
Solving Symbolic Regression Problems with Formal
Constraints

Iwo Błądek Krzysztof Krawiec

Institute of Computing Science
Poznań University of Technology, Poland

GECCO, Prague, July 15, 2019

1 / 28

Outline

1 Introduction

2 CDGP

3 CDGP for regression

4 Experiments

2 / 28

Motivation

Jane the Physicist wants to devise a formula for the force of gravity.

Jane has a set of observations (m1,m2, r) 7→ F .
Other laws of physics tell her that:

1 Swapping the masses does not change the force
2 A force cannot be negative
3 Increasing one of the masses increases the force

3 / 28

Example problems

Benchmark: gravity

f (m1,m2, r) = 6.67408 · 10−11 · m1m2
r2

Constraints:
s: f (m1,m2, r) = f (m2,m1, r)
b: f (m1,m2, r) ≥ 0
m: strict monotonicity w.r.t. both m1 and m2.

Test cases:
m1 m2 r out
10.88386 11.36099 15.74871 0.000000000033273260096895905
11.1782 3.21214 7.67932 0.000000000040635631498539907
7.22322 0.10104 11.48446 0.000000000000369308431952941

4 / 28

Example problems

Benchmark: resistance2
f (r1, r2) = r1r2

r1 + r2

Constraints:
s: f (r1, r2) = f (r2, r1)
c1: r1 = r2 =⇒ f (r1, r2) = r1

2
c2: f (r1, r2) ≤ r1 ∧ f (r1, r2) ≤ r2

Test cases:
r1 r2 out
10.09611 17.39521 6.388341979690316
0.68719 4.75438 0.600408042568597
1.42871 17.19419 1.319102352206155

5 / 28

Example problems

Benchmark: resistance3

f (r1, r2, r3) = r1r2r3
r1r2 + r1r3 + r2r3

Constraints:
s: f (r1, r2, r3) = . . . = f (r3, r2, r1)
c1: r1 = r2 = r3 =⇒ f (r1, r2, r3) = r1

3
c2: f (r1, r2, r3) ≤ r1 ∧ f (r1, r2, r3) ≤ r2 ∧ f (r1, r2, r3) ≤ r3

Test cases:
r1 r2 r3 out
9.31772 8.88437 2.90062 1.771060362583031
19.09801 17.08167 3.09636 2.3048717244360835
17.71372 11.53495 6.26835 3.3038401592739173

6 / 28

Problem

Symbolic Regression with Formal Constraints (SRFC)
Given a set of test cases (examples) T , a set of formal constraints C , and a
(possibly infinite) set of functions F , find a function f : Rn → R, f ∈ F , that
minimizes the approximation error on T , while satisfying all constraints in C .

Examples of formal constraints:
Symmetry with respect to arguments: f (x , y) = f (y , x)
Symmetry with respect to domain: f (x) = f (−x)
Range: f (x , y) ∈ [0, 1]
Monotonicity: ∀x ,y x > y =⇒ f (x) > f (y)
Convexity/concavity
Value of derivative in a given point: f ′(3.7) > 2.5

7 / 28

Advantages and challenges

Advantages:
Resulting model is guaranteed to have the requested properties.
Arbitrary constraints can be used.
Models can be induced from fewer examples.

Challenges:
Feedback bottleneck
A constraint is either satisfied or not; not much information for guiding
search.
Necessity of logical proof
A constraint may be specified over an infinite number of points.

8 / 28

Outline

1 Introduction

2 CDGP

3 CDGP for regression

4 Experiments

9 / 28

Counterexample-Driven Genetic Programming (CDGP)1 2 3

Testing

Verification

All passed?

Tc

GP
search

Fitness

Program

Counterexample

1I.Błądek, K.Krawiec, J.Swan, J.Drake, “Counterexample-Driven Genetic Programming: Stochastic
Synthesis of Provably Correct Programs”, IJCAI, 2018.

2I.Błądek, K.Krawiec, J.Swan, “Counterexample-Driven Genetic Programming: Heuristic Program
Synthesis from Formal Specifications”, ECJ, 2017.

3K.Krawiec, I.Błądek, J.Swan, “Counterexample-Driven Genetic Programming”, GECCO, 2017.
10 / 28

Counterexample-Driven Genetic Programming (CDGP)

Module: Testing

Fitness is computed based on the set of test cases Tc .
Tc may initially be empty or seeded with test cases provided by the user.
During verification phase, a new test may be added to Tc .

Testing

Verification

All passed?

Tc

GP
search

Fitness

Program

Counterexample

11 / 28

Counterexample-Driven Genetic Programming (CDGP)

Module: Verification

Checks if a candidate solution satisfies the formal constraints.
Involves a Satisfiability Modulo Theories (SMT) solver.

Formal verification
Proving for a candidate solution p that:

∀in Pre(in) =⇒ Post(in, p(in)), (1)

where p(in) is the output returned by p for input in, Pre(in) is a precondition, and
Post(in) is a postcondition. In practice, often the negated form is disproved:

∃in Pre(in) 6=⇒ Post(in, p(in)). (2)

12 / 28

An example of SMT verification

Incorrect program (MAX):
if x < y:

res = x
else:

res = y

Formal specification:

max(x , y) ≥ x ∧
max(x , y) ≥ y ∧

(max(x , y) = x ∨ max(x , y) = y)

Solver result:
SAT
x = -1
y = 0

SAT means that the program is incorrect and solver provides us a counterexample
(-1, 0).

13 / 28

An example of SMT verification

Correct program (MAX):
if x > y:

res = x
else:

res = y

Formal specification:

max(x , y) ≥ x ∧
max(x , y) ≥ y ∧

(max(x , y) = x ∨ max(x , y) = y)

Solver result:
UNSAT

UNSAT means that the program is correct with respect to the specification. No
counterexample was found.

14 / 28

Complete and incomplete tests

Two types of tests may be created from counterexamples:

Complete tests
Conventional tests of the form (input, desired output).

Incomplete tests
Tests without a specified desired output.
Evaluated using the SMT solver.

Example 1: f (x) =
√
x

x f (x)
4 2 or −2
9 3 or −3
.

← There is no single desired output for easy testing

15 / 28

Complete and incomplete tests

Two types of tests may be created from counterexamples:

Complete tests
Conventional tests of the form (input, desired output).

Incomplete tests
Tests without a specified desired output.
Evaluated using the SMT solver.

Example 2: f (x) > 2x

x f (x)
4 9, 10, . . .
9 19, 20, . . .
.

← There is no single desired output for easy testing

15 / 28

Outline

1 Introduction

2 CDGP

3 CDGP for regression

4 Experiments

16 / 28

Counterexample-Driven Symbolic Regression (CDSR)

Changes introduced in CDGP to handle SR problems:

1 Definition of "All passed?"
A program is sent to verification if it passes α percent of incomplete tests.

Why: complete tests are ignored in order to avoid arbitrary thresholds on the
difference between function’s output and the expected output of the test.

17 / 28

Counterexample-Driven Symbolic Regression (CDSR)

Changes introduced in CDGP to handle SR problems:

2 Definition of termination condition
Search process terminates when both (i) its aggregated error (MSE) on
complete tests is below the automatically computed error threshold; (ii) it
meets the formal constraints.

Why: solution needs to both have low error on tests and satisfy all the
constraints. Absolute threshold leads to problems.

The error threshold for MSE:

ε = (t · σY)2

where t is called tolerance, and σY is standard deviation of the output
variable in the data.

17 / 28

Counterexample-Driven Symbolic Regression (CDSR)

CDSR with tests for properties (CDSRprops)

Extends the initial set of tests Tc with incomplete tests, one for each
constraint.
These additional tests are verified by SMT solver, and they are always
evaluated either to 0 or 1.
Uses ε-Lexicase4 selection on both complete and incomplete tests.

r1 r2 out
1 10.09611 17.39521 6.388341979690316
2 0.68719 4.75438 0.600408042568597
3 1.42871 17.19419 1.319102352206155
4 f (r1, r2) = f (r2, r1) -
5 r1 = r2 =⇒ f (r1, r2) = r1

2 -
6 f (r1, r2) ≤ r1 ∧ f (r1, r2) ≤ r2 -

4W.L. Cava, L. Spector, K. Danai, “Epsilon-lexicase Selection for Regression”, GECCO, 2016.
18 / 28

State of the art

There are only a handful of approaches which allow GP to synthesize
provably-correct programs.

Approaches to provably-correct synthesis in GP

Fitness based on satisfying subconstraints Generating counterexamples

(2007) C.G. Johnson, Genetic Programming with
Fitness Based on Model Checking
(2008) G. Katz, D. Peled, Genetic Programming and
Model Checking: Synthesizing New Mutual Exclusion
Algorithms
(2011) P. He, L. Kang, C.G. Johnson, S. Ying, Hoare
logic-based genetic programming
(2016) G. Katz, D. Peled, Synthesizing, correcting
and improving code, using model checking-based
genetic programming

(2017) I.Błądek, K.Krawiec, J.Swan,
Counterexample-Driven Genetic
Programming: Heuristic Program Synthesis
from Formal Specifications

19 / 28

Outline

1 Introduction

2 CDGP

3 CDGP for regression

4 Experiments

20 / 28

Experiment dimensions

Dimension 1: synthesis method
GP – baseline
CDSR – our approach
CDSRprops – our approach with added tests for individual constraints

Dimension 2: number of test cases
3 tests
5 tests
10 tests

Dimension 3: tolerance
0.01
0.1

Total # tested configurations: 3 · 3 · 2 = 18

21 / 28

Benchmarks

Gravity
Resistance 2
Resistance 3

With variants:
b: bound
m: monotonicity
s: symmetry
c1: custom constraint – equal arguments
c2: custom constraint – output always smaller than any of the arguments

Total # benchmark variants: 8 + 4 + 4 = 16

22 / 28

Noise

To make benchmarks more realistic, noise was introduced to both the inputs
and the output of the function.

Noise is calculated according to the formula:

X̃ = X +N (0, β · σX)

and in our experiments we assumed β = 0.1, and σX is a standard deviation
of the variable X in the data.

23 / 28

Evolution parameters

Parameter Value
Number of runs 25
Population size 500
Maximum number of generations ∞
Maximum runtime in seconds 1800
Probability of mutation 0.5
Probability of crossover 0.5
Maximum height of initial programs 4
Maximum height of trees inserted by mutation 4
Maximum height of programs in population 12
Selection method ε-Lexicase5

https://github.com/kkrawiec/CDGP

5W.L. Cava, L. Spector, K. Danai, “Epsilon-lexicase Selection for Regression”, GECCO, 2016.
24 / 28

https://github.com/kkrawiec/CDGP

Results – success rates
Properties and MSE

GP CDSR CDSRprops
gr_b 0.07 0.03 0.04
gr_m 0.00 0.01 0.01
gr_s 0.10 0.13 0.15
gr_bm 0.00 0.01 0.04
gr_bs 0.11 0.05 0.11
gr_ms 0.00 0.04 0.07
gr_bms 0.00 0.01 0.15
res2_c1 0.01 0.43 0.45
res2_c2 0.04 0.25 0.36
res2_s 0.00 0.22 0.29
res2_sc 0.03 0.17 0.35
res3_c1 0.00 0.07 0.21
res3_c2 0.01 0.02 0.01
res3_s 0.00 0.03 0.02
res3_sc 0.00 0.00 0.01
mean 0.02 0.10 0.15

Properties

GP CDSR CDSRprops
gr_b 0.14 0.79 1.00
gr_m 0.00 0.02 0.91
gr_s 0.13 0.86 0.99
gr_bm 0.00 0.01 0.83
gr_bs 0.19 0.91 0.98
gr_ms 0.00 0.05 0.91
gr_bms 0.00 0.02 0.97
res2_c1 0.01 0.55 0.75
res2_c2 0.04 0.33 0.83
res2_s 0.00 0.60 0.99
res2_sc 0.03 0.22 0.83
res3_c1 0.00 0.07 0.26
res3_c2 0.01 0.02 0.11
res3_s 0.00 0.31 0.50
res3_sc 0.00 0.01 0.13
mean 0.04 0.32 0.73

b: bound
m: monotonicity
s: symmetry
c1: custom constraint – equal input arguments
c2: custom constraint – output smaller than any of the inputs
c: conjunction of c1 and c2

25 / 28

Statistical analysis

Friedman statistical test was used to analyze the findings.

MSE below threshold and properties
met (Friedman’s test p = 7.1 · 10−25).

method rank
CDSRprops _0.1 1.6
CDSR _0.1 2.5
GP_0.1 4.0
CDSRprops _0.01 4.2
CDSR _0.01 4.3
GP_0.01 4.4

Fraction of models that meet the
formal properties (p = 1.6 · 10−40).

method rank
CDSRprops _0.1 1.5
CDSRprops _0.01 1.6
CDSR _0.1 3.3
CDSR _0.01 4.1
GP_0.1 5.1
GP_0.01 5.4

26 / 28

Observations

Pros:
CDSR systematically outperforms GP.

Much lower risk of overfitting.

Valid models induced from as few as three examples.

Cons:
Significant computational overhead.

Limitations of the theorem prover – SMT solvers do not handle well
transcendental functions like cos, log , etc.

27 / 28

Summary

Main points:
CDSR, a method for solving the task of symbolic regression with formal
constraints by finding counterexamples.

Solutions produced by CDSR generalize well in terms of expected properties.

CDSRprops was best at that, thanks to treating individual constraints as
incomplete tests.

Thank you for your attention!

Questions.

28 / 28

	Introduction
	CDGP
	CDGP for regression
	Experiments

