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Syntax vs. Semantics
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Syntax and semantics in reasoning

Example: Find x if you know that:

10
x = 2
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Syntax and semantics in reasoning

Example: Find x if you know that:

10
x = 2

Solution by using syntax (structural transformations):

10
x = 2 ⇐⇒ 10 = 2x ⇐⇒ 10

2 = x ⇐⇒ x = 10
2 ⇐⇒ x = 5

semantics
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Syntax and semantics in reasoning

Example: Find x if you know that:

10
x = 2

Solution by using syntax (structural transformations):

10
x = 2 ⇐⇒ 10 = 2x ⇐⇒ 10

2 = x ⇐⇒ x = 10
2 ⇐⇒ x = 5

semantics or maybe not?!

Solution by using semantics (properties of objects):
Division is defined as finding such a number, which when added n times
(where n is the divisor) gives the original number.
How many 2’s we need to add to obtain 10?
Answer: 5. So x = 5.
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Formalization

One of the greatest achievements of mathematics and logic, often so much
taken for granted that not properly realized, is moving the reasoning about
the mathematical objects from the properties and relations between them
to the syntactical manipulations on their structure.

If for a given domain of knowledge such a syntactic encoding of knowledge
is possible, we call it a formalization of this domain of knowledge.
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Formalization

Syntactic manipulations can be performed by a person not knowing
anything about what they concern. They make the process of
computations, mental or not, much easier and faster (“automatic”).
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Formalization

Formalization allows machines to perform domain-reasoning on the level
similar to that of humans (but usually much faster):

automatic theorem provers (e.g. Z3).
proof-assistants (e.g. Coq).
analysis of computer programs in programming environments (e.g.
PyCharm, Eclipse).

What would be necessary for a computer to be able to reason
semantically?

Is there really a fundamental difference between those two types of
reasoning?
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Formalization

What does it really mean to understand something?
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What do we want to achieve
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The goal

We want to somehow connect syntactic transformation with distributed
representations.

Example: We want to represent:

chases(dog, boy)

as a vector of numbers (e.g. activations of neurons). Additionally, we later
want to be able to automatically answer, who was chasing whom:

chases(dog, boy) ~ “who is chasing” = dog
chases(dog, boy) ~ “who is being chasen” = boy
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The goal

dog =


1.9
0.9
1.1
0.2

 , boy =


0.2
0.6
0.6
0.1

, chase =


1.3
0.9
1.4
0.5



chases(dog , boy) =


0.5
1.2
0.6
0.4



0.5
1.2
0.6
0.4

 ~ “who is being chasen” ≈


0.2
0.6
0.6
0.1
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The goal

Is such a system possible?
How ~ should be implemented?
How “who is being chasen” (the question) should be implemented?
Is a similar system used in the brain? (open question)
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Basics of linear algebra

Iwo Błądek Vector Symbolic Architectures 11 / 39



Linear algebra

Linear algebra
Branch of mathematics concerned with linear dependencies, that is
dependencies in which a value depends on a “weighted” (by a scalar, i.e.
constant number) sum of other values.

An example of a linear function:

f (x , y) = 2 · x − 5 · y
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Linear algebra

Matrix (pol. Macierz)
Data structure for storing numbers, equipped with a certain set of
operations.

Addition: [
a b
c d

]
·
[
x v
y z

]
=

[
a + x b + v
c + y d + z

]
.

Multiplication: [
a b
c d

]
·
[
x v
y z

]
=

[
ax + by av + bz
cx + dy cv + dz

]
.
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Linear algebra

Special matrices:

zero matrix (pol. macierz zerowa)0 0 0
0 0 0
0 0 0



unit matrix (pol. macierz jednostkowa)1 0 0
0 1 0
0 0 1
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Linear algebra

For arbitrary xi ,j holds:x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3

 +

0 0 0
0 0 0
0 0 0

 =

x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3
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Linear algebra

For arbitrary xi ,j holds:x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3

 +

1 0 0
0 1 0
0 0 1

 =

x1,1 + 1 x1,2 x1,3
x2,1 x2,2 + 1 x2,3
x3,1 x3,2 x3,3 + 1
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Linear algebra

For arbitrary xi ,j holds:x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3

 ·

1 0 0
0 1 0
0 0 1

 =

x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3
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Vectors

A special matrices with one of the dimensions equal to 1.
Can be either a column or a row.

[
x1 x2 . . . xn

]
vs.


x1
x2
. . .
xn



The vectors above are two different vectors!
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Vectors

What are vectors good for apart from specifying relative movement
in physics?

Representing points in space! For example, point (2, 1) in the Euclidean

space may be represented by a vector
[
2
1

]
.

1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

1

2

3

4
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Matrices as transformations

When we multiply matrix and vector, we get certain another vector. For
example: [

2 0
0 2

]
·
[
2
1

]
=

[
4
2

]

In general: [
a b
c d

]
·
[
x
y

]
= x ·

[
a
c

]
+ y ·

[
c
d

]
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Matrices as transformations

Matrix used for transformation:
[
2 0
0 2

]

6 4 2 0 2 4 6
6

4

2

0

2

4

6

v0

v0'

v1 v1'

v2
v2'

v3
v3'

v4v4'
eigv0

eigv1
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Matrices as transformations

Matrix used for transformation:
[
−1 2
2 1

]

6 4 2 0 2 4 6
6

4

2

0

2

4

6

v0 v0'
v1

v1'

v2

v2'

v3

v3'

v4

v4'

eigv0
eigv1
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Matrices as transformations

Matrix used for transformation:
[
3 1
0 2

]

6 4 2 0 2 4 6
6

4

2

0

2

4

6

v0

v0'

v1 v1'

v2
v2'

v3
v3'

v4v4'
eigv0eigv1
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Convolution
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Convolution

Convolution (pol. splot) is used for example in the signal processing
and image processing.
Convolution is an operation between two signals (mathematically
speaking: two functions with time as an argument).
The second of them is often called mask or kernel.

Example:

A =
[
1 0 0 0 0 0 0

]
Original signal

M =
[
2 −1 1

]
Mask/Kernel

A ∗ B =
[
2 −1 1 0 0 0 0

]
Convolution
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Convolution

Convolution (pol. splot) is used for example in the signal processing
and image processing.
Convolution is an operation between two signals (mathematically
speaking: two functions with time as an argument).
The second of them is often called mask or kernel.

Example:

A =
[
20 0 0 0 0 0 0

]
Original signal

M =
[
2 −1 1

]
Mask/Kernel

A ∗ B =
[
40 −20 20 0 0 0 0

]
Convolution
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Convolution

Convolution (pol. splot) is used for example in the signal processing
and image processing.
Convolution is an operation between two signals (mathematically
speaking: two functions with time as an argument).
The second of them is often called mask or kernel.

Example:

A =
[
a 0 0 0 0 0 0

]
Original signal

M =
[
2 −1 1

]
Mask/Kernel

A ∗ B =
[
2a −a a 0 0 0 0

]
Convolution
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Convolution

Convolution (pol. splot) is used for example in the signal processing
and image processing.
Convolution is an operation between two signals (mathematically
speaking: two functions with time as an argument).
The second of them is often called mask or kernel.

Example:

A =
[
1 0 0 1 0 0 0

]
Original signal

M =
[
2 −1 1

]
Mask/Kernel

A ∗ B =
[
2 −1 1 2 −1 1 0

]
Convolution
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Convolution

Convolution (pol. splot) is used for example in the signal processing
and image processing.
Convolution is an operation between two signals (mathematically
speaking: two functions with time as an argument).
The second of them is often called mask or kernel.

Example:

A =
[
1 0 0 0 1 0 0

]
Original signal

M =
[
2 −1 1

]
Mask/Kernel

A ∗ B =
[
2 −1 1 0 2 −1 1

]
Convolution
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Convolution

Convolution (pol. splot) is used for example in the signal processing
and image processing.
Convolution is an operation between two signals (mathematically
speaking: two functions with time as an argument).
The second of them is often called mask or kernel.

Example:

A =
[
1 0 0 0 0 0 1

]
Original signal

M =
[
2 −1 1

]
Mask/Kernel

A ∗ B =
[
2 −1 1 0 0 0 2

]
? ? Convolution

What if we don’t have enough space for new elements to add?
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Convolution

Convolution (pol. splot) is used for example in the signal processing
and image processing.
Convolution is an operation between two signals (mathematically
speaking: two functions with time as an argument).
The second of them is often called mask or kernel.

Example:

A =
[
1 0 0 0 0 0 1

]
Original signal

M =
[
2 −1 1

]
Mask/Kernel

A ∗ B =
[
2 −1 1 0 0 0 2 −1 1

]
Convolution

What if we don’t have enough space for new elements to add?
We add them anyway!
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Convolution

Convolution (pol. splot) is used for example in the signal processing
and image processing.
Convolution is an operation between two signals (mathematically
speaking: two functions with time as an argument).
The second of them is often called mask or kernel.

Example:

A =
[
1 1 0 0 0 0 0

]
Original signal

M =
[
2 −1 1

]
Mask/Kernel

A ∗ B =
[
2 ? ? ? ? ? ?

]
Convolution
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Convolution

Convolution (pol. splot) is used for example in the signal processing
and image processing.
Convolution is an operation between two signals (mathematically
speaking: two functions with time as an argument).
The second of them is often called mask or kernel.

Example:

A =
[
1 1 0 0 0 0 0

]
Original signal

M =
[
2 −1 1

]
Mask/Kernel

A ∗ B =
[
2 (−1 + 2) (1 + (−1)) 1 0 0 0

]
Convolution

A ∗ B =
[
2 1 0 1 0 0 0

]
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Convolution

The other way of representing what happens:

A =
[
1 2 1 0 0 0 0

]
, M =

[
3 1 2

]
1 2 1 0 0 0 0 (Original signal)
3 1 2 1 1 1 1
1 6 2 4
1 1 3 1 2
1 1 1 0 0 0

. . . . . . . . . . . .

3 7 7 5 2 0 0 (Convolution)
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Convolution

Interpretation 1: a response of the system over time for signals
incoming in the subsequent time moments. (perspective used in this
presentation)
Interpretation 2: a weighted average of the neighborhood. (in this
case mask is centered on the element)
Mask/kernel describes system’s response for a single spike (value of 1
in A). If a value is different, then the system’s response is
appropriately scaled (multiplication).
Convolution is commutative, so A ∗M = M ∗ A.
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Convolution in 2D

Nobody said that we can only convolve in one dimension!
Example:

∗

−0.2 −0.1 0.3
−0.2 −0.1 0.9
−0.2 −0.1 0.3

 =

You can apply arbitrary masks on an image in Gimp under the
Filtry→Ogólne→Zniekształcenia macierzowe.
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Circular convolution

In the circular convolution mask wraps on the end and starts from the
beginning.

A =
[
1 1 1 1

]
, M =

[
3 4 5 6

]
1 1 1 1 (Original signal)
3 4 5 6
6 3 4 5
5 6 3 4
4 5 6 3
18 18 18 18 (Circular convolution)

Why values are the same?
Because the original signal and the mask have both the same length and
the original signal is uniform.
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Circular convolution

In the circular convolution mask wraps on the end and starts from the
beginning.

A =
[
1 0 2 3

]
, M =

[
3 1 2 1

]
1 0 2 3 (Original signal)
3 1 2 1
0 0 0 0
4 2 6 2
3 6 3 9
10 9 11 12 (Circular convolution)
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Circular convolution

In the circular convolution mask wraps on the end and starts from the
beginning.

A =
[
2 1 1 1

]
, M =

[
3 4 5 6

]
2 1 1 1 (Original signal)
6 8 10 12
6 3 4 5
5 6 3 4
4 5 6 3
21 22 23 24 (Circular convolution)
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Circular convolution

In the circular convolution mask wraps on the end and starts from the
beginning.

A =
[
1 1 1 1 1

]
, M =

[
3 4 5

]
1 1 1 1 1 (Original signal)
3 4 5
1 3 4 5
1 1 3 4 5
5 1 1 3 4
4 5 1 1 3
12 12 12 12 12 (Circular convolution)

Length doesn’t matter – sequence of 1s will generate the same result.
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Vector Symbolic Architectures
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Vector Symbolic Architectures

Vector Symbolic Architectures
Utilize structural manipulations while not representing information in the
form of symbols (as traditionally understood), but instead as the vectors
of real numbers.

Information is encoded in the form of vectors of real numbers.
VSA define composition, binding, and unbinding operators.
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Composition operator

Used to store several pieces of information in a single vector.
Realized by a simple addition of vectors.
Question: How to retrieve later individual stored elements?


1.2
1.8
1.6
0.7

 =


0.2
0.6
0.6
0.1

 +


0.4
0.2
0.3
0.2

 +


0.6
1.0
0.7
0.4


P = car + train + airplane
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Binding operator

Used to combine different pieces of information (e.g. verb ~ learn).
Usually some information is lost in the process, but if the vectors used
are remembered elsewhere, then they can be reconstructed.
Realized by a circular convolution (~) of vectors.


1.69
1.69
1.73
1.77

 =


0.2
0.6
0.6
0.1

 ~


0.3
0.9
0.1
0.5

 + · · ·+


0.4
0.2
0.3
0.2

 ~


0.6
1.0
0.7
0.4


P = agent ~ student + verb ~ learn + what ~ kogni
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Unbinding operator

Used to retrieve information from the binded representation.
Usually requires some postprocessing to clear up the noise.
Also realized by a circular convolution (~), but the second vector is
inverted (this is described on the next slide).

P = agent ~ student + verb ~ learn + what ~ kogni

P ~ agent−1 = student + noise ≈ student
P ~ verb−1 = learn + noise ≈ learn
P ~ what−1 = kogni + noise ≈ kogni
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Inverting vectors

Exact procedure is rather complicated, but it can be quite well
approximated with a very simple algorithm.
Complex systems does not necessarily need to compute everything
exactly. In fact, it can be very beneficial to approximate (what is
better: 98% in 1 s, 99% in 1 day, or 100% in 1 year?).

Algorithm:
Assume that we want to invert the vector:

x = [x1, x2, x3, x4, x5]

The approximated inversion will have the “tail” of the list reversed, while
the first element of the list remains unchanged:

x−1 = [x1, x5, x4, x3, x2]
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Example
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Example

50-dimensional unit vectors (of length 1), seed=1
Similarity of vectors is computed as a dot product. Interpretation
rules: 1.0 – the same vector, 0.0 – orthogonal, −1.0 – in the opposite
direction. Closer to 1.0 means more similar.

Vocabulary (basic “symbols”):
agent, student, verb, learn, what, kogni

Sentence:
P = agent ~ student + verb ~ learn + what ~ kogni

General form of questions:
answer = P ~ question
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Example

SIMILARITY of ’what’ with vocabulary:
-0.103877851423 agent
0.0690717296125 student
0.0595131957944 verb
0.219254946056 learn
1.0 what
-0.0478595262065 kogni
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Example

SIMILARITY of ’kogni’ with vocabulary:
0.084252963404 agent
0.0105059822009 student
0.131548409036 verb
0.0685833841815 learn
-0.0478595262065 what
1.0 kogni
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Example

answer = P ~ agent−1

QUESTION: Who is the agent?
SIMILARITY of ’answer’ with vocabulary:
0.348150364868 agent
0.701648021437 student
-0.00336734074461 verb
0.0928581135105 learn
0.0221546642779 what
-0.0495422116263 kogni
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Example

answer = P ~ verb−1

QUESTION: What is the verb?
SIMILARITY of ’answer’ with vocabulary:
-0.00334961185176 agent
-0.0705556986752 student
0.125815701745 verb
0.473234691606 learn
0.135686477099 what
0.0953053451415 kogni
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Example

answer = P ~ what−1

QUESTION: What is the target of the action?
SIMILARITY of ’answer’ with vocabulary:
0.0218402616746 agent
-0.128131779576 student
0.134468887466 verb
0.16382221557 learn
0.198250358035 what
0.530717820654 kogni
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The end of math (for now!)

Thank you for your attention.
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