
Neuro-Guided Genetic Programming: Prioritizing Evolutionary
Search with Neural Networks

Paweł Liskowski
Poznan University of Technology

Poznan, Poland
pliskowski@cs.put.poznan.pl

Iwo Błądek
Poznan University of Technology

Poznan, Poland
ibladek@cs.put.poznan.pl

Krzysztof Krawiec
Poznan University of Technology

Poznan, Poland
krawiec@cs.put.poznan.pl

ABSTRACT

When search operators in genetic programming (GP) insert new
instructions into programs, they usually draw them uniformly from
the available instruction set. Prefering some instructions to others
would require additional domain knowledge, which is typically
unavailable. However, it has been recently demonstrated that the
likelihoods of instructions’ occurrence in a program can be reason-
ably well estimated from its input-output behavior using a neural
network. We exploit this idea to bias the choice of instructions
used by search operators in GP. Given a large sample of programs
and their input-output behaviors, a neural network is trained to
predict the presence of individual instructions. When applied to
a new program synthesis task, the network is first queried on the
set of examples that define the task, and the obtained probabilities
determine the frequencies of using instructions in initialization and
mutation operators. This priming leads to significant improvements
of the odds of successful synthesis on a range of benchmarks.

CCS CONCEPTS

• Software and its engineering → Genetic programming; •
Theory of computation → Evolutionary algorithms; • Comput-

ing methodologies → Neural networks;

KEYWORDS

program synthesis, genetic programming, neural networks, search
prioritization

ACM Reference Format:

Paweł Liskowski, Iwo Błądek, and Krzysztof Krawiec. 2018. Neuro-Guided
Genetic Programming: Prioritizing Evolutionary Search with Neural Net-
works . In GECCO ’18: Genetic and Evolutionary Computation Conference,
July 15–19, 2018, Kyoto, Japan. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3205455.3205629

1 INTRODUCTION

In program synthesis from examples, a large combinatorial space
is searched in order to identify the program that exhibits the man-
dated input-output behavior. The search can be conducted with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205629

a range of algorithms, which – unless naïve – prioritize (or bias)
their policy using some means. In genetic programming (GP), the
means of prioritization are the search operators used and the fitness
function that measures the ‘goodness of fit’ of a candidate program
to examples. Such prioritization can be characterized as posterior,
as it is administered in response to candidate programs only once
they have arisen in search and evaluated, and local, as this is being
done on individual, per-program basis.1

In contrast, in a recent work, Balog et al. [2] proposed Deep-
Coder, an a priori and global approach to ‘priming’ of program
synthesis. The authors demonstrated that a neural network can
be trained that maps the input-output examples to the probability
distribution of instructions to be used in the synthesized programs.
A search algorithm then follows the guidance of the network (i.e.,
its response to a given set of input-output examples) and prefers
using some instructions to others. When combined with systematic
breadth-first search and other search algorithms, DeepCoder sig-
nificantly reduces the time-to-success compared to unprioritized
search, sometimes by orders of magnitude (details in Section 2).

In this study, we propose an approach that engages a similar
neural network to bias evolutionary search in GP (Section 3). The
trained network is queried on the synthesis task (examples) before
a GP run, and the obtained probabilities determine the likelihoods
of using instructions in search by priming the search operators (in
particular the mutation operator). In this way, we combine the pos-
terior search prioritization typical for GP with the a priori biasing
proposed in DeepCoder. When applied to a range of benchmarks,
the method proves superior to two baseline approaches, one being
the standard, unbiased GP, and the other being GP biased with the
probability of incidence of instructions in the training set.

2 DEEPCODER

DeepCoder [2] is predicated on the assumption that useful infor-
mation about the program to be synthesized can be obtained from
the training examples. As this conjecture underpins all methods
that synthesize programs from examples, including GP, it is not par-
ticularly original in itself. However, DeepCoder attempts to obtain
such information directly from the examples, without the costly
generate-and-test typical for evolutionary approaches, and without
an understanding of the semantics of instructions of the program-
ming language. This is achieved by building a neural network that
predicts the likelihoods of instructions from the supplied training
examples. We proceed with detailing the operation of DeepCoder
as it is applied to a given synthesis problem, and only then, in
Sections 2.3 and 2.5 present network architecture and the training

1Search is also biased by the choice of instruction set, maximum program length and
other parameters, but in this paper we assume those aspects to be given and fixed.

https://doi.org/10.1145/3205455.3205629
https://doi.org/10.1145/3205455.3205629
https://doi.org/10.1145/3205455.3205629

GECCO ’18, July 15–19, 2018, Kyoto, Japan Paweł Liskowski, Iwo Błądek, and Krzysztof Krawiec

a ← [i n t]
b ← [i n t]
c ← ZipWith (−) b a
d ← Count (> 0) c

Listing 1: Exemplary program in the considered DSL (P2

from [2])

process. Importantly, this description reflects our reimplementation
of DeepCoder, which involved certain design choices (while [2]
suggests at places a wider range of variants).

The authors of [2] put DeepCoder in a wider framework of
Learning Inductive Program Synthesis, comprising specification of
a domain-specific programming language (DSL), a machine learn-
ing model that maps the examples to probabilities of occurrence
of instructions in programs (a neural network), the procedure of
generating training data for training that model, and a search pro-
cedure. In the following, we cover the two former components,
postponing the description of the latter two to the experimental
section.

2.1 The domain-specific language

The DSL used in [2] is quite sophisticated in featuring a relatively
rich instruction set and allowing for high-level functions. It can
be likened to linear GP: a program is a fixed-length sequence of
instructions, each of which issues a function call, creates a fresh
variable, and assigns the outcome of the former to the latter. The
language involves two data types: integers (int) and lists of integers
([int]) (some functions accept also other arguments, but they cannot
be stored in variables; see explanations in the following). The set of
instructions is typical for list-manipulation functions and comprises
Head, Last, Take, Drop, Access, Minimum, Maximum, Reverse,
Sort, Sum, and the higher-order functions Map, Filter, Count,
ZipWith, Scanl. Importantly, DSL comprises not only the top-level
functions that may form the right-hand side of the instructions (like
the ZipWith in Listing 1), but also several other lexical elements
of the language:
• lambdas for Map (add1, sub1, multMinus1, mult2, mult3,
mult4, div2, div3, div4, sqare).
• predicates for Filter and Count (>0, <0, isOdd, isEven).
• lambdas for ZipWith and Scanl (+, -, *, min, max).

Listing 1 presents an exemplary program that accepts two lists of
integers and counts how many times an element in the former one
is greater than the corresponding element in the latter (Program 2
from Appendix A in [2]). The first two instructions fetch the input
arguments into variables a and b, and as such do not contribute
to program length (which is thus 2 in this case). The output of the
program is the value of the last assigned variable – in this case an
integer, the value of variable d .

Listing 2 presents a more sophisticated program that calculates
the minimum total area of rectangles that can be constructed from
the sides of lengths provided in two input lists. Notice that, in the
flavor of functional programming, iterating over list elements is
encapsulated in particular functions (here ZipWith and Count).
The DSL does not include explicit conditional statements nor loops.
Its complete specification can be found in Appendix F of [2].

x ← [i n t]
y ← [i n t]
c ← So r t x
d ← So r t y
e ← Reve r s e d
f ← ZipWith (∗) d e
g ← Sum f

Listing 2: Program P4 from [2].

2.2 Method workflow

Given the above DSL, DeepCoder expects a synthesis task to be
formulated in the same way as GP, i.e., as a set of training examples
T (tests), for which a program should be synthesized. Each test
t ∈ T is an (in,out) pair, where out is the output that the program
should produce for in. GivenT , DeepCoder proceeds in two largely
independent stages.

Firstly, T is fed into a previously trained feed-forwarded neural
network (to be detailed in the sections that follow). In the output
layer of the network, each unit is associated with one of the instruc-
tions in the DSL L, which together are interpreted as the probability
distribution p(L|T) of particular DSL’s instructions occurring in the
target program.

In the second phase, DeepCoder employs the probability esti-
mates p(L|T) to prioritize the search policy. The choice of a search
algorithm to be prioritized is largely unconstrained. In [2], the
authors considered: (i) depth-first search (DFS) up to certain max-
imum program length, which starts from an empty program and
successively adds the instructions from Lwith respect to decreasing
p(L|T); (ii) "sort and add" enumeration, which maintains a set of
active instructions (initially empty) and performs DFS only with
them, in case of failure extending the set with the next instruc-
tion with the highest p(L|T) and restarting the search; (iii) program
sketching [14], which uses an SMT (Satisfiability Modulo Theories)
solver to choose instructions and can be biased in a similar way
as "sort and add"; (iv) λ2 algorithm [5], an approach combining
enumerative search and deduction, also prioritized like "sort and
add". In an experiment, each of these algorithms was compared
against its respective baseline, which, rather than using the esti-
mate of p(L|T) produced by the network, relied on the a priori
probability of instructions in the training set of programs p(L), esti-
mated by counting the incidence of instructions in the training set
of programs (to be detailed later). All search algorithms observed
manyfold speedups, ranging from 2x to 907x, depending on the
assumed maximum program length and available computational
budget [2]2.

2.3 Network architecture

The neural architecture proposed by Balog et al. [2] is relatively
straightforward, and, its name to the contrary, is not necessarily
deep by today’s standards. The model is a feedforward layered
network, with the input layer of appropriate size to accommodate
for the information on input-output examples. For any particular
input-output example (in,out), the information of both values and
2However, it is worth noting that the authors of [2] do not report the speedups on
individual benchmarks, but the speedups obtained on solving a given percentile of
easiest (fastest to solve) benchmarks.

Neuro-Guided Genetic Programming: Prioritizing Evolutionary Search with Neural Networks GECCO ’18, July 15–19, 2018, Kyoto, Japan

types is encoded before feeding into the network, for both in and
out (note for instance that in the example in Listing 1, in comprises
a pair of lists). For each value, its type is encoded separately via
one-hot encoding, which requires two inputs (one for the type int,
one for [int]). The values themselves are always ‘cast’ to the list
type, i.e. the scalars (int) are encoded as lists of length 1. The length
of lists is limited to 20; if a list is shorter, the remaining elements
are padded with a special value NULL (technically implemented as
the value 256).

Each individual int value is constrained to the interval [−256, 255]
and not fed directly to the network, but first embedded in a 20-
dimensional space (the embedding process being also part of the
gradient-based backpropagation training of the network). The spe-
cial value NULL is also subject to that embedding. Thus, each scalar
int in (in,out) translates into 20 inputs to the network.

As a result, each value (list or scalar) requires 2+20×20 = 402 in-
puts to the network (type encoding plus embedding dimensionality).
Given that the considered programs have input arity at most 2 (two
values) and produce one output value, this totals to 3 × 402 = 1206
inputs. The input layer is followed by three consecutive nonlinear
(sigmoid) layers, 256 units each. The outputs of the last of those
layers, computed independently for each input-output example, are
then averaged and linearly mapped (in a fully-connected manner)
to the output layer comprising |L| = 34 units, which each of them
intended to predict the likelihood of the corresponding instruction
in the DSL.

2.4 Generation of the training set

To provide possibly accurate estimates of the p(L|T) probabilities,
the network is trained on a sample of programs, each accompanied
with some input-output examples that characterize its behavior.

The training set of programs T is built by enumerating the
programs in the DSL, starting from the shortest one-instruction
programs and increasing their length up to lmax. To avoid redun-
dancy, programs that create variables which do not affect program
output are discarded. Also, each newly created program is checked
for semantic equivalence with the ones already collected in T by
inspecting the outputs it produces for a set of examples. Should
such an equivalence hold, the new program is discarded. In this way,
shorter programs with a given input-output behavior are preferred.

For each program P ∈ T , a corresponding set of (in,out) exam-
ples T is then created. This is in general nontrivial, as randomly
chosen inputs are unlikely to evoke useful diversification of outputs,
or may cause programs to terminate due to errors (for instance, the
program in Listing 1 fails for any pair of input lists in = (a,b) that
have different lengths, due to the ZipWith operation). Therefore,
program output is randomly drawn first, and then ’back-propagated’
through the program, resulting with the constraints on input vari-
ables. From those constraints, inputs’ values are then uniformly
drawn.

As a result of the above, one obtains a training set of pairs

((in1, P(in1)), . . . , (in5, P(in5)); P)

where P ∈ T is a program, and (ini , P(ini)) are (in,out) examples
illustrating P ’s behavior on input data. For the DSL considered here
and lmax set to 3, |T | = 822,582; for lmax = 4, |T | = 5,004,532.

2.5 Network training

The neural network model described in Section 2.3 is trained on
the generated training set. For each training example, the input-
output examples (ini , P(ini)) are fed into network inputs using the
encoding described earlier. P is encoded as a binary vector of length
|L| = 34, with 1s indicating instructions that occur in P and 0s those
absent, and such a vector forms the corresponding desired output
of the network.

As the neural network architecture and training protocol used
in this paper diverge from the ones in the original DeepCoder, we
provide the remaining details in the experimental section.

3 THE PROPOSED APPROACH

We propose to use the predictions made by DeepCoder-like neural
networks to bias program synthesis performed by GP. Similarly
to DeepCoder, we assume that a network mapping examples T to
a probability distribution of instructions in L has been trained on
some training set T (Section 2.4).

Given a specific synthesis taskT in the form of (in,out) examples,
we first query the network on it, obtaining the estimated probability
distribution p(L|T). That distribution is subsequently used to bias
the search conducted by GP, for which we consider the following
two variants of such ‘priming’:

Search-only (S): In this variant, we parameterize the mutation op-
erator with a probability distribution p to be used when replacing
the instructions in programs with new, randomly chosen instruc-
tions. In the default, unbiased variant (typical for standard GP), p is
uniform over all instructions. In the proposed approach, p = p(L|T),
causing the mutation operator to use the instructions that are found
plausible by the network more often than others.

Init-and-search (IS): In this variant, we parameterize both the mu-
tation operator (as in the Search-only variant) and the population
initialization. In analogy to the priming of the mutation operator
described above, the algorithms used to produce the initial popula-
tion of programs use p(L|T) rather than the uniform distribution
over all instructions.

The details are provided in the following description of search
operators, which are tailored to the specifics of the considered DSL
and, among others, have to maintain type- and reference consis-
tency.

Program representation.We represent programs as fixed-length
sequences of instructions, each issuing a function call and creating
a fresh variable that stores the result of that call. The length of
all programs in a given GP run is the same; however, the effective
length of the program can be smaller due to the availability of the
Nop operation.

As signalled earlier, the number of the input arguments and their
types are assumed to be given as part of problem specification, and
thus the initial instructions that fetch those arguments (e.g., the first
two instructions in Listings 1 and 2) are not explicitly represented
in the programs. As a consequence, they cannot be also affected by
the search operators described in the following.

Program initialization. Programs are initialized instruction by
instruction. For each instruction, a function f is selected from

GECCO ’18, July 15–19, 2018, Kyoto, Japan Paweł Liskowski, Iwo Błądek, and Krzysztof Krawiec

L according to the assumed probability distribution p (e.g, p =
p(L|T)). Next, the algorithm examines the signature of f , and ver-
ifies whether arguments of the appropriate types are available at
this stage of program execution (i.e., have been created by the pre-
vious instructions). Should that be the case, the variables are drawn
from the scope and passed to f . If f requires other arguments (i.e.,
predicates and lambdas listed in Section 2.1), those are also drawn
according to p. If variables of required type are not available, a new
function is drawn for this instruction and the process is repeated3.
This is continued until the assumed program length is reached.

Mutation. Mutation picks an instruction in a program at random,
analyzes the function call f () issued there, and determines the sub-
set of functions in the DSL that have the same function signature as
f . Subsequently, we normalize a probability distribution p of these
functions by dividing each value by their sum. Then, a function is
drawn from that subset according to p, and it replaces the original
one.

We considered also two alternative designs of mutation opera-
tors, which however proved inferior in preliminary experiments,
so we do not present them here.

Crossover. A typical crossover operator creates new individuals
by combining parts from two parents so that the offspring inherits
some of their traits. Following this design, we implement a fairly
straightforward crossover operator that creates the offspring by
exchanging up to lc compatible function calls in parent programs
(in our experiments lc = 2). On a technical note, we first identify all
possible crossover points by extracting type signatures for succes-
sive lc -sized blocks (sublists) of instructions and narrowing the list
down to the signatures that co-occur in both parents. Next, we ran-
domly pick a signature that allows performing type-safe exchange
and guarantees syntactic correctness of the resulting offspring. If
more than one block of instructions complies to the chosen sig-
nature, the choice is made randomly. Finally, if there are no such
blocks at all, we repeat the procedure with lc − 1, or return the
parent programs when lc has reached zero.

Note that the crossover operator is not affected by p in any way.

4 RELATEDWORK

By combining evolutionary synthesis with neural networks, this
study brings together two paradigms and relates to a range of
studies in both fields.

In the field of neural networks, the recent dawn of deep learn-
ing manifested also in the area of program synthesis. As a result,
a range of approaches have been proposed that make use of the
neural paradigm for the purpose of constructing various executable
structures. Notable achievements include neural interpreters that
mimic Turing machines [6] or differentiable interpreters, like that
for the programming language Forth [3]. In a similar spirit, Zaremba
et al. showed in [15] how neural reinforcement learning can learn
simple algorithms that manipulate data on one-dimensional tapes
and two-dimensional grids.

The contributions cited above explore the possibilities of repro-
ducing the functionalities typical for interpreters of programming

3The DSL has the property that for any set of variables, at least one function exists
that is applicable to (some of) them, so this loop is guaranteed to eventually terminate.

languages in neural substrates. Though undoubtedly interesting,
these are largely proof-of-concepts with limited practical implica-
tions, because the goal of program synthesis is to produce programs
in human-readable programming languages, which preferably have
been already accepted by the community of developers. This need
is addressed by DeepCoder [2], the reference approach for this
study, which we presented in detail in Section 2: a neural network
is used to guide a synthesis algorithm that yields programs that
are readable for humans, can be inspected, reasoned about, and
the formal correctness of which can be potentially proven. As we
argue later in Section 6, using similar neural guidance for other
programming languages than the DSL considered here (e.g., subsets
of popular programming languages) is entirely plausible.

In [4], Devlin et al. propose to call the approaches in the former
group neural program induction, while those in the latter neural
program synthesis. They also briefly review more works that fall
into both these categories. Last but not least, they confront two
approaches, each representing one of these categories, on a demand-
ing real-world task of synthesizing string manipulation programs
meant to capture string transformation patterns provided in ex-
amples, as posed in the seminal work by Gulwani et al. [7] and
currently available as the FlashFill feature in Microsoft ExcelTM.
Interestingly, the authors demonstrate that the neural approaches
are much more resistant to the presence of noise in the training
data (e.g., typos) than the original FlashFill, the feature which is of
particular importance in this application area.

With respect to evolutionary programsynthesis, the approach
proposed here can be seen as genetic programming supported by
a machine learning model. Several studies in the past employed
machine learning support to enhance GP, and most of them con-
cerned fitness function. The arguably most natural approach is to
use machine learning models (regression models) as a surrogate
fitness (see, e.g., [10, 13]), in order to circumvent the potentially
costly exact fitness evaluation. However, machine learning can be
helpful not only to simulate the original fitness function, but also
to provide some alternative/additional guidances. For instance, [12]
proposed to use a decision tree to both augment the fitness function
(by introducing additional search objectives) and select potentially
useful pieces of code from the evaluated individuals, in order to
reuse them in search operators.

5 EXPERIMENT

We devise a controlled experiment aimed at assessing the impact of
the guidance provided by a trained neural network on GP’s search
performance, and compare the two variants described in Section 3,
i.e. Search-only (S) and Init-and-search (IS), with the following two
baseline configurations:

(1) U: An unbiased GP search, i.e. with each instruction having
the same probability of being used by the mutation operator
(uniform p).

(2) P: A GP search with the mutation operator biased with the
a priori probabilities of instructions, i.e. their frequency of
occurrence in the training set T (p = p(L)).

Notice that both these configurations use the provided distribu-
tion only in mutation; the probability of instructions in population
initialization is in both cases uniform.

Neuro-Guided Genetic Programming: Prioritizing Evolutionary Search with Neural Networks GECCO ’18, July 15–19, 2018, Kyoto, Japan

<
0

>
0 * + -

ac
ce

ss
ad

d1

co
un

t
di

v2
di

v3
di

v4
dr

op
fil

te
r

he
ad

isE
ve

n

isO
dd la

st
m

ap
m

ax

m
ax

im
um m

in

m
in

im
um

m
ul

t2

m
ul

t3

m
ul

t4

m
ul

tM
in

us
1

re
ve

rs
e

sc
an

l
so

rt

sq
ua

re
su

b1
su

m
ta

ke

zi
pW

ith

p0

p1

p2

p3

p4

p5

p6

p7

p8

priors

P
ro

g
ra

m

.02 .01 .00 .03 .04 .33 .01 .02 .02 .01 .01 .00 .07 .04 .02 .03 .03 .03 .06 .01 .08 .02 .08 .03 .05 .01 .03 .06 .04 .07 .01 .26 1.00 .07

.02 .00 .00 .12 .08 .00 .00 .00 .00 .00 .00 .00 .00 .86 .01 .01 .05 .96 .04 .61 .02 .00 .01 .99 .02 .00 .00 .00 .00 .00 .00 .03 .00 1.00

.21 .41 .00 .46 .52 .00 .04 1.00 .03 .02 .01 .00 .17 .00 .25 .35 .00 .18 .20 .00 .11 .00 .06 .00 .00 .11 .06 .20 .05 .00 .05 .01 .00 1.00

.16 .18 .00 .18 .72 .00 .02 .42 .15 .05 .10 .00 .26 .01 .06 .08 .03 .21 .10 .06 .05 .01 .11 .01 .01 .28 .08 .62 .03 .00 .02 .52 .00 .28

.00 .00 1.00 .02 .01 .00 .07 .00 .00 .00 .00 .00 .02 .19 .00 .00 .04 .07 .21 .04 .34 .00 .00 .00 .00 .00 .01 .37 .01 .00 .03 .85 .00 .97

.00 .03 .00 .00 .00 .00 .11 .00 .02 .02 .00 .02 .01 .00 .00 .00 .00 .84 .20 .00 .96 .00 .00 .00 .00 .15 .86 .31 .03 .00 .09 .00 .00 .94

.02 .02 .00 .77 .30 .00 .03 .02 .00 .00 .00 .00 .07 .04 .02 .11 .16 .16 .06 .01 .10 .63 .02 .00 .00 .10 .05 .12 .08 .00 .03 .20 .00 1.00

.00 .00 1.00 .03 .14 .00 .03 .00 .00 .00 .00 .00 .01 .00 .00 .00 .16 .56 .07 .50 .01 .00 .09 .00 .01 .01 .03 .32 .01 .00 .00 .47 .00 1.00

.03 .13 .00 .16 .54 .00 .08 .01 .02 .01 .01 .00 .16 .07 .01 .02 .10 .44 .06 .24 .06 .02 .10 .00 .00 .17 .03 .43 .07 .00 .09 .42 .00 .18

.09 .09 .21 .21 .25 .05 .09 .13 .09 .09 .09 .08 .21 .03 .09 .09 .03 .45 .21 .03 .21 .03 .09 .09 .09 .09 .06 .25 .06 .09 .09 .03 .08 .44

<
0

>
0 * + -

ac
ce

ss
ad

d1

co
un

t
di

v2
di

v3
di

v4
dr

op
fil

te
r

he
ad

isE
ve

n

isO
dd la

st
m

ap
m

ax

m
ax

im
um m

in

m
in

im
um

m
ul

t2

m
ul

t3

m
ul

t4

m
ul

tM
in

us
1

re
ve

rs
e

sc
an

l
so

rt

sq
ua

re
su

b1
su

m
ta

ke

zi
pW

ith

p0

p1

p2

p3

p4

p5

p6

p7

p8

priors

P
ro

gr
a
m

.09 .13 .00 .21 .28 .02 .07 .22 .20 .17 .20 .02 .12 .12 .08 .08 .12 .37 .05 .16 .09 .06 .11 .14 .04 .03 .02 .10 .04 .00 .06 .55 .91 .06

.03 .05 .00 .41 .36 .01 .06 .01 .02 .00 .01 .00 .11 .01 .04 .02 .15 .94 .16 .86 .05 .00 .07 1.00 .00 .07 .03 .09 .06 .00 .06 .08 .00 1.00

.33 .47 .00 .43 .36 .00 .05 .98 .07 .06 .05 .02 .52 .01 .38 .30 .01 .30 .31 .01 .30 .01 .04 .00 .00 .07 .07 .10 .07 .00 .06 .01 .05 1.00

.14 .07 .00 .15 .70 .01 .11 .12 .18 .03 .06 .01 .36 .05 .09 .09 .11 .48 .24 .42 .03 .02 .16 .02 .03 .46 .11 .53 .09 .01 .11 .30 .00 .22

.06 .03 .88 .01 .01 .01 .00 .04 .01 .01 .00 .00 .05 .03 .02 .01 .18 .96 .09 .10 .15 .07 .00 .00 .03 .49 .03 .09 .06 .17 .94 .13 .00 .92

.00 .01 .00 .01 .00 .00 .07 .00 .04 .02 .10 .00 .06 .00 .04 .01 .00 .19 .42 .00 .99 .00 .02 .00 .03 .02 1.00 .15 .03 .00 .05 .00 .00 1.00

.12 .08 .00 .68 .40 .08 .09 .12 .11 .08 .07 .01 .22 .10 .08 .09 .23 .47 .23 .02 .28 .53 .03 .00 .00 .09 .07 .41 .08 .00 .06 .17 .01 .99

.03 .02 .97 .26 .27 .00 .08 .00 .12 .05 .01 .00 .17 .05 .03 .02 .08 .75 .07 .02 .22 .01 .37 .00 .04 .03 .06 .57 .09 .02 .14 .92 .00 1.00

.05 .28 .00 .33 .19 .01 .28 .23 .05 .02 .03 .04 .38 .03 .11 .15 .09 .42 .29 .38 .06 .01 .31 .00 .01 .10 .07 .29 .09 .01 .14 .56 .02 .25

.11 .11 .28 .28 .33 .06 .11 .16 .11 .11 .11 .11 .26 .04 .11 .11 .04 .54 .28 .04 .28 .04 .11 .11 .11 .11 .07 .32 .07 .11 .11 .03 .10 .57

Figure 1: Visualization of networks’ outputs for individual benchmarks.

All compared methods implement the generational evolutionary
algorithm without elitism. Given the fixed-length, linear program
representation, we adopt the operator pipeline typical for genetic
algorithms: a selection operator is first applied twice to the cur-
rent population, to fetch a pair of parent programs. The crossover
operator is then applied individually to the parent programs at
probability pc ; otherwise, the parents are left untouched. Then,
each of the resulting programs is subject to mutation with proba-
bility pm . Finally, the resulting two programs are added to the next
population.

As signalled earlier, we run two series of experiments: for the
small training set of 822,582 programs of maximum length lmax =
3, and the large training set of 5,004,532 programs for lmax = 4.

5.1 Benchmarks

To assess the generalization ability of the proposed approach, we
use the benchmarks considered in [2]. We describe their semantics
only briefly here, and refer the interested reader to Appendix A
in the cited work for their source code. P0(int,[int]) sums the re-
quested number of the smallest elements from the list. P1([int],[int])
computes the maximum score of a team in a soccer league based
on the number of wins and ties. P2([int],[int]) counts the number
of list elements that are greater in the first argument than in the
second argument (Listing 1). P3([int]) calculates the total difference
of list elements with respect to the smallest element. P4([int],[int])
returns the minimal area of rectangles of dimensions given in the
input lists (Listing 2). P5([int]) calculates the list of the minima of

the input list and the reversed input list. P6([int],[int]) calculates
the minimum of the list of the sum of the input lists, decreased by
2. P7([int],[int]) calculates a cumulative expression over two input
lists zipped together, and P8([int]) similarly for a single input list,
involving also certain filtering of the intermediate results.

To sum up, the arity of the benchmark programs varies from 1 to
2, and they implement three different signatures: ([int]), (int,[int]),
and ([int],[int]). The output type is int or [int]. The effective length
ranges from 2 to 5; more precisely:

Benchmark P0 P1 P2 P3 P4 P5 P6 P7 P8
Length 3 3 2 4 5 2 4 3 4
Note therefore that only P0, P1, P2, P5, P7 are guaranteed to be

present in both small and large training set; notably, P4 is absent
also from the large training set. Though we could have removed
the benchmarks from the training set in order to adhere to the
strict training-testing set division, we anticipate that dropping just
a handful of programs out of almost a million (small training set) or
over 5 million (large training set) of them (all semantically unique)
would almost certainly have no measurable effect. A more detailed
analysis of the generalization power, possibly using large samples
of random benchmarks (for instance taken out from the current
training sets) is left for future work.

5.2 Training of the neural network

We initialize networks’ weights with the He method [8], as im-
plemented in the TensorFlow software library [1]. All considered
training algorithms are variants of stochastic gradient descent and

GECCO ’18, July 15–19, 2018, Kyoto, Japan Paweł Liskowski, Iwo Błądek, and Krzysztof Krawiec

error backpropagation, and operate very similarly: examples are
forward-propagated, in batches of 512 examples, through the net-
work structure, then errors calculated as the cross-entropy between
the actual and desired output(s), propagated backwards, and based
on that units’ weights are updated according to delta rule. We
used two specific algorithms subscribing to this scheme: RMSProp
and Adam [11]. Training lasts up to 100 epochs (full passes over
the training set T) with early stopping condition occurring when
validation loss ceased to improve.

We also considered slight variations wrt the original DeepCoder
architecture described in Section 2.3. Firstly, given that the oc-
currences of instructions in a program are largely unrelated, we
abandon the original assumption that the last layer of the network
should represent log-unnormalized probabilities (logits), and thus
use sigmoid activations in that layer and binary cross-entropy as
the loss function. We also replace the original sigmoidal units in the
hidden layers with rectified linear units (ReLUs), ‘leaky’ ReLUs, and
exponential-linear units (ELUs). Approximately a dozen of such
architectures have been tested for both the small training set and
the large one. In both groups, the networks trained with the Adam
algorithm typically ranked at the top with respect to accuracy on
the test set (10, 000 programs not present in the training set), in
particular when combined with ReLU or ELU units. Ultimately, we
selected the ReLU-based architecture for the small dataset (accuracy
92.48%), and the ELU-based one for the large training set (accuracy
90.85%), both trained with Adam (those networks committed also
the smallest error measured with the Hamming distance from the
vector of desired outputs: 0.0752 and 0.0915, respectively).

High accuracy and low Hamming distance suggest that the net-
works manage to make largely accurate predictions. This is in-
deed confirmed in Fig. 1, which visualizes the outputs produced by
the two above-mentioned best-performing networks for individual
benchmarks (in rows): the top heatmap for the network chosen
for the small training set, the bottom heatmap for the one selected
for the large training set. The columns correspond to the |L| = 34
instructions (or more generally, lexical elements) of the DSL. The
numbers and shading report the probability estimates produced by
the network. The green frames mark the instructions that actually
occur in the target programs. At the bottom of the both heatmaps,
we provide also the priors, i.e., the probabilities of instructions’
occurrences in the entire training set.

The networks seem very responsive to the characteristics of the
examples inT : their predictions clearly diverge from the priors and
vary per benchmark, sometimes positively, sometimes negatively.
On the other hand, the predictions correlate with the priors on
average. Comparing the heatmaps with the source codes of target
programs in Listings 1 and 2, and those in Appendix A of [2], re-
veals that networks’ high estimates often coincide with the correct
instructions; in particular, such instructions are typically among
those scored highest by the networks. It may be also worth mention-
ing that the networks clearly do not base their estimates only on
benchmark’s signature, i.e. the types of the arguments and outputs:
of the nine benchmark programs considered here, only one takes a
scalar (int) argument (P0), and only two produce lists (P0 and P5) –
all the remaining ones expect lists as arguments and produce an
int as the outcome. The networks must have thus detected some
nontrivial patterns in the provided input-output examples.

Table 1: Common parameter settings for all methods.

Parameter Value
Probability of mutation pm 0.8
Probability of crossover pc 0.0 or 0.5
Population size 1000
Selection method Tournament (T) or Lexicase (L)
Max program length 3 or 4
Number of fitness cases 128
Max generations 200

5.3 GP settings and parameter tuning

We conducted preliminary parameter tuning to optimize the per-
formance of baseline configurations, by sweeping the parameters
in the following ranges: the probabilities of mutation and crossover
pm ,pc ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, population size ∈ {100, 500, 1000},
and running each configuration 30 times on the representative
sample of four benchmarks: P0, P1, P3, P4. Analysis of resulting
success rates and fitness graphs led us to choosing the settings
shown in Table 1 as optimal and using them in the remaining part
of this paper for all methods. In particular, we compare setups with
(pc = 0.5, marked with C) and without (pc = 0, marked with N)
crossover operator, to verify whether it contributes to the actions
of the mutation biased by p.

The length of the programs in the population is set to 1 plus the
length of the target program. Alongside with Tournament selection
(with tournament of size 7, T), we consider also Lexicase selection
(L) [9], which does not rely on scalar fitness for selection, and
instead takes into account the individual outcomes of interactions
between programs and tests (examples). In each selection act, a
random permutation of tests is generated, and the program from
the current population which passes the longest uninterrupted
sequence of tests is selected. In multiple studies, Lexicase proved
systematically better than Tournament selection.

Though the neural network predicts the p(L|T) based only on
the five examples inT , this set is insufficient to define a fine-grained
fitness function. For that purpose, we draw an additional set of 128
testsT ′, using the same procedure as for the tests inT (Section 2.4).
The fitness function is minimized and counts the number of errors
committed by programs on the tests in T ′.

A GP run is terminated if it finds the correct program before the
200 generations elapse. However, program correctness is judged
based on the fitness alone, i.e. with respect to the tests inT ′ – there
is no guarantee that the program is correct outside of the provided
sample input-output examples.

5.4 Results

The primary performance indicator we consider is the success rate,
i.e., the percentage of runs that ended up with a correct program,
out of 50 runs. We report it in Tables 2 and 3, respectively for the
networks trained on the small and large training set, with and with-
out crossover, and Tournament selection vs. Lexicase selection. We
also rank the methods in each group, on each benchmark sepa-
rately, average the ranks, and report them in the last row of the
tables (the resulting ranks must range thus in [1, 4]). Notice that

Neuro-Guided Genetic Programming: Prioritizing Evolutionary Search with Neural Networks GECCO ’18, July 15–19, 2018, Kyoto, Japan

Table 2: Success rates for particular configurations, for the small training set. Legend: T (tournament), L (lexicase), U (unbiased),

P (priors baseline), S (search), IS (initialization and search).

method tU tP tS tI S lU lP lS lI S mean
cx 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
P0 0.70 0.54 0.34 0.42 0.88 0.94 1.00 1.00 0.58 0.66 0.40 0.58 0.72 0.82 1.00 1.00 0.72
P1 0.18 0.16 0.26 0.24 0.24 0.20 0.54 0.58 0.16 0.08 0.20 0.12 0.60 0.44 0.96 0.96 0.37
P2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P3 0.14 0.16 0.12 0.12 0.46 0.48 1.00 0.96 0.52 0.62 0.28 0.54 0.82 0.76 1.00 1.00 0.56
P4 0.14 0.06 0.02 0.08 0.02 0.02 0.00 0.00 0.52 0.56 0.38 0.44 0.38 0.18 0.14 0.14 0.19
P5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.92 1.00 0.98 1.00 0.98 1.00 1.00 0.99
P6 0.08 0.08 0.06 0.14 0.02 0.14 0.04 0.04 0.40 0.60 0.82 0.68 0.68 0.74 0.78 0.80 0.38
P7 0.16 0.08 0.34 0.16 0.34 0.44 0.56 0.58 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67
P8 0.18 0.36 0.10 0.12 0.14 0.18 0.28 0.32 0.36 0.46 0.26 0.30 0.50 0.34 0.82 0.76 0.34
mean 0.40 0.38 0.36 0.36 0.46 0.49 0.60 0.61 0.61 0.66 0.59 0.63 0.74 0.70 0.86 0.85

Table 3: Success rates for particular configurations, for the large training set.

method tU tP tS tI S lU lP lS lI S mean
cx 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
P0 0.70 0.54 0.34 0.38 0.82 0.78 1.00 1.00 0.58 0.66 0.54 0.58 0.64 0.68 1.00 1.00 0.70
P1 0.18 0.16 0.20 0.20 0.18 0.24 0.58 0.62 0.16 0.08 0.16 0.16 0.48 0.32 0.98 0.88 0.35
P2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P3 0.14 0.16 0.10 0.10 0.12 0.28 0.68 0.74 0.52 0.62 0.46 0.52 0.60 0.74 0.98 0.94 0.48
P4 0.14 0.06 0.02 0.00 0.02 0.02 0.00 0.00 0.52 0.56 0.52 0.50 0.22 0.32 0.32 0.08 0.21
P5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.92 0.98 0.96 1.00 1.00 1.00 1.00 0.99
P6 0.08 0.08 0.00 0.04 0.08 0.10 0.12 0.12 0.40 0.60 0.64 0.70 0.64 0.70 0.72 0.74 0.36
P7 0.16 0.08 0.28 0.24 0.48 0.42 0.78 0.90 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.71
P8 0.18 0.36 0.16 0.08 0.18 0.24 0.42 0.42 0.36 0.46 0.32 0.34 0.28 0.32 0.84 0.78 0.36
mean 0.40 0.38 0.34 0.34 0.43 0.45 0.62 0.64 0.61 0.66 0.62 0.64 0.65 0.68 0.87 0.82

the configurations that use uniform distributions do not rely on the
training set and thus produce the same values in both tables.

The benchmarks vary in the level of difficulty they pose to the
methods, ranging from very easy ones, which are solved in all
runs by all methods (P2), to difficult ones, on which even the best
performing configurations barely exceed 50% probability of success
(P4). Unsurprisingly, success rate seems to negatively correlate with
the length of the target program (2 for P2 (Listing 1) and 5 for P4
(Listing 2), the longest target program in the benchmark suite).

Most importantly, the success rates of the configurations param-
eterized with networks’ estimates p(L|T), i.e. S and IS, are system-
atically better than those of configurations that rely on the uniform
distribution (U) and those parameterized by the prior probabilities
calculated from the training test (P). Interestingly, the latter is usu-
ally worse than the former, which suggests that for an approach
that is not informed by the network, it is better to use the uniform
distribution. The possible explanation is that some instructions
have very low occurrence in the training sets, and it thus becomes
very unlikely for them to be used, even when they are required for
a given task.

Of the two approaches informed by networks, priming both ini-
tialization and search (IS) performs better. Though this effect was
expected, we did not anticipate its size (note the large differences
between the average ranks of IS and S configurations). We hypoth-
esize that the observed gain stems from the fact that initialization
is relatively likely to produce a program that uses all instructions

appointed as most probable by the network. In contrast, the mu-
tation operator can substitute only one instruction at a time, so if
it happens to start with a program that contains no useful instruc-
tions, it needs to be applied several times to produce the desired
effect, which is unlikely.

The Lexicase selection operator (L setups) proves its usefulness
again, systematically and significantly boosting the success rates in
comparison to the Tournament selection (T setups). Nevertheless,
in relative terms, the informed configurations improve over the
non-informed ones irrespectively of the type of selection operator,
which suggests that priming is beneficial independently of this
component of search algorithm. It becomes thus even less likely
for the observed effects of priming to be incidental.

What comes as a bit of surprise is the not so clearly positive
effect of using the large training set, when compared to the small
one. For IS, moving from the latter to the former causes the success
rate to improve only in 11 cases (combinations of benchmark and
settings), out of the total of 9∗ 4 = 36. At the same time, we observe
deterioration in 8 cases, and in the remaining 17 cases the success
rate does not change. Similarly, there is no clear winner when
comparing the small and the large dataset for S configurations.

To statistically evaluate our results, we employed the Friedman’s
test for multiple achievements of multiple subjects. In Table 4 we
present the average ranks and p-values computed for four disjoint
groups of configurations:

GECCO ’18, July 15–19, 2018, Kyoto, Japan Paweł Liskowski, Iwo Błądek, and Krzysztof Krawiec

Table 4: Ranks for the tested configurations. Legend: small-

/large (training set used), N (no crossover), C (crossover).

smallN (p = 0.00877)
Method lI S lS tI S lP lU tS tU tP
Rank 2.50 3.06 4.28 4.28 4.56 5.50 5.67 6.17

smallC (p = 0.010579)
Method lI S lS tI S lU lP tS tU tP
Rank 2.17 3.61 4.33 4.33 4.72 5.22 5.72 5.89

largeN (p = 0.00093)
Method lI S lS tI S lU lP tS tU tP
Rank 2.06 3.61 3.72 4.44 4.83 5.44 5.50 6.39

largeC (p = 0.00075)
Method lI S lS tI S lU lP tS tU tP
Rank 2.22 3.50 3.83 4.33 4.56 5.11 5.83 6.61

• smallN – small training set, methods not using crossover.
• smallC – small training set, methods using crossover.
• largeN – large training set, methods not using crossover.
• largeC – large training set, methods using crossover.

In each group, the configurations that rely on neural guidance
clearly rank at the top. The p-values indicate that some methods are
significantly better than others. We conducted a post-hoc analysis,
which let us conclude that lI S is statistically significantly better
than tU and tP in every group. Additionally, in the largeN group,
lI S was significantly better than tS .

6 DISCUSSION

It is worth emphasizing that the proposed approach is largely in-
dependent from the underlying programming language (DSL). In
this study, we used the DSL from [2] mainly to provide for some
degree of comparison with the results presented there. There are
no obstacles for using linear programs written in other DSLs, or
tree-based GP; for the network, that would require only adjusting
the size of the output layer to the number of instructions in the
DSL.

Unavailability of the original implementation of DeepCoder [2]
prevents us from conducting a side-by-side comparison with it. We
posit however that using neural priming for stochastic search can
be particularly beneficial. Our argument is that neural estimates of
probabilities are inherently noisy (not least because they are based
on just a handful of examples), and thus treating themwith absolute
confidence bears certain risks – and this is what, at least in a certain
sense, some of the deterministic search algorithms considered in
[2] do. In particular, the depth-first search uses the instructions
strictly in the ordering given by the estimated probabilities, so
an instruction unfairly deemed as unlikely will wait very long to
be used. We suppose that this deficiency was one of the reasons
for which the authors of DeepCoder devised the "sort and add"
heuristics (Section 2). A stochastic search, like the evolutionary
algorithm considered here, is free from that shortcoming, as it
treats the estimates as probabilistic guidance only.

7 CONCLUSION

In this paper, we evidenced the possibility of augmenting the guid-
ance of evolutionary program synthesis with a neural network that

estimates the likelihoods of instructions based on the samples of
input-output behavior. The resulting boosts in success rate seem
promising, and it is certainly possible to make them statistically
more significant by extending the benchmark suite and/or further
extensions of the method. Concerning the latter, possibilities galore.
For instance, the current implementation of mutation takes into
account only the desired (estimated) distribution of instructions,
while entirely ignoring the instructions already present in the pro-
gram; one could easily devise a search operator that would prefer
inserting the instructions that are indicated as likely by the network
and still absent from the program. Next, we use the estimates to
prime the search operators only; one could consider priming also
the fitness function (or adding an extra objective) by inspecting
the source code of candidate programs and promoting those that
feature the desired instruction. On the more analytical side, it would
be interesting to see how the method generalizes with program
length, and how its performance degrades when considering more
complex benchmarks.
Acknowledgment The computations were performed in Poznan
Supercomputing and Networking Center. The authors acknowledge
support from Polish National Science Centre through the following
grants: PL – 2014/15/N/ST6/04572; IB, KK – 2014/15/B/ST6/05205.

REFERENCES

[1] Martín Abadi and et al. 2015. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. (2015). https://www.tensorflow.org/ Software available
from tensorflow.org.

[2] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and
Daniel Tarlow. 2016. DeepCoder: Learning to Write Programs. arXiv preprint
arXiv:1611.01989 (November 2016). https://arxiv.org/abs/1611.01989

[3] M. Bošnjak, T. Rocktäschel, J. Naradowsky, and S. Riedel. 2016. Programmingwith
a Differentiable Forth Interpreter. ArXiv e-prints (May 2016). arXiv:1605.06640

[4] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A.-r. Mohamed, and P. Kohli. 2017.
RobustFill: Neural Program Learning under Noisy I/O. ArXiv e-prints (March
2017). arXiv:cs.AI/1703.07469

[5] John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure
Transformations from Input-output Examples. SIGPLAN Not. 50, 6 (June 2015),
229–239. https://doi.org/10.1145/2813885.2737977

[6] A. Graves, G. Wayne, and I. Danihelka. 2014. Neural Turing Machines. ArXiv
e-prints (Oct. 2014). arXiv:1410.5401

[7] Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012. Spreadsheet Data
Manipulation Using Examples. Commun. ACM 55, 8 (Aug. 2012), 97–105. https:
//doi.org/doi:10.1145/2240236.2240260

[8] K. He, X. Zhang, S. Ren, and J. Sun. 2015. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. In 2015 IEEE International
Conference on Computer Vision (ICCV). 1026–1034. https://doi.org/10.1109/ICCV.
2015.123

[9] Thomas Helmuth, Lee Spector, and James Matheson. 2015. Solving Uncompromis-
ing Problems with Lexicase Selection. IEEE Transactions on Evolutionary Compu-
tation 19, 5 (Oct. 2015), 630–643. https://doi.org/doi:10.1109/TEVC.2014.2362729

[10] Torsten Hildebrandt and Juergen Branke. 2015. On Using Surrogates with Genetic
Programming. Evolutionary Computation 23, 3 (Fall 2015), 343–367.

[11] Diederik P. Kingma and JimmyBa. 2014. Adam: AMethod for Stochastic Optimiza-
tion. CoRR abs/1412.6980 (2014). arXiv:1412.6980 http://arxiv.org/abs/1412.6980

[12] Krzysztof Krawiec and Una-May O’Reilly. 2014. Behavioral programming: a
broader and more detailed take on semantic GP. In GECCO ’14: Proceedings of
the 2014 conference on Genetic and evolutionary computation, Christian Igel, et
al. (Ed.). ACM, Vancouver, BC, Canada, 935–942. https://doi.org/doi:10.1145/
2576768.2598288 Best paper.

[13] Pawel Liskowski and Krzysztof Krawiec. 2016. Surrogate Fitness via Factorization
of Interaction Matrix. In EuroGP 2016: Proceedings of the 19th European Conference
on Genetic Programming (LNCS), Malcolm I. Heywood, James McDermott, Mauro
Castelli, Ernesto Costa, and Kevin Sim (Eds.), Vol. 9594. Springer Verlag, Porto,
Portugal, 68–82. https://doi.org/doi:10.1007/978-3-319-30668-1_5

[14] Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D. Dissertation.
Electrical Engineering and Computer Science, University of California, Berkeley,
USA. http://people.csail.mit.edu/asolar/papers/thesis.pdf

[15] W. Zaremba, T. Mikolov, A. Joulin, and R. Fergus. 2015. Learning Simple Algo-
rithms from Examples. ArXiv e-prints (Nov. 2015). arXiv:cs.AI/1511.07275

https://www.tensorflow.org/
https://arxiv.org/abs/1611.01989
http://arxiv.org/abs/1605.06640
http://arxiv.org/abs/cs.AI/1703.07469
https://doi.org/10.1145/2813885.2737977
http://arxiv.org/abs/1410.5401
https://doi.org/doi:10.1145/2240236.2240260
https://doi.org/doi:10.1145/2240236.2240260
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/doi:10.1109/TEVC.2014.2362729
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/doi:10.1145/2576768.2598288
https://doi.org/doi:10.1145/2576768.2598288
https://doi.org/doi:10.1007/978-3-319-30668-1_5
http://people.csail.mit.edu/asolar/papers/thesis.pdf
http://arxiv.org/abs/cs.AI/1511.07275

	Abstract
	1 Introduction
	2 DeepCoder
	2.1 The domain-specific language
	2.2 Method workflow
	2.3 Network architecture
	2.4 Generation of the training set
	2.5 Network training

	3 The proposed approach
	4 Related work
	5 Experiment
	5.1 Benchmarks
	5.2 Training of the neural network
	5.3 GP settings and parameter tuning
	5.4 Results

	6 Discussion
	7 Conclusion
	References

