decision: 4 for A, 8 for B, 5 for C - B is the winner

Approval voting: each voter votes for a subset of alternatives; each alternative from a given subset gets one point; the alternative with the greatest number of points is the winner:

```
4: A
3: B, C
2: C
```

Decision: 4 for A, 3 for B, 5 for C - C is the winner

Examples: conclave (1294-1621), general secretary of UN

Antiplurality rule and approval voting

- Antiplurality rule : each but the last alternative in individual rankings is awarded:
 - 3: A > B > C (the ranking may not be complete)
 - 1: A > C
 - 3: B > C > A
 - 2: C > B > A

Decision: 4 for A, 8 for B, 5 for C - B is the winner

Approval voting: each voter votes for a subset of alternatives; each alternative from a given subset gets one point; the alternative with the greatest number of points is the winner:

	DM_1	DM_2	DM ₃	DM_4	DM ₅	DM ₆	DM ₇	DM ₈	DM_9	total	
A	Х	-	-	Х	-	Х	-	Х	-	4	_
											the winner
С	-	-	-	-	-	-	Х	-	Х	2	

Examples: conclave (1294-1621), general secretary of UN

Plurality run-off: the winner must get over 50% of the votes; if the condition is not met, <u>keep only two best alternatives</u> and repeat the voting:

4: A > B > C
3: B > C > A
2: C > B > A
Decision: 4 for A, 3 for B, 2 for C - none got 50%, keep A, B
4: A > B
3: B > A
2: B > A
Decision: 4 for A, 5 for B - B is the winner

 Examples: presidential elections in Poland, France, Brazil, Portugal, Ukraine, ... Single transferable vote: the winner must get over 50% of the votes; if the condition is not met, <u>eliminate one alternative</u> with the lowest number of votes and repeat the voting; continue until conclusion:

5: A > B > C > D7: B > D > C > A7: C > B > A > D4: D > C > B > AStage 1: 5 for A, 7 for B, 7 for C, 4 for D – none got 50%, remove D 5: A > B > C7: B > C > A7: C > B > A4: C > B > AStage 2: 5 for A, 7 for B, 11 for C – none got 50%, remove A 5: B > C7: B > C7: C > B4: C > BStage 3: 12 for B, 11 for C – B is the winner

Examples: presidential election in Australia and New Zealand

Winner-turns-loser paradox: the winner may become loser if some voters increase its rank:

27: A > B > C 42: C > A > B 24: B > C > A

Plurality run-off: in stage 1, keep A and C, then C beats A 66:27

Assume that 4 voters improved the rank of C from 3rd to 1st:

23: A > B > C 46: C > A > B

24: B > C > A

Plurality run-off: in stage 1, keep B and C, then B beats C 47:46 even if C got an additional support

No-show paradox: alternative that did not win until now, becomes the winner after adding additional votes where it is ranked the last:

> 23: A > B > C 46: C > A > B 24: B > C > A

Plurality run-off: in stage 1, keep B and C, then B beats C 47:46

Assume that 42 additional voters vote: A > B > C

65: A > B > C46: C > A > B

24: B > C > A

Plurality run-off: in stage 1, keep A and C, then C beats A 70:65 even if C was ranked the last in 42 additional votes

Jean Condorcet (1743-1794) – Condorcet rule

- Each pair of alternatives is compared
- The alternative which is the best in all comparisons is the winner
- There may be no solution

Consider alternatives A, B, C, 33 voters and the following voting result

	A	В	С	 A is better than B by 18:15,
А	-	18,15	18,15	and better than C by 18:15
В	15,18	-	32,1	\Rightarrow A is the Condorcet winner
С	15,18	1,32	-	 Similarly, C is the Condorcet loser

Jean Condorcet (1743-1794) – Condorcet rule

VS.

- Example 1:
 - 1: B > C > A > D

1: D > A > C > B

1: A > C > B > D

A is the winner D is the loser

А	-	2,1	2,1	2,1
В	1,2	-	1,2	2,1
С	1,2	2,1	-	2,1
D	1,2	1,2	1,2	_

В

С

D

Α

- Example 2:
 - 1: B > C > D > A
 - 1: D > A > C > B
 - 1: A > C > B > D

There is no Condorcet winner

VS.	А	В	С	D
A	-	2,1	2,1	1,2
В	1,2	-	1,2	2,1
С	1,2	2,1	-	2,1
D	2,1	1,2	1,2	-

The Condorcet paradox

- Consider the following comparison of the three alternatives
 - 1: A > B > C
 - 1: B > C > A
 - 1: C > A > B

Every alternative has a supporter!

VS.	А	В	С
А	-	2,1	1,2
В	1,2	-	2,1
С	2,1	1,2	-

Paired comparisons:

- A is preferred to B (2-1)
- B is preferred to C (2-1)
- C is preferred to A (2-1)
- The paired comparisons are cycling: A > B > C > A

- Pairwise voting in a given order:
- 1) (A-B) \Rightarrow A wins, (A-C) \Rightarrow C is the winner
- 2) (B-C) \Rightarrow B wins, (B-A) \Rightarrow A is the winner
- 3) (A-C) \Rightarrow C wins, (C-B) \Rightarrow B is the winner

VS.	А	В	С
Α	-	2,1	1,2
В	1,2	-	2,1
С	2,1	1,2	-

	DM ₁	DM_2	DM_3
A B	1	3	2
В	2	1	3
С	3	2	1

The voting result depends on the pairing order

Strategic voting in case of known voting order

•	 DM₁ knows the preferences of the other voters and the voting order (A-B, B-C, A-C) DM₁ DM₂ DM₃ 										
			Δ	· ·	2						
	The fav	ourite /	A of DM	1 canno	ot win*			A B	12	3 1	2 3
_		votos fo	or D inc	tood of	A in the f	First rou	nd				
		votes it		leau ui	A in the f	IISLIOU	ПО	С	3	2	1
	B is the winner										
				DM_1	DM_2	DM_3					
	DM ₁ avoids the least preferred alternative C									3	2
										1	3
								С	3	2	1
	VS.	А	В	С		VS.	А		В		С
	А	-	2,1	1,2		А	I		1,2	-	1,2
	B 1,2 - 2,1 B 2,1										2,1
	С	2,1	1,2	_		С	2,1		1,2		-

* If DM₂ and DM₃ vote according to their preferences

Copeland rule : the alternative for which the difference between the number of won and the number of lost pairwise comparisons with other alternatives is the greatest, is the winner:

31	:	A	>	Ε	>	С	>	D	>	В
30	:	В	>	A	>	Е	>	С	>	D
29	:	С	>	D	>	В	>	Α	>	Ε
10	:	D	>	A	>	В	>	С	>	Ε

VS.	А	В	С	D	E
А	-	41,59	71,29	61,39	100,1
В	59,41	-	40,60	30,70	69,31
С	29,71	60,40	-	90,10	39,61
D	39,61	70,30	10,90	-	39,61
Е	0,100	31,69	61,39	61,39	-

Decision: A (won 3, lost 1), B (2 vs. 2), C (2 vs. 2), D (1 vs. 3),
 E (2 vs. 2) – Copeland winner: A

Kemeny rule : among all permutations, choose the ranking being the closest to the voters' profiles, i.e. maximizing the total number of concordant pairwise comparisons:

7 : M > W > B 9 : W > B > M 4 : B > M > W

VS.	М	W	В
М	-	11	7
W	9	-	16
В	13	4	-

Kemeny number of concordant pairwise comparisons:

M W B : (M vs. W = 11) + (M vs. B = 7) + (W vs. B = 16) = 34 M B W : (M vs. B = 7) + (M vs. W = 11) + (B vs. W = 4) = 22 W M B : (W vs. M = 9) + (W vs. M = 16) + (M vs. B = 7) = 32 W B M : (W vs. B = 16) + (W vs. M = 9) + (B vs. M = 13) = 38 B M W : (B vs. M = 13) + (B vs. W = 4) + (M vs. W = 11) = 28B W M : (B vs. W = 4) + (B vs. M = 13) + (W vs. M = 9) = 26

Decision: W > B > M

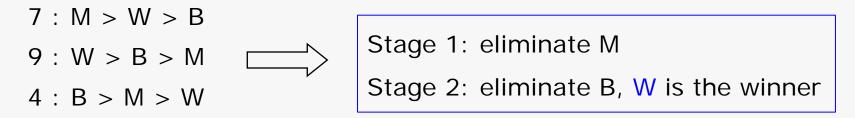
All permutations

Maxmin rule : rank the alternatives in the order of decreasing minimum numbers of pairwise comparisons being won by them:

7 : M > W > B	VS.	М	W	В	min
9 : W > B > M					won
4 : B > M > W	М	-	11	7	7
	W	9	-	16	9
	В	13	4	_	4

- Let score(X,Y) be the number of voters who prefer X over Y winner = argmax_x(min_yscore(X,Y))
- Decision: W > M > B

Coombs rule : similar to single transferable vote; eliminate the alternative which is ranked last by the greatest number of voters, until one remaining alternative gets over 50% of votes:

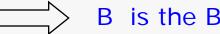


Example: choice of the host of olympic games

Jean-Charles de Borda (1733-1799) – Borda rule

- Each DM gives n-1 points to the most preferred alternative, n-2 points to the second most preferred, ..., and 0 points to the least preferred alternative
- The alternative with the highest total number of points is the winner
- An example: 3 alternatives, 9 voters

4 states that
$$A > B > C$$
 $A : 4 \cdot 2 + 3 \cdot 0 + 2 \cdot 0 = 8$ votes3 states that $B > C > A$ $B : 4 \cdot 1 + 3 \cdot 2 + 2 \cdot 1 = 12$ votes2 states that $C > B > A$ $C : 4 \cdot 0 + 3 \cdot 1 + 2 \cdot 2 = 7$ votes



B is the Borda winner

- Positional scoring rule :
 - Vector of position scores: $s = \langle s1, s2, ..., sn \rangle$, where $s1 \ge s2 \ge ... \ge sn$
 - Borda rule: <n-1, n-2, ..., 0>
 - Plurality rule: <1, 0, ..., 0>
 - Antiplurality rule: <1, ...,1, 0>
- Baldwin rule : in consecutive stages, eliminate the alternative with the worst Borda score:

7: M > W > BStage 1: M=18, W=25, B=17, eliminate B9: W > B > MStage 2: M=11, W=9, M is the winner4: B > M > WRanking: M > W > B

Allocating seats in party-list proportional representation

- D'Hondt method (Poland, Austria, Finland, Israel, Spain, Netherlands) :
 - divide the number of obtained votes by natural numbers, n=1,2,3,...

party:	А	В	С	
n=1	240	360	150	
n=2	120	180	75	The number of seats to be shared
n=3	80	120	50	s =8
n=4	60	90	37.5	
n=5	48	72	30	

 if s is the number of seats, order s results of the division according to decreasing values:

360(B), 240(A), 180(B), 150(C), 120(B), 120(A), 90(B), 80(A)

- assign to party X as many seats as the number of times X appears in the above order:
 B = 4 seats, A = 3 seats, C = 1 seat
- in case of tie, take the party with the greatest number of votes, and then with the greatest number of winning electoral districts

Allocating seats in party-list proportional representation

- Sainte-Laguë method (Norway, Sweden, Danmark, Bosnia, Latvia, Kosowo, Germany, New Zealand, Poland in 2001) :
 - divide the number of obtained votes by odd numbers, n=1,3,5,...

party:	А	В	С	
n=1	240	360	150	The number of costs to be chared
n=3	80	120	50	The number of seats to be shared
n=5	48	72	30	s =8
n=7	34.28	51.43	21.43	

 if s is the number of seats, order s results of the division according to decreasing values:

360(B), 240(A), 150(C), 120(B), 80(A), 72(B), 51.43(B), 50(C)

assign to party X as many seats as the number of times X appears in the above order:
 B = 4 seats, A = 2 seats, C = 2 seats

Coalitions

- If the voting procedure is known voters may form coalitions that serve their purposes
 - Eliminate an undesired alternative
 - Support a commonly agreed alternative

Weak preference order

The opinion of the DM_i about two alternatives is called a weak preference order R_i:

The DM_i thinks that x is at least as good as $y \Leftrightarrow x R_i y$ (outranking)

- How the collective preference R should be determined when there are k decision makers?
- What is the *social choice function f* that gives $R = f(R_1, ..., R_k)$?
- Voting procedures are potential choices for social choice functions

1) Non trivial

There are at least two DMs and three alternatives

2) Complete and transitive R_i's

If $x \neq y \Rightarrow x R_i y \lor y R_i x$ (i.e. all DMs have an opinion) If $x R_i y \land y R_i z \Rightarrow x R_i z$

3) f is defined for all R_i's

The group has a well defined preference relation, regardless of what the individual preferences are

Requirements on the social choice function (2/2)

4) Independence of irrelevant alternatives

The group's choice doesn't change if we add an alternative that is

- considered inferior to all other alternatives by all DMs, or
- is a copy of an existing alternative

5) Pareto principle

If all group members prefer x to y, the group should choose the alternative x

6) Non dictatorship

There is no DM_i such that $x R_i y \Rightarrow x R y$

(Kenneth Arrow, 1921-) Nobel Prize 1972

There is no complete and transitive social choice function *f* satisfying the conditions 1-6

Arrow's theorem - an example

	DM ₁	DM_2	DM ₃	DM_4	DM_5	total
x ₁	3	3	1	2	1	10
x ₂	2	2	3	1	3	
X ₃	1	1	2	0	0	4
x ₄	0	0	0	3	2	5

Borda voting procedure:

Alternative x₂ is the winner!

Suppose that DMs' preferences do not change. A ballot between the alternatives 1 and 2 gives

	DM ₁	DM_2	DM ₃	DM_4	DM_5	total
x ₁	1	1	0	1	0	$\left(\begin{array}{c} 3 \end{array} \right)$
x ₂	0	0	1	0	1	$\underbrace{}_{2}$

Alternative x₁ is the winner!

The fourth condition is not satisfied!

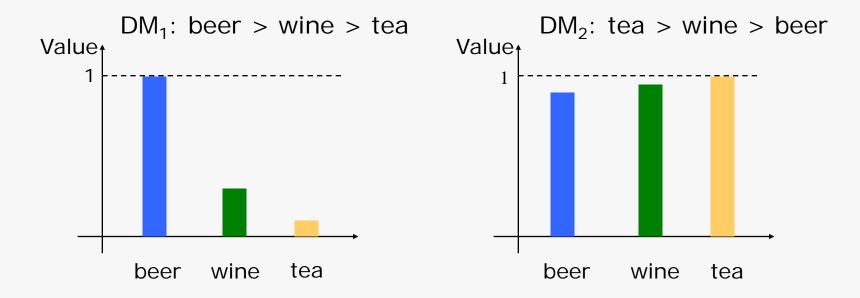
Theorem (Harsanyi [1994 Nobel Prize] 1955, Keeney 1975):

Let $v_i(\cdot)$ be a measurable marginal value function describing the preferences of DM_i . There exists a k-dimensional differentiable function $v_g()$ with positive partial derivatives describing group preferences $>_g$ in the definition space, such that

 $a >_g b \Leftrightarrow v_g[v_1(a),...,v_k(a)] \ge v_g[v_1(b),...,v_k(b)]$ and conditions 1-6 are satisfied.

Value aggregation (2/2)

In addition to the weak preference order also a cardinal scale describing the strength of the preferences is required



Value function describes also the strength of the preferences

Problems in value aggregation

- There is a function describing group preferences but it may be difficult to define in practice
- Comparing the values of different DMs is not straightforward
- Solution:
 - Each DM defines her/his own value function
 - Group preferences are calculated as an aggregate (weighted sum?) of the individual preferences
- Unequal or equal weights?
 - Should the chairman get a higher weight
 - Group members can weight each others' expertise
 - Defining the weight is likely to be politically difficult (e.g. in EU)
 - Are the DMs preferentially independent?
- Use more complex aggregation models loose in transparency?