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Intro

In this presentation, we will describe work originally presented at GECCO 2018
conference in Kyoto, 15-19.07.2018.

This work is also described in the peer-reviewed publication:

[2] P.Liskowski, I.Błądek, K.Krawiec, Neuro-Guided Genetic Programming:
Prioritizing Evolutionary Search with Neural Networks, GECCO’18 Proceedings of
the Genetic and Evolutionary Computation Conference, ACM, 2018,
pp. 1143-1150.
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Program synthesis

Automatic program synthesis: a general class of problems where the goal is to
find a program (executable procedure) that satisfies a given specification.

Specification

2, [1 5 3] → 4
1, [1 8 3 5] → 1
1, [1 8 3 5 7] → 1
2, [1 8 3 5 7] → 4
3, [1 8 3 5 7] → 9
2, [1 5 3 0 8] → 1
. . .

Target program

a ← int
b ← [int]
c ← Sort b
d ← Take a c
e ← Sum d

Aspects: type of specification, programming language.
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Genetic programming

Population of candidate programs.
In each generation programs are being selected based on their fitness and
search operators modify those programs, which then constitute a new
population.

Example of search operators:

Mutation:

(ite (>= x y) 2 (+ x y))
↓

(ite (< y 0) 2 (+ x y))

Crossover:

(mod x 2)
(ite (>= x y) 2 (+ x y))

↓
(mod (+ x y) 2)
(ite (>= x y) 2 x)
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Motivation

Problem we wanted to solve:
Search operators work under assumption that every instruction has the same
chance to lead to a correct candidate program (uniform distribution of
instructions given the problem instance).

In practice, this in vast majority of cases does not hold.

Our contribution:
Search operators (mutation, population initialization) taking into account the
conditional probability of instructions given input-output examples from
the specification.

Conditional probability of instructions is obtained by training a neural
network on input-output examples.
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Outline of our approach

“All” problem instances

1 Train artificial neural network (NN) to estimate conditional probability of
program instructions given the I/O examples.

7 / 38



Outline of our approach

“All” problem instances

1 Train artificial neural network (NN) to estimate conditional probability of
program instructions given the I/O examples.

Particular problem instance

1 Query the neural network on the I/O examples to obtain probability
estimates.

2 Parametrize search operators (mutation, population initialization) of GP with
the obtained estimates.

3 Run GP.
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Discussion

Artificial neural network is used, but should the whole
proposed solution be treated as a classical machine
learning scenario?

Tentative answer: No. Machine learning subcomponent is
used to guide search, but in the end this is a search
problem.
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Search problem

Goal: find such a program in the programming language (DeepCoder DSL)
that the specification will be met.

Specification: a list of input-output examples.

10 / 38



DeepCoder DSL

Types:
Int

List[Int]

Functions:
(10) operations on lists: Head, Last, Take, Drop, Access, Minimum,
Maximum, Reverse, Sort, Sum
(5) higher-order functions: Map, Filter, Count, ZipWith, Scanl1

Other elements of the language:
(10) lambdas for Map (add1, sub1, multMinus1, mult2, mult3,
mult4, div2, div3, div4, square).
(4) predicates for Filter and Count (>0, <0, isOdd, isEven).
(5) lambdas for ZipWith and Scanl (+, –, *, min, max).
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DeepCoder DSL

We use the same DSL as was used in the DeepCoder paper [1].

Program representation:
A variant of linear GP.
A fixed-length sequence of instructions, each of which issues a function call,
and stores it’s result in a fresh variable.

Example program:

P0: Compute the sum of a smallest numbers from the list b.

a ← int
b ← [int]
c ← Sort b
d ← Take a c
e ← Sum d

Input:
2, [1 8 3 5 7]
Output:
4
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Program representation – inputs

a ← int
b ← [int]

Declaring program’s input. Variable a will be an arbitrary Int provided by the user,
and b will be an arbitrary List[Int].
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Program representation – functions

a ← int
b ← [int]
c ← Function {a, b}+

d ← Function {a, b, c}+

e ← ...

Every line of the program consists of a single application of a function to the
previously defined variables.

For example:

a ← int
b ← [int]
c ← Sort b
d ← Take a c
e ← Sum d
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Program representation – predicates

a ← int
b ← [int]
c ← Function predicate {a, b}+

d ← Function lamba {a, b, c}+

e ← ...

Some functions accept certain predicates or lambdas, which are predefined and
treated as constant elements of the language.

For example (lambdas in red):

a ← [int]
b ← [int]
c ← Map (*3) a
d ← ZipWith (+) c b
e ← Maximum d
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Example problems

P0: Compute the sum of a smallest numbers from the list b.

a ← int
b ← [int]
c ← Sort b
d ← Take a c
e ← Sum d

Input:
2, [1 8 3 5 7]
. . .
Output:
4

P4: Given lists a and b, compute the minimal area of rectangles of dimensions
given in the input lists.

x ← [int]
y ← [int]
c ← Sort x
d ← Sort y
e ← Reverse d
f ← ZipWith (∗) d e
g ← Sum f

Input:
[1 2 3], [4 5 6]
. . .
Output:
28

a ← [int]
b ← [int]
c ← ZipWith (−) b a
d ← Count (>0) c

Listing 1: (P2 from the DeepCoder paper.

x ← [int]
y ← [int]
c ← Sort x
d ← Sort y
e ← Reverse d
f ← ZipWith (∗) d e
g ← Sum f

Listing 2: Program P4 from
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Network architecture

Source: M.Balog, et al., “DeepCoder: Learning to Write Programs”, 2016,
https://arxiv.org/abs/1611.01989
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Network training

Training algorithm: Adam.
Training lasts up to 100 epochs (full passes over the training set).
Early stopping condition: validation loss ceased to improve.
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Generation of the training set

All programs up to a certain number of instructions while removing most
semantic duplicates.
Each training case is a tuple (I/O-examples, instructions vector).
I/O-examples are generated randomly.

Small training set – programs up to length 3 with most of the semantic
duplicates removed. Total count: 822,582 programs.

Large training set – programs up to length 4 with most of the semantic
duplicates removed. Total count: 5,004,532 programs.
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Test sets

10,000 programs not present in the training set.
Several neural architectures and learning algorithms were tested and we
selected the one with the highest accuracy on the test set.

training set total programs accuracy on test set (%)
small 822,582 92.48
large 5,004,532 90.85
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P0: Compute the sum of a
smallest numbers from the list b.

Specification:
2, [1 5 3] → 4
1, [1 8 3 5] → 1
3, [1 8 3 5 7] → 9
. . .

Target program:

a ← int
b ← [int]
c ← Sort b
d ← Take a c
e ← Sum d
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.05 .28 .00 .33 .19 .01 .28 .23 .05 .02 .03 .04 .38 .03 .11 .15 .09 .42 .29 .38 .06 .01 .31 .00 .01 .10 .07 .29 .09 .01 .14 .56 .02 .25

.11 .11 .28 .28 .33 .06 .11 .16 .11 .11 .11 .11 .26 .04 .11 .11 .04 .54 .28 .04 .28 .04 .11 .11 .11 .11 .07 .32 .07 .11 .11 .03 .10 .57

P1: Count the number of points
of the winner. a is a list of wins
(3 points), and b is a list of
draws (1 point).

Specification:
[1 2], [1 2] → 8
[1 0 0], [1 1 2] → 4
[2 2 1 0], [1 1 0 0] → 7
. . .

Target program:

a ← [int]
b ← [int]
c ← Map (∗3) a
d ← ZipWith (+) c b
e ← Maximum d
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.03 .02 .97 .26 .27 .00 .08 .00 .12 .05 .01 .00 .17 .05 .03 .02 .08 .75 .07 .02 .22 .01 .37 .00 .04 .03 .06 .57 .09 .02 .14 .92 .00 1.00

.05 .28 .00 .33 .19 .01 .28 .23 .05 .02 .03 .04 .38 .03 .11 .15 .09 .42 .29 .38 .06 .01 .31 .00 .01 .10 .07 .29 .09 .01 .14 .56 .02 .25

.11 .11 .28 .28 .33 .06 .11 .16 .11 .11 .11 .11 .26 .04 .11 .11 .04 .54 .28 .04 .28 .04 .11 .11 .11 .11 .07 .32 .07 .11 .11 .03 .10 .57

<
0

>
0 * + -

ac
ce

ss
ad

d1

co
un

t
di

v2
di

v3
di

v4
dr

op
fil

te
r

he
ad

isE
ve

n

isO
dd la

st
m

ap
m

ax

m
ax

im
um m

in

m
in

im
um

m
ul

t2

m
ul

t3

m
ul

t4

m
ul

tM
in

us
1

re
ve

rs
e

sc
an

l
so

rt

sq
ua

re
su

b1
su

m
ta

ke

zi
pW

ith

p0

p1

p2

p3

p4

p5

p6

p7

p8

priors

P
ro

gr
am

.09 .13 .00 .21 .28 .02 .07 .22 .20 .17 .20 .02 .12 .12 .08 .08 .12 .37 .05 .16 .09 .06 .11 .14 .04 .03 .02 .10 .04 .00 .06 .55 .91 .06

.03 .05 .00 .41 .36 .01 .06 .01 .02 .00 .01 .00 .11 .01 .04 .02 .15 .94 .16 .86 .05 .00 .07 1.00 .00 .07 .03 .09 .06 .00 .06 .08 .00 1.00

.33 .47 .00 .43 .36 .00 .05 .98 .07 .06 .05 .02 .52 .01 .38 .30 .01 .30 .31 .01 .30 .01 .04 .00 .00 .07 .07 .10 .07 .00 .06 .01 .05 1.00

.14 .07 .00 .15 .70 .01 .11 .12 .18 .03 .06 .01 .36 .05 .09 .09 .11 .48 .24 .42 .03 .02 .16 .02 .03 .46 .11 .53 .09 .01 .11 .30 .00 .22

.06 .03 .88 .01 .01 .01 .00 .04 .01 .01 .00 .00 .05 .03 .02 .01 .18 .96 .09 .10 .15 .07 .00 .00 .03 .49 .03 .09 .06 .17 .94 .13 .00 .92

.00 .01 .00 .01 .00 .00 .07 .00 .04 .02 .10 .00 .06 .00 .04 .01 .00 .19 .42 .00 .99 .00 .02 .00 .03 .02 1.00 .15 .03 .00 .05 .00 .00 1.00

.12 .08 .00 .68 .40 .08 .09 .12 .11 .08 .07 .01 .22 .10 .08 .09 .23 .47 .23 .02 .28 .53 .03 .00 .00 .09 .07 .41 .08 .00 .06 .17 .01 .99

.03 .02 .97 .26 .27 .00 .08 .00 .12 .05 .01 .00 .17 .05 .03 .02 .08 .75 .07 .02 .22 .01 .37 .00 .04 .03 .06 .57 .09 .02 .14 .92 .00 1.00

.05 .28 .00 .33 .19 .01 .28 .23 .05 .02 .03 .04 .38 .03 .11 .15 .09 .42 .29 .38 .06 .01 .31 .00 .01 .10 .07 .29 .09 .01 .14 .56 .02 .25

.11 .11 .28 .28 .33 .06 .11 .16 .11 .11 .11 .11 .26 .04 .11 .11 .04 .54 .28 .04 .28 .04 .11 .11 .11 .11 .07 .32 .07 .11 .11 .03 .10 .57

P4: Compute the minimal total
area of rectangles which are
constructed by pairing
dimensions given in lists a and b.

Specification:
[1 2 3], [1 2 3] → 10
[1 2 2], [1 1 2] → 6
. . .

Target program:

a ← [int]
b ← [int]
c ← Sort a
d ← Sort b
e ← Reverse d
f ← ZipWith (∗) d e
g ← Sum f
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Neuro-Guided Genetic Programming

Fixed-length, linear program representation.

At the beginning, mutation in GP is parametrized with the result returned by
network for the input-output examples in the specification.

Apart from that, GP proceeds normally.

All programs in a GP run have the same nominal length, computed as: length
of the target program + 1.

Nop operation is included, to allow for effectively shorter programs.
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Search operators

Mutation:
An instruction is randomly selected in the program.
The function call is analyzed, and constructed is a set of functions with the
matching signature.
A function to insert and its arguments are selected randomly with the
probabilities provided by the network (after normalization).

Crossover:
Exchanging up to lc = 2 consecutive instructions between parents.
Signatures of the instructions must match.
If there are no such consecutive instructions, then lc is decreased.
If lc = 0, then parent programs are returned unchanged.
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Evolution parameters

Preliminary parameter tuning: the probabilities of mutation and crossover
pm, pc ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, population size ∈ {100, 500, 1000}; each
configuration was ran 30 times.

Parameter Value
Population size 1000
Max generations 200
Number of runs 50
Probability of mutation pm 0.8
Probability of crossover pc 0.0 or 0.5
Selection method Tournament (T) or Lexicase (L)
Tournament size 7
Max program length length of target program + 1
Number of fitness cases 128
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Benchmarks

Benchmark P0 P1 P2 P3 P4 P5 P6 P7 P8
Length 3 3 2 4 5 2 4 3 4
Small training set X X X X X
Large training set X X X X X X X X

Benchmarks the same as in the DeepCoder paper [1].
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Experiment dimensions

Small training set – 822,582 programs up to length 3.

Large training set – 5,004,532 programs up to length 4.

Total tested configurations = 2 · . . .
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Experiment dimensions

T – Tournament selection (size 7)

L – Lexicase selection

Total tested configurations = 2 · 2 · . . .
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Experiment dimensions

C – Crossover used (pc = 0.5)

N – Crossover not used (pc = 0.0)

Total tested configurations = 2 · 2 · 2 · . . .
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Experiment dimensions

U – Search operators biased with a uniform distribution

P – Search operators biased with prior probabilities reflecting the frequency
of instructions in the training set

S – Search operators biased using NN; only mutation

IS – Search operators biased using NN; both mutation and population
initialization

Total tested configurations = 2 · 2 · 2 · 4 = 32
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Observation 1

IS is much better than S.
Because of that, in the further analysis we present results only for the IS
variant.

configuration avg success rate
S (mut) 0.574
IS (mut, pop_init) 0.735
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Observation 2

Crossover does not make much difference for the effectiveness of search.
Because of that, in the further analysis we focus on the N (no crossover)
variant.

configuration avg success rate
C (crossover) 0.573
N (no crossover) 0.580
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Observation 3

Configurations parametrized with probability estimates were better than
baselines.

Success rates for the small training set. Legend: T (tournament), L (lexicase),
U (unbiased), P (priors baseline), S (search), IS (initialization and search).

method tU tP tIS lU lP lIS
cx 0.0 0.0 0.0 0.0 0.0 0.0
P2 (2) 1.00 1.00 1.00 1.00 1.00 1.00
P5 (2) 1.00 1.00 1.00 0.98 1.00 1.00
P0 (3) 0.70 0.34 1.00 0.58 0.40 1.00
P1 (3) 0.18 0.26 0.54 0.16 0.20 0.96
P7 (3) 0.16 0.34 0.56 1.00 1.00 1.00
P3 (4) 0.14 0.12 1.00 0.52 0.28 1.00
P6 (4) 0.08 0.06 0.04 0.40 0.82 0.78
P8 (4) 0.18 0.10 0.28 0.36 0.26 0.82
P4 (5) 0.14 0.02 0.00 0.52 0.38 0.14
mean 0.40 0.36 0.60 0.61 0.59 0.86
rank 10.72 12.00 8.28 8.50 8.17 4.17
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Observation 3

Configurations parametrized with probability estimates were better than
baselines.

Success rates for the large training set. Legend: T (tournament), L (lexicase),
U (unbiased), P (priors baseline), S (search), IS (initialization and search).

method tU tP tIS lU lP lIS
cx 0.0 0.0 0.0 0.0 0.0 0.0
P2 (2) 1.00 1.00 1.00 1.00 1.00 1.00
P5 (2) 1.00 1.00 1.00 0.98 0.98 1.00
P0 (3) 0.70 0.34 1.00 0.58 0.54 1.00
P1 (3) 0.18 0.20 0.58 0.16 0.16 0.98
P7 (3) 0.16 0.28 0.78 1.00 0.98 1.00
P3 (4) 0.14 0.10 0.68 0.52 0.46 0.98
P6 (4) 0.08 0.00 0.12 0.40 0.64 0.72
P8 (4) 0.18 0.16 0.42 0.36 0.32 0.84
P4 (5) 0.14 0.02 0.00 0.52 0.52 0.32
mean 0.40 0.34 0.62 0.61 0.62 0.87
rank 10.56 12.33 7.28 8.50 9.39 3.56
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Observation 4

Average success rate on the selected benchmarks was slightly higher for the
small training set.

training set avg success rate
small 0.581
large 0.573
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Statistical analysis

Ranks for the tested configurations (Friedman’s test):

smallN (p = 0.00877) Method lIS lS tIS lP lU tS tU tP
Rank 2.50 3.06 4.28 4.28 4.56 5.50 5.67 6.17

smallC (p = 0.01058) Method lIS lS tIS lU lP tS tU tP
Rank 2.17 3.61 4.33 4.33 4.72 5.22 5.72 5.89

largeN (p = 0.00093) Method lIS lS tIS lU lP tS tU tP
Rank 2.06 3.61 3.72 4.44 4.83 5.44 5.50 6.39

largeC (p = 0.00075) Method lIS lS tIS lU lP tS tU tP
Rank 2.22 3.50 3.83 4.33 4.56 5.11 5.83 6.61

Legend: small/large (training set used), N (no crossover), C (crossover),
T (tournament), L (lexicase), U (unbiased), P (priors baseline), S (search),
IS (initialization and search).
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Summary

Neuro-Guided GP first trains the neural network on the family of search
problem instances of interest, and then uses this network to guide search.

Neural network is able to generalize beyond the program size it was trained
on.

Neuro-Guided GP fared better than standard GP and baselines on a small set
of problems.
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Final words

Thank you for your attention!
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