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ABSTRACT
In many applications of symbolic regression, domain knowledge
constrains the space of admissible models by requiring them to
have certain properties, like monotonicity, convexity, or symmetry.
As only a handful of variants of genetic programming methods
proposed to date can take such properties into account, we intro-
duce a principled approach capable of synthesizing models that
simultaneously match the provided training data (tests) and meet
user-specified formal properties. To this end, we formalize the
task of symbolic regression with formal constraints and present a
range of formal properties that are common in practice. We also
conduct a comparative experiment that confirms the feasibility of
the proposed approach on a suite of realistic symbolic regression
benchmarks extended with various formal properties. The study is
summarized with discussion of results, properties of the method,
and implications for symbolic regression.

CCS CONCEPTS
• Theory of computation→ Program verification; •Comput-
ing methodologies → Genetic programming;
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1 INTRODUCTION
In genetic programming (GP), the behavior of a target program is
usually specified using a set of input-output examples, and fitting
them well enough with a synthesized program is often considered
sufficient to consider the task being solved. There are, however,
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scenarios in which one expects the returned solution to have some
additional properties other than just the error on test cases.

Consider for instance using symbolic regression (SR) for scien-
tific discovery, more specifically searching for the formula which,
given the two resistors r1, r2, determines the equivalent resistance r
when they are connected in parallel. Assume an experimenter, call
her Jane, performed a series of measurements of observed equiva-
lent resistance r̂ for different r1, r2, and collected their outcomes in
a set of test cases T , with each test of the form ((r1, r2), r̂ ). Given
some domain-specific set of instructions I , Jane could pose this
problem as a conventional SR task and apply a ‘vanilla’ GP in order
to arrive at the sought formula 1

r =
1
r1 +

1
r2 .

However, Jane may know some properties of the problem under
consideration in advance. For instance, it is rather obvious that
denoting the resistance of the first resistor with r1 and the second
one with r2 is arbitrary, and those could be swapped without af-
fecting the equivalent resistance. The sought formula for r̂ should
therefore be symmetric with respect to its arguments. Taking this
fact into account might arguably (i) improve the predictive accuracy
(generalization) of synthesized models, and (ii) reduce the expected
runtime of a SR method by constraining the search space.

Unfortunately, the conventional GP framework does not offer
means for taking such domain knowledge into account. There are
arguably ad-hoc means for implementing the specific property
of symmetry: for each test ((r1, r2), r̂ ) ∈ T , one could augment T
with a test ((r2, r1), r̂ ). This has, however, several caveats: more
computational effort has to be invested in testing the evolving
models on the doubled number of tests, and, more importantly, this
requires the model to be symmetric only at the specific points in T ,
while ideally one would like it to hold for any (r1, r2) pair.

One could argue that Jane might restrict the space of models and
so enforce the symmetry, by for instance modifying the grammar
of expressions. Unfortunately, while one might imagine designing
such a grammar for the symmetry property, it would be rather
cumbersome, and often impossible, to do so for other properties
without seriously limiting the search space. Consider another com-
monsense observation that Jane could make: given a single resistor
r1, attaching r2 < ∞ in parallel can only allow for more current
to flow through the circuit. Therefore, the equivalent resistance
cannot increase, i.e., ∀r1, r2 : r̂ ≤ min(r1, r2). There is no easy way
(if any) to take this property into account within the conventional
GP framework.

We argue that there is only a handful of practically useful for-
mal properties that can be taken into account in standard GP, and
attempting to implement them is often cumbersome and/or incom-
plete. On the other hand, there is the entire gamut of SR usage
scenarios where some nontrivial properties of the sought model
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are known in advance, so having means to impose them is clearly
desirable in practice. To resolve this tension, we present here an
approach based on Counterexample-Driven Genetic Programming
(CDGP), which was proposed in [2, 10] to synthesize programs
from formal specifications. We demonstrate how CDGP can be
easily adopted to perform the above-mentioned synthesis of regres-
sion models that not only comply with the dataset of observations,
but also meet some formal constraints imposed on the model (like
monotonicity, symmetry, etc.).

In the following, we first formalize the task of symbolic regres-
sion with formal constraints (Section 2), then detail a method for
solving such tasks in Sections 3 and 4, and in Section 5 we present
the list of some properties it can handle. Sections 6 and 7 contain
the description and analysis of computational experiments.

2 SYMBOLIC REGRESSIONWITH FORMAL
CONSTRAINTS

We pose the problem of Symbolic Regression with Formal Con-
straints (SRFC) as follows:

Definition 2.1. Given a set of test cases (examples) T , a set of
formal constraints C , and a set/space of models M, find a function
f : Rn → R, f ∈ M, that minimizes the approximation error on T ,
while satisfying all constraints in C .

As in standard SR, M is usually implicitly defined by a set of
instructions I and rules of connecting them, expressed, e.g., as
a formal grammar. Throughout this study, a model is simply an
algebraic formula that defines a candidate function. T is a set of
input-output pairs of the form (x ,y) ∈ (Rn ,R) (though it is worth
mentioning that SRFC tasks and the method for solving them we
propose here can be naturally generalized beyond the realm of real
numbers).

Each constraint in C is a logical formula that should be met by
the model for a (often infinite) subset of input-output pairs1, for
instance ∀x : f (x) ≥ 0. When C = ∅, SRFC reduces to the classical
SR problem. If C , M, and T together unanimously identify the
target function f , the SRFC task is well-defined. This will usually
require the constraints inC to be tight enough, the space of models
M to be somehow limited, and/or f ’s approximation error on T to
be zero. For instance, if M is the space of polynomials of degree
n, n + 1 tests in T are sufficient to define it unanimously at zero
approximation error. Though in most scenarios discussed in the
following we assume the tasks to be well-defined, that does not
have to hold in general. For instance, presence of noise in tests may
make it unjustified to assume that there is only one model that
solves the problem.

3 COUNTEREXAMPLE-DRIVEN GP
In [2, 10], we proposed Counterexample-Driven GP (CDGP) in order
to synthesize programs from formal specifications (rather than from
tests). CDGP hybridizes GP with a Satisfiability Modulo Theories
(SMT) solver, which is similar to a SAT solver but allows terms
and operators belonging to specific theories, e.g., the theory of

1Technically, nothing prevents a constraint from referring to only a single input-output
pair (e.g., f (3) = 7), but such requirements can be more conveniently expressed as
tests in T .

nonlinear real arithmetic (NRA). A formal specification is assumed
to have the form (Pre, Post), where Pre(in) is the precondition that
must be met by an input in to the program, and Post(in,out) is the
postcondition, a logical predicate that should hold upon program
completion. An SMT solver can be used to verify if a given program
p meets the specification by proving that:

∀in Pre(in) =⇒ Post(in,p(in)), (1)

where p(in) is the output returned by p for in. In practice, it is
common to request the solver to disprove the above implication,
i.e., prove that

∃in Pre(in) ≠⇒ Post(in,p(in)). (2)

If the solver decides that formula (2) is unsatisfiable, p is guaranteed
to meet the specification; otherwise, the solver produces a logical
model, an input for which the above implication holds. Since this
logical model consists of an input exposing the wrong behavior of
the program, it is commonly referred to as a counterexample. This
capability is the key mechanism behind CDGP.

The only input to CDGP is the (Pre, Post) specification and the
space of models M, given implicitly by a grammar of models that
are considered valid (syntactically correct). Internally, CDGP op-
erates as conventional GP, i.e., maintains a randomly initialized
population of programs, and performs search by mutating them and
crossing them over, while exerting selective pressure using fitness
function. The fitness function, as in conventional GP, evaluates
the candidate programs on tests, which are stored in a set called
Tc . In contrast to GP, however, Tc is initially empty, as the only
specification of the task is the (Pre, Post) pair. To supplement Tc
with tests, CDGP uses counterexamples harvested from verification.
Whenever an evaluated program p passes all tests collected so far
in Tc (which is true for all programs in the initial population, as Tc
is empty then), it is subject to verification using Eq. (2). If p happens
to pass verification, it must be the sought solution and the run
terminates with success. Otherwise, the verification process pro-
duces a counterexample that is added to Tc . Such counterexamples
(which are technically just program inputs) are then converted to
fully-fledged tests (in,out) using the procedure described in detail
in [2]. In this way, Tc is gradually filled with tests, which allow the
fitness function to differentiate candidate programs and so provide
appropriate search gradient.

We proposed a range of variants of CDGP, including the gener-
ative and steady-state version. More importantly, however, in [2]
CDGP was extended with a parameter α ∈ [0, 1] that relaxes the
policy concerning verification. In this variant, a program is sent
to verification as soon as it passes ⌊α · |Tc |⌋ tests from Tc . For
α = 1, CDGP behaves as in the basic version described above. Ex-
perimental analysis conducted in [2] showed that setting α ≈ 0.8
is indeed beneficial in many cases when compared to α = 1, i.e.,
increases the likelihood of synthesizing a program that is correct
w.r.t. specification, although at the cost of more time spent on veri-
fication. Another factor that proved to help was the use of Lexicase
selection [4] rather than conventional tournament selection.

4 SOLVING SRFC PROBLEMS WITH CDGP
In this section, we describe CDSR, our adaptation of CDGP to SRFC
problems.
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Our attempt to apply a variant of CDGP to SRFC problems stems
from two observations. Firstly, formal specifications used by CDGP
(and other methods of program synthesis) allow encoding the re-
quired formal properties of the model, like symmetry in the ex-
ample in Introduction, and many others, which we will present
in Section 5. Secondly, CDGP starts a run with an empty set of
counterexamplesTc only because it was originally designed to syn-
thesize programs from formal specifications, which normally are
not accompanied with examples. There are, however, no technical
obstacles for ‘seeding’ Tc with examples that a model should pass.

These two observations incline us to propose the following
straightforward procedure to approach SRFC problems with CDGP.
Given an SRFC problem (T ,C, I ) (Section 2), we apply CDGP to it
by seeding Tc with T (simply Tc := T ) and using C as the formal
specification. Upon successful completion of CDGP’s run, we obtain
a model that meets both the formal constraints in C and passes all
tests in T .

In more detail, certain adaptations were necessary to handle
SRFC problems accordingly:

• Whether a solution undergoes verification or not is deter-
mined by the ratio α of passed incomplete tests only, i.e., tests
for which the correct output has not been determined yet.
Such tests are created out of necessity when, e.g., a symme-
try constraint is violated, but the task is not well-defined and
no particular desired output can be assigned to given input.
The responsibility of determining whether program passes
such a test or not is relegated to the solver. This is differ-
ent from the original CDGP, where the notion of a ‘passed
test’ was non-problematic and thus all available tests (with
both unknown and known outputs) were taken into account
when determining with α if a program was ‘good enough’
to be subject to formal verification.

• Amodel is decided to be optimal when both (i) its aggregated
error on complete tests is below the provided error threshold
and (ii) it meets the formal constraints. In the original CDGP
satisfying formal constraints was sufficient for solution to
be considered optimal.

Even though we introduced only these two changes in CDGP,
there are few facts worth noting about the operation of CDSR.
Firstly, in the original benchmarks considered in [2], specifications
were complete, i.e., they unanimously identified the target function
(program) to be synthesized. Technically, however, formal specifica-
tions in CDGP do not have to be complete; in such a case, just one
of the admissible functions (the number of which can be in general
infinite) will be synthesized (provided a CDGP run is successful). In
CDSR, we additionally constrain the space of such admissible solu-
tions by seeding Tc with user-provided tests (which may, but does
not have to, cause the target function to be unanimously identified).

Notice also that in both CDGP and CDSR, the tests that are grad-
ually being collected in Tc logically follow from the specification C ,
and therefore do not add anything to problem formulation (i.e., do
not make it more specific). For CDGP, where C is the only input to
the method, that implies that any program that adheres to specifi-
cation will by definition pass all tests in Tc . The only purpose of Tc
there is to form the basis for calculating fitness function that drives
the search. Here, to the contrary, Tc contains user-provided tests

already from the very beginning, and thus additionally constrains
the set of admissible functions.

Interestingly, even if a run of CDSR does not complete with
success, its outcome may still be of some value. In general, the best
program found in the run may:

(1) pass all tests and meet the constraints,
(2) pass all tests but do not meet the constraints,
(3) do not pass all tests but meet the constraints,
(4) neither pass all tests nor meet the constraints,

where by ‘pass all tests’ we mean that the overall error (mean
squared error (MSE) in the experiments that follow) committed
by the program on the tests collected in Tc is lower than some
threshold. We claim that outcomes of type 2 and 3 may still provide
a user with valuable insights into the problem. In practice, tests
may be subject to some noise, and it might be impossible to bring
the error down to zero while meeting the constraints. As a matter
of fact, we typically prefer solutions to generalize well rather than
to fit meticulously to the available tests. Thus, it could be claimed
that outcome of type 3 are, at least in some situations, more desired
than those of type 2.

4.1 Related work
Apart from the CDGP we base our work on, there is only a handful
of GP studies that explicitly involve formal constraints into evo-
lutionary search. Johnson et al. [6] incorporated model checking
with specifications expressed via Computation Tree Logic (CTL) to
evolve finite state machines. Fitness was computed as the number
of CTL properties satisfied for a given program, which is similar
in spirit to our CDSRprops approach introduced in Section 6.5. A
similar approach by [3], the Hoare logic-based GP, computes fitness
as the number of postcondition clauses which can be inferred from
the precondition and the program being evaluated. Instead of model
checking, the Hoare logic [5] is used for the specification of the
task and verification.

A series of papers by Katz and Peled combined model check-
ing and GP [7–9]. The authors were progressively refining their
MCGP tool based on Linear Temporal Logic (LTL), using enhanced
model checking to impose a gradient on the fitness function by
distinguishing several levels of passing an LTL property (met for
all inputs, met for only some inputs, met for no input).

5 EXAMPLES OF FORMAL PROPERTIES OF
PRACTICAL RELEVANCE

In this section, we present a representative sample of properties that
can be handled by CDSR. For each property, we discuss plausible
usage scenarios and provide a snippet of specification that defines
it, expressed in SMT-LIB [1], the formal notation that is nowadays
the standard means of communicating with SAT solvers. In the
following, f denotes the function that should meet the constraint
in question.

Symmetry with respect to arguments. Many multivariate prob-
lems are expected to be symmetric with respect to their arguments.
Examples include the equivalent resistance presented in Introduc-
tion and the force of gravity that remains the same if the interacting
masses are swapped.
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In SMT-LIB, such property can be conveniently expressed as:

(assert (= (f x y) (f y x)))

When applying CDSR, this assertion would be included in the
constraint list C , while the tests/examples would be placed in T .
However, let us emphasize again that the assertion requires the
constraint to bemet by f for all arguments x and y, not only for those
present in T . When a CDSR run ends with success, the synthesized
model is guaranteed to be symmetric with respect to its arguments.

Symmetry with respect to domain. For univariate models, it is
sometimes desirable to constrain models only to functions that are
even (f (x) = f (−x)) or odd (−f (x) = f (−x)). For instance, the
direction of the restoring force of a spring depends on the direction
of displacement, which implies that the dependency in question
is an odd function F (x) = −kx , where k is the spring constant.
Expressing symmetry with respect to domain is straightforward in
SMT-LIB:

(assert (= (f x) (f (- x))))

This type of symmetry may be also useful when constraining mul-
tivariate models, where it may be selectively applied to individual
variables. A bivariate model f(x,y) can be demanded to be even
w.r.t. x with the following assertion:

(assert (= (f x y) (f (- x) y)))

Range. There are multiple scenarios in which domain knowledge
excludes certain ranges of values from f ’s codomain. In physics (at
least the classical one) mass cannot be negative and velocity cannot
exceed the speed of light. In econometrics, employee’s wage cannot
be negative. In medicine, it usually does not make sense to estimate
patient’s life expectancy to more than, say, 120 years.

Such constraints can be conveniently expressed in SMT-LIB as:

(assert (<= (f x y) 120.0))

Monotonicity. Monotonicity is one of the most common prop-
erties expected from models induced from data. In transport, for
that instance, the cost of delivery is almost always a monotonically
increasing function of distance (or time).

Monotonicity can be easily expressed in SMT-LIB as the follow-
ing postcondition:

(assert (forall ((x Real)(x1 Real))
(=> (> x1 x) (> (f x1) (f x)))))

This postcondition, however, will be negated per Eq. 2, so it can
be from the beginning expressed in the form easier to both solve by
the solver and harvest counterexample from (variables bounded in
quantifiers are not readily accessible in the logical model). The ‘to
be negated’ form of that modified constraint would look like this,
where x1 is an additional free variable:

(declare-fun x1 () Real)
(assert (=> (> x1 x) (> (f x1) (f x))))

Convexity/concavity. When searching for a good model explain-
ing the data, it may be beneficial for it to be convex in order to

efficiently perform some later optimization on that model. Convex-
ity of a univariate function is defined as∀x,y,t ∈[0,1] f (tx+(1−t)y) ≤
t f (x) + (1 − t)f (y).

Similarly as for monotonicity, expressing convexity requires
universal quantifier, but for the purpose of the verification the
quantifier can be discarded in favor of additional free variables.
Belowwe present the ‘to be negated’ form of the convexity property:

(declare-fun y () Real)
(declare-fun t () Real)
(assert (=> (and (>= t 0.0) (<= t 1.0))

(<= (f (+ (* t x) (* (- 1.0 t) y)))
(+ (* t (f x)) (* (- 1.0 t) (f y))))

))

Changing this constraint to concavity would simply require
replacing <=with >=; replacing it with <would demand the function
to be strictly convex.

Slope. In many applications, it may be known that the rate of
change of the model with respect to its input variable cannot ex-
ceed certain threshold. For instance, a body free-falling in Earth’s
gravitational field cannot accelerate faster than 9.81m/s2.

The expected value of derivative of a model f(x) at some point
x (here x = 1) can be approximated in SMT-LIB in the following
way:

(assert (=> (= x 1.0) (<= (abs (- (/
(- (f (+ x 0.000001)) (f x)) 0.000001) 2.0)) 0.001)))

Here, we ask the slope of f to be equal to 2 ± 0.001 at point x = 1.
The fidelity of approximation is determined by ϵ = 10−6. Note
that this constraint affects only the slope of f at point 1, while not
determining the desired value of f at that point. Therefore, this
requirement cannot be alternatively implemented by providing
tests in T that would implicitly constrain the slope.

Discussion. The above list presents only the simplest and most
common properties. Other examples include periodicity (f (x) =
f (x+kT ),k ∈ N), additivity (f (x+y) = f (x)+ f (y)), and multiplica-
tivity (f (x · y) = f (x) · f (y)). Compound constraints can be easily
created by combining the above ones with logical conjunction. Also,
all above properties can be defined either globally (i.e., in the entire
domain of the considered function) or locally (i.e., in an interval, at
a given point, or otherwise constrained part of function’s domain).

Arguably, some properties can be imposed by simply constrain-
ing the space of models M and/or their parametrization. For in-
stance, if one limits the instruction set to {+, ∗} and constrains the
constants to positive reals, then any polynomial f (x) induced from
such a grammar/language is monotonically increasing for x ≥ 0.
However, it is in general hard to assure nontrivial properties just
by constraining the syntax of expressions.

6 EXPERIMENTAL SETUP
In the empirical part of this study, we propose to adopt a gener-
alization perspective on SRFC problems. Given an SRFC problem
(T ,C, I ) (Section 2), we expect a method to generalize from test
cases in T in such a way that the synthesized model meets the
properties expressed by the constraints in C . Typically, general-
ization is considered in quantitative terms, e.g., by checking the
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aggregated error on tests that were not used during training. In
contrast, here we focus on qualitative generalization, i.e., the model
having expected properties/features.

In the experiments that follow, we assess thus the qualitative
generalization of CDSR by confronting it with conventional tree-
based GP, and to that aim we follow the following steps:

(1) Select a set of test problems (Section 6.1), each defining a
target function.

(2) For each problem, determine some ‘natural’ formal proper-
ties (constraints, C) that could be expected of the model to
hold in order to be useful (Section 6.1), and create a range of
benchmarks by pairing the problem with all combinations of
those properties.

(3) For each benchmark, randomly generate test cases (T ) ac-
cording to the target function defined by the problem (Sec-
tion 6.2).

(4) Before each run, apply noise to tests in order to make the
benchmark more realistic (Section 6.3) and estimate the er-
ror threshold that determines methods’ termination (Sec-
tion 6.4).

(5) Apply the compared algorithms (GP and CDSRwith variants)
to so prepared benchmarks (Section 6.5).

6.1 Test problems
As a base for our benchmarks, we selected three problems based on
known laws of physics that are expressed as multivariate algebraic
formulas: the law of gravity, equivalent resistance of two resistors
in parallel, and equivalent resistance of three resistors in parallel.
An individual benchmark is created by combining the problem with
at least one of the following formal constraints: symmetry with
respect to arguments, bound on output value,monotonicity with
respect to an argument, or a domain-specific constraint.

Problem: gravity. Target function:

f (m1,m2, r ) = 6.67408 · 10−11 ·
m1m2
r2

Considered constraints:
• s: f (m1,m2, r ) = f (m2,m1, r )
• b: f (m1,m2, r ) ≥ 0
• m: strict w.r.t. bothm1 andm2.

Problem: resistance2. Target function:

f (r1, r2) =
r1r2

r1 + r2

Considered constraints:
• s: f (r1, r2) = f (r2, r1)
• c1: r1 = r2 =⇒ f (r1, r2) =

r1
2

• c2: f (r1, r2) ≤ r1 ∧ f (r1, r2) ≤ r2

Problem: resistance3. Target function:

f (r1, r2, r3) =
r1r2r3

r1r2 + r1r3 + r2r3

Considered constraints:
• s: f (r1, r2, r3) = . . . = f (r3, r2, r1)
• c1: r1 = r2 = r3 =⇒ f (r1, r2, r3) =

r1
3

• c2: f (r1, r2, r3) ≤ r1 ∧ f (r1, r2, r3) ≤ r2 ∧ f (r1, r2, r3) ≤ r3

6.2 Generation of test cases
SRFC can be seen as a (supervised) machine learning problem. Pro-
viding a machine learning algorithm with as much training data as
possible is usually desirable. Unfortunately, in some usage scenarios
training data is scarce, e.g., the cost or time of their collection may
be prohibitive, or the very act of data acquisition may influence the
phenomenon in question. As a consequence, a learning problem
is underconstrained – there are many models readily explaining
such data, but in an implausible way, or with a poor generalization.
CDSR is meant to be of help in such scenarios, by allowing users
to augment data with formal constraints, either known to hold for
certain, or expressing some desirable or useful properties of the
model.

Following this rationale, we decided to conduct experiments
with relatively low numbers of tests, namely 3, 5, and 10. Note
that those numbers are low by GP standards, particularly given
the multivariate nature of the problems. For all benchmarks, a test
is generated by first sampling each input variable uniformly from
[0.0001, 20] and then querying the target function on those inputs.

6.3 Noise
In practical applications of SR, more often than not there is some
source of error affecting data, which can be caused by many factors:
imprecise measurements, stochasticity of the process, not account-
ing for some variables, etc. In order to simulate those conditions,
before each run of an algorithm on a benchmark, we disturb the
tests in T with noise. Noise is applied both to the inputs and de-
sired outputs of tests. We set the magnitude of noise relative to the
standard deviation σX of a given variable X (as estimated from T ),
and apply it independently to each test and variable, according to
the formula:

X̃ = X +N(0, βσX ),

where X is the original (exact) value of variable, β > 0 determines
the magnitude of noise, and N is zero-mean normal distribution.
In our experiments, we set β = 0.1.

The set of tests T generated in this way, together with a set
of formal constraints C and a set of instructions I described later,
form an SRFC task (T ,C, I ), as defined in Section 2. In general,
adding noise to tests may make them inconsistent with one or more
constraints in C . Nevertheless, we intentionally do not cater for
that, as this may happen also in real-world scenarios like those
presented in Introduction: an experimenter may know (or prefer)
the sought model to have certain properties, even if the available
empirical data (tests in T ) say otherwise due to, e.g., measurement
errors.

6.4 Error threshold
In presence of noise and rounding errors, exact fit of model to
data becomes almost impossible and typically leads to undesirable
overfitting, so we terminate runs if the mean squared error (MSE)
of model’s output Ŷ w.r.t. desired output Y drops below a threshold
ϵ . Using the same ϵ for all benchmarks would be questionable due
to different magnitudes of Y , so we adjust it automatically based
on Y ’s standard deviation σY , according to the formula:

ϵ = (tσY )
2,
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Table 1: Parameters of the genetic programming.

Parameter Value
Number of runs 25
Population size 500
Maximum height of initial programs 4
Maximum height of trees inserted by mutation 4
Maximum height of programs in population 12
Maximum number of generations ∞

Maximum runtime in seconds 1800
Probability of mutation 0.5
Probability of crossover 0.5

where t > 0 is a user-defined tolerance, and the square was moti-
vated by using MSE as a measure of model’s error. The user may
use t to express his aspiration level concerning model’s accuracy.
Experiments were conducted for t = 0.01 and t = 0.1.

6.5 Algorithms
We compare the following algorithms. The code used for experi-
ments is available at: https://github.com/kkrawiec/CDGP.

GP: A ‘vanilla’ tree-based GP [13], meant to serve as a ‘blind base-
line’, by which we mean that it cannot use the formal properties
from C to guide search, and may thus attain them only by sheer
chance (which, as the results will show, is not entirely negligi-
ble, given the relative simplicity of our target functions). Our GP
implementation uses standard subtree-replacement mutation and
subtree-swapping crossover. Other key parameters of GP are listed
in Table 1.

A run is terminated when the best model’s MSE ≤ ϵ (Section 6.4).
There is no limit on the number of generations, but we cap the
runtime to 0.5h. This was motivated by fairness of comparison,
since CDSR tends to spend significant share of its time budget on
calling solver that performs formal verification of solutions.

We use ϵ-Lexicase [11] for selection, as it proved much better
than the tournament selection in initial experiments. In each se-
lection act, the original Lexicase iterates over tests in a random
order and allows solutions to pass to the next iteration only if they
perform best on the current test, until only one solution is left (if
tests are exhausted before that, one of remaining solutions is se-
lected at random). The ϵ-Lexicase, instead of considering only the
candidate solutions with the best result on the currently selected
test, considers also those that are sufficiently close to the best ones.
More specifically, we use the ϵeλ variant of ϵ-Lexicase, in which the
‘closeness’ is automatically computed based on median absolute
deviation (MAD) [12], and solutions with the |Ŷ − Y | difference
lower than or equal to MAD from the best solution also proceed to
the next stage of selection.

Our instruction set is rather limited and covers only the standard
arithmetic: +, -, *, /. One of the limitations of CDSR is that it
requires a solver equipped with so-called theory for a given domain,
and transcendental functions are not supported by contemporary
SMT solvers. The terminals are problem’s input variables (e.g.,m1,
m2, r for gravity) and real constants drawn uniformly from [−1, 1].

CDSR: Uses the same parameters as above GP, except for the fact
that the formal constraints C ignored by GP are used here to for-
mally verify those solutions that pass all tests collected so far in
Tc , while the tests from T seed Tc , as detailed in Section 4. The
parameter α specifying the required ratio of passed tests before
applying verification was set to 1 in order to limit the number of
costly queries to the solver. Preliminary experiments for α = 0.8
did not show significant improvement.

CDSRprops : This variant extends CDSR by considering each con-
straint in C as an additional formal test. Formal tests do not sup-
plement Tc (and thus do not affect the MSE error), but are taken
into account in the Lexicase selection on par with tests from Tc .
As a result, the selection algorithm traverses a randomly ordered
sequence of both tests from Tc and the formal tests. Whenever an
iteration of Lexicase concerns a formal test, all candidate solutions
are verified with respect to the formal constraint in question, and
only those that meet it pass to the next iteration. Obviously, as the
outcome of verification is binary, this does not involve the MAD
normally used by ϵ-Lexicase.

CDSRprops is meant to better inform the search algorithm about
detailed characteristics of candidate solutions in terms of individual
constraints in C , and so provide for better search effectiveness.

7 RESULTS AND DISCUSSION
As introduced in Section 2, we consider a SRFC benchmark solved
when the synthesized model passes both the tests in T (with the er-
ror threshold defined in Section 6.4) and the constraints/properties
in C . The success rate on this joint requirement is thus our main
performance indicator, and we present it in Table 2. As can be seen,
it was hard for any method to consistently obtain both good MSE
and meet the properties. CDSRprops fared the best, scoring the
average success rate around 0.27 across all numbers of test cases
for tolerance 0.1, while CDSR comes second with the average score
of 0.17. While these rates may still seem low, they are roughly one
order of magnitude higher than for GP; as expected, it is very un-
likely for GP to synthesize a model with desirable formal properties,
even though the tests implicitly convey some information about
them. The fact that CDSRprops comes first indicates that informing
the algorithm about passing/failing individual formal properties
from C helps it perform more efficient search (and probably also
provide better diversity in the population, given that the number
of objectives considered by Lexicase is in this variant greater on
average than in CDSR).

While larger tolerance on error clearly makes the task easier
for all methods, the gains for GP are minuscule, while CDSR and
CDSRprops observe larger increases, to the extent that makes them
potentially useful in practice. Still, some combinations of problems
and constraints (e.g., gr_m, res3_c2) turn out to be very hard for
all configurations. However, we should not necessarily hasten to
announce them inherently difficult; for instance, some properties
are much harder (i.e., take more time) for solvers to verify than
others, and thus consume greater share of the allocated time budget,
leaving less time for performing the actual search.

It is hard to notice a clear pattern when it comes to combin-
ing properties. In some cases meeting several properties at once
seems to improve the success rate (e.g., gr_bms for CDSRprops and
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Table 2: Success rates (MSE below threshold and all formal properties met by the synthesized model). Darker shading marks
higher values. Constraint ‘c’ stands for conjunction of constraints/properties c1 and c2.

3 tests 5 tests 10 tests
GP CDSR CDSRprops GP CDSR CDSRprops GP CDSR CDSRprops

tolerance 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
gr_b 0.16 0.24 0.00 0.12 0.00 0.08 0.00 0.00 0.00 0.04 0.00 0.16 0.00 0.00 0.00 0.04 0.00 0.00
gr_m 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gr_s 0.04 0.04 0.04 0.24 0.16 0.20 0.12 0.16 0.00 0.00 0.00 0.12 0.04 0.20 0.00 0.48 0.00 0.44
gr_bm 0.00 0.00 0.00 0.00 0.04 0.04 0.00 0.00 0.00 0.04 0.00 0.04 0.00 0.00 0.00 0.04 0.00 0.12
gr_bs 0.20 0.32 0.00 0.08 0.04 0.36 0.04 0.04 0.00 0.16 0.00 0.16 0.04 0.00 0.00 0.04 0.00 0.12
gr_ms 0.00 0.00 0.04 0.04 0.00 0.08 0.00 0.00 0.00 0.04 0.00 0.16 0.00 0.00 0.00 0.12 0.00 0.16
gr_bms 0.00 0.00 0.00 0.04 0.00 0.16 0.00 0.00 0.00 0.04 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.40
res2_c1 0.00 0.00 0.28 0.52 0.20 0.60 0.00 0.08 0.48 0.48 0.44 0.72 0.00 0.00 0.16 0.68 0.00 0.76
res2_c2 0.00 0.12 0.04 0.72 0.04 0.96 0.00 0.04 0.00 0.36 0.00 0.56 0.00 0.08 0.00 0.40 0.00 0.60
res2_s 0.00 0.00 0.00 0.36 0.04 0.60 0.00 0.00 0.00 0.60 0.04 0.64 0.00 0.00 0.00 0.36 0.00 0.44
res2_sc 0.00 0.04 0.00 0.36 0.08 0.84 0.00 0.04 0.00 0.32 0.00 0.64 0.00 0.08 0.00 0.36 0.00 0.56
res3_c1 0.00 0.00 0.08 0.08 0.24 0.24 0.00 0.00 0.08 0.04 0.28 0.32 0.00 0.00 0.00 0.12 0.00 0.20
res3_c2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.00 0.00 0.08 0.00 0.04
res3_s 0.00 0.00 0.04 0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.08
res3_sc 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
mean 0.03 0.05 0.03 0.17 0.06 0.29 0.01 0.03 0.04 0.15 0.05 0.26 0.01 0.02 0.01 0.19 0.00 0.26

Table 3: Fraction of runs that produced models that meet the formal properties. Constraint ‘c’ stands for conjunction of con-
straints/properties c1 and c2.

3 tests 5 tests 10 tests
GP CDSR CDSRprops GP CDSR CDSRprops GP CDSR CDSRprops

tolerance 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
gr_b 0.20 0.32 0.80 0.76 1.00 1.00 0.00 0.00 0.76 0.80 1.00 1.00 0.20 0.12 0.84 0.80 1.00 1.00
gr_m 0.00 0.00 0.00 0.00 0.72 1.00 0.00 0.00 0.00 0.08 0.96 0.92 0.00 0.00 0.04 0.00 0.96 0.88
gr_s 0.04 0.04 0.76 0.92 1.00 1.00 0.12 0.16 0.84 0.92 0.96 1.00 0.16 0.24 0.84 0.88 1.00 1.00
gr_bm 0.00 0.00 0.00 0.00 0.84 0.80 0.00 0.00 0.00 0.04 0.84 0.96 0.00 0.00 0.00 0.04 0.88 0.68
gr_bs 0.28 0.36 0.84 0.88 0.92 1.00 0.12 0.08 0.84 1.00 1.00 1.00 0.16 0.16 0.92 0.96 1.00 0.96
gr_ms 0.00 0.00 0.04 0.04 0.84 0.96 0.00 0.00 0.00 0.04 0.84 0.96 0.00 0.00 0.04 0.12 0.92 0.96
gr_bms 0.00 0.00 0.04 0.04 0.88 0.96 0.00 0.00 0.00 0.04 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
res2_c1 0.00 0.00 0.52 0.64 0.80 0.80 0.00 0.08 0.60 0.48 0.76 0.72 0.00 0.00 0.36 0.68 0.68 0.76
res2_c2 0.00 0.12 0.28 0.72 1.00 1.00 0.00 0.04 0.08 0.44 0.80 0.84 0.00 0.08 0.08 0.40 0.56 0.80
res2_s 0.00 0.00 0.72 0.68 0.96 1.00 0.00 0.00 0.36 0.68 0.96 1.00 0.00 0.00 0.44 0.72 1.00 1.00
res2_sc 0.00 0.04 0.08 0.36 1.00 0.88 0.00 0.04 0.08 0.32 0.96 0.76 0.00 0.08 0.08 0.40 0.72 0.64
res3_c1 0.00 0.00 0.08 0.08 0.24 0.24 0.00 0.00 0.08 0.04 0.28 0.36 0.00 0.00 0.00 0.12 0.24 0.20
res3_c2 0.00 0.00 0.00 0.00 0.04 0.08 0.00 0.04 0.00 0.04 0.16 0.16 0.00 0.00 0.00 0.08 0.16 0.04
res3_s 0.00 0.00 0.20 0.36 0.72 0.48 0.00 0.00 0.60 0.52 0.72 0.68 0.00 0.00 0.04 0.16 0.16 0.24
res3_sc 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.24 0.12 0.00 0.00 0.00 0.04 0.28 0.04
mean 0.03 0.06 0.29 0.37 0.73 0.75 0.02 0.03 0.28 0.36 0.77 0.77 0.03 0.05 0.25 0.36 0.70 0.68

5 tests), while in many other cases it is detrimental (e.g., res3_sc
vs. individual properties). One cannot simply say that the likeli-
hood of success increases or decreases monotonically with the
set of associated constraints. We hypothesize that this may stem
from a (possibly complex) interaction of two factors. On one hand,
more constraints means that there are fewer candidate models that
meet them in combination. On the other, additional constraints
provide more guidance for the search algorithm, in particular in
the CDSRprops variant that uses them explicitly in the Lexicase
selection.

Increasing the number of tests in a benchmark usually makes
it harder for all methods, though not systematically. A trade-off
analogous to the above may be at play here: more tests provide for
better guidance (particularly with Lexicase, which prioritizes search
in a multi-objective fashion), but simultaneously make the set of

compatible target models smaller. Recall that presence of noise
makes the task significantly more difficult with each additional test.

One would expect the gravity benchmarks to be very hard due to
the presence of a very small constant in its target function, but the
results suggest otherwise. After the inspection of correct solutions
from Table 2 we found out that about half of them are models
that always return 0, and still obtain the error below the threshold
while trivially meeting some properties (i.e., symmetry and bound;
benchmarks with the strict monotonicity property were not affected
by this, at least for CDSR configurations)2.

To get better insight into the results, in Table 3 we report the
fraction of runs in which a model has been found that meets the
formal properties regardless of the obtained MSE. Though these
numbers by definition cannot be smaller than those in Table 2, GP

2The presence of noise is the reason that 0 was not a good solution for all runs under
the assumed tolerances.
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Table 4: Ranks for success rates of performance indicators
from Tables 2 and 3. On the left: success rate, i.e., MSE below
error threshold and properties met (Friedman’s test p = 7.1 ·
10−25). On the right: fraction of models that meet the formal
properties (p = 1.6 · 10−40).

method rank
CDSRprops _0.1 1.6
CDSR _0.1 2.5
GP_0.1 4.0
CDSRprops _0.01 4.2
CDSR _0.01 4.3
GP_0.01 4.4

method rank
CDSRprops _0.1 1.5
CDSRprops _0.01 1.6
CDSR _0.1 3.3
CDSR _0.01 4.1
GP_0.1 5.1
GP_0.01 5.4

keeps producing models that meet formal properties only occasion-
ally, which is unsurprising given that it does not take into account
any information about the requested properties. On the contrary,
CDSR, and particularly CDSRprops , had very good results in that
regard. Inspection of optimal solution also confirms that many of
them, after simplification conducted by the solver, are exactly the
target functions. This suggests that formal properties of the model
can be successfully used to facilitate generalization and search in
the presence of noise.

In order to investigate significance of the results, we applied
the Friedman statistical test, separately to the data presented in
Tables 2 and 3. In both cases, the statistical test was conducted for
all 15 benchmarks and three different numbers of test cases (45
entries in total) and three methods combined with two values of
tolerance (6 entries in total). The average ranks computed and the
p-values resulting from the test are presented in Table 4. The ob-
served differences proved statistically significant, and the post-hoc
analysis revealed that the top two methods in each ranking were
significantly better than all the other methods in their respective
tables. Additionally, when it comes to meeting only formal proper-
ties (the right subtable in Table 4), both CDSR configurations were
significantly better than the GP baseline.

8 CONCLUSIONS
In this paper, we have introduced CDSR, a method allowing syn-
thesis of regression models that satisfy arbitrary formal properties
alongside with the supplied set of tests. In the experiments, CDSR
proved its capability to produce models that meet both tests and
properties, and performed significantly better than the baseline.
The variant that proved particularly good at conforming with for-
mal properties was CDSRprops , which considers meeting/failing an
individual property as a separate objective during selection process.
We anticipate CDSR to be particularly useful in usage scenarios
where the number of available tests is low or/and they are subject
to strong noise.

We delineated here the class of SRFC tasks and conducted exper-
iments on SR benchmarks of the form Rn → R. However, it should
be clear at this point that the possibility of extending the conven-
tional specification (i.e., tests in SR) with additional constraints

is not necessarily limited to the domain of reals. Complex- and
integer-valued functions are, for that instance, another promising
application areas. More broadly, one could envision generalizing
CDSR to a method capable of synthesizing a model from arbitrary
‘hybrid’ specifications, i.e., composed of both tests (examples) and
formal properties. In this respect, CDSR is essentially limited only
by the availability of SMT solver theories.

As an interesting conceptual side-effect, we posit that gener-
alization should not only be considered quantitatively, but also
qualitatively, the topic we only touched upon here. Some avenues
of research regarding CDSR remain open, among others capability
of solving problems requiring the use of transcendental functions.
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