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ABSTRACT
Genetic programming is an e�ective technique for inductive syn-

thesis of programs from training examples of desired input-output

behavior (tests). Programs synthesized in this way are not guaran-

teed to generalize beyond the training set, which is unacceptable

in many applications. We present Counterexample-Driven Genetic

Programming (CDGP) that employs evolutionary search to synthe-

size provably correct programs from formal speci�cations. CDGP

employs a Satis�ability Modulo Theories (SMT) solver to formally

verify programs in the evaluation phase. A failed veri�cation pro-

duces counterexamples that are in turn used to calculate �tness

and so drive the search process. When compared against a range of

approaches on a suite of state-of-the-art speci�cation-based synthe-

sis benchmarks, CDGP systematically outperforms them, typically

synthesizing correct programs faster and using fewer tests.
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1 INTRODUCTION
Genetic Programming (GP) proves e�ective for test-based synthesis

of programs, where the synthesis task is de�ned by a set of tests

(examples). Each example is an (input ,output) pair, consisting of

input to be fed into a program and the corresponding expected (cor-

rect) output. There are numerous settings in which this approach

proves useful, most of them involving GP as a machine learning

tool within the learning-from-examples paradigm.

The main shortcoming of test-based synthesis is that general-

ization cannot be guaranteed: a program synthesized from a �nite
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training sample cannot be expected to return the correct value for

arbitrary admissible input. In GP, this shortcoming can be par-

tially alleviated via ad-hoc techniques such as parsimony pressure,

but (excepting speci�c areas like semantic GP) GP lacks a general

formal theory of generalization, comparable to the Probably Ap-

proximately Correct framework [37] or other algorithmic learning

theories. The ability to generalize from the training to the test set

remains a matter of chance, rather than something assured by the

mechanisms of GP.

Even if GP had such a theory, it would not guarantee perfect gen-

eralization, as in the case of any other inductive learning approach.

Assuring correct behavior for all admissible program inputs can be

achieved only when synthesizing from formal speci�cations (spec-
based synthesis in the following). At a systems-level, speci�cations

are expressed via a variety of speci�cation languages, including

algebraic [16] and model-based [8, 38]. We are concerned here with

a speci�c simple form of speci�cation, termed a contract [19, 33].

Contracts are typically given as a pair of logical clauses de�ning (i)

the inputs that a program can process and (ii) the conditions the

response (output) of a program should ful�ll. There are a variety of

approaches to spec-based synthesis, including the stepwise transfor-

mation of the speci�cation into a program (speci�cation re�nement
[12]) or using the speci�cation to constrain the space of program

candidates and prioritize a search process conducted in that space

(e.g. by �rst rephrasing the synthesis task as a satis�ability problem

[15, 22, 36]).

Crucially, a program produced by spec-based synthesis is guar-

anteed to adhere perfectly to the speci�cation. In many areas, such

guarantees are essential. Examples include security, transporta-

tion, safety-critical systems, and costly manufacturing. The list of

potential application areas for such methods is growing rapidly,

particularly given the increasing level of cyberthreats and degree

of responsibility delegated to computer systems.

Given the e�ectiveness of GP on test-based problems and guaran-

tees o�ered by programs synthesized from speci�cation, it becomes

natural to ask: can the evolutionary paradigm be adapted to solve

spec-based synthesis problems? Preliminary attempts on speci�c

classes of executable structures [23] and programs [27], which we

review in Section 4, suggest several possibilities. In this paper, we

propose Counterexample-Driven Genetic Programming (CDGP),

a novel variant of GP for solving spec-based synthesis problems.

After presenting the preliminaries of spec-based synthesis and ver-

i�cation in Section 2, we describe the CDGP algorithm (Section

3), review the related work (Section 4), empirically examine its

properties on a suite of benchmarks typically used to assess other

spec-based synthesis algorithms (Section 5), closing with discussion

and conclusions in Sections 6 and 7.
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2 SPEC-BASED SYNTHESIS AND
VERIFICATION

Spec-based program synthesis typically proceeds from a contract,
given by a pair of logical formulas: a precondition Pre – the con-

straint imposed on program input, and a postcondition Post – a

logical clause that should hold upon program completion. Let p
denote a program and p(in) the output produced by p when applied

to input in. Solving a synthesis task (Pre, Post) is equivalent to

proving that

∃p∀inPre(in) =⇒ Post(in,p(in)), (1)

where Pre(in) is the precondition valuated for the input in, and

Post(in,p(in)) is the postcondition valuated for the input in and

the output produced by p for in. Obviously, the proof has to be

constructive, i.e. to produce such a p – merely determining whether

or not p exists is not much use for synthesis.

Consider synthesizing a program that calculates the maximum

of two integers (x ,y). For this synthesis task, the contract can be

de�ned as follows:

Pre((x ,y)) ⇐⇒ (x ,y) ∈ Z2
Post((x ,y),o) ⇐⇒ o ∈ Z ∧ o ≥ x ∧ o ≥ y∧

∧(o = x ∨ o = y)
(2)

This is an example of a complete speci�cation, which de�nes the

desired behavior of the sought program for all possible inputs, the

number of which happens to be in�nite here.

In methods of spec-based synthesis, the content (code) of p is

controlled by a set of variables. For instance, programs represented

as sequences of n instructions can be encoded with n such variables,

each in [1,k], where k is the number of available instructions. To

determine the values of variables that cause p ful�ll (1) (called a

model in propositional logic), the synthesis formula parameterized

with these variables is passed to a SAT solver. The solver either

produces a feasible set of variable assignments, and thus yields a

correct-by-construction program that is guaranteed to meet the

contract, or otherwise states that the speci�ed program does not

exist. In practice, the solver is equipped with an additional abstrac-

tion layer, a theory that enables reasoning in terms of, for instance,

integer arithmetic. This leads to the concept of Satis�ability Modulo
Theories (SMT) used in program synthesis [15, 22, 36].

It is worth emphasizing that the solver achieves this without

actually running any program, because the properties of the output

can be logically inferred modulo the theory, from the properties of

the input and the those of the program code. For the above problem

(2) to be solved, the theory of Linear Integer Arithmetic (LIA) [7]

may be used. Unfortunately, the cardinality of the search space

grows exponentially with program length n, so only relatively short

programs can be synthesized in this way.

3 COUNTEREXAMPLE-DRIVEN GP
GP is a stochastic generate-and-test technique, where new pro-

grams are continuously generated and evaluated on examples. In

the test-based setting, the input to GP is a set of tests (�tness cases),

i.e. , pairs (in,out) ∈ T of program input in and the desired output

out required to result from applying a correct program to in. A

GP algorithm solving a synthesis task maintains a population of

programs P . In every generation, each program p ∈ P is tested on

Algorithm 1 Evaluation in CDGP, given the current population

P , current set of tests Tc , and program speci�cation (Pre, Post),
returns the evaluated population and an updated set of tests.

1: procedure CDEval(P , Tc , (Pre, Post))
2: T ← ∅ .Working set of tests

3: for all p ∈ P do . Evaluation loop

4: p.eval ← Eval(p, Tc )

5: if p.eval = |Tc | then
6: c ← Verify(p, (Pre, Post))
7: if c = ∅ then return p . Perfect program

8: else
9: T ← T ∪ {c}

10: end if
11: end if
12: end for
13: return (P ,Tc ∪T )
14: end procedure

every test (in,out) ∈ T , in which p is applied to in and returns an

output p(in) that is confronted with out . If p produces the correct

output for t , it is said to pass t ; otherwise, we say that p fails t . The

conventional GP �tness that rewards a program for the number of

passed tests can be then written as

Eval(p,T ) =
∑

(in,out )∈T
[p(in) = out], (3)

where [ ] is the Iverson bracket.

In spec-based synthesis, tests are not available, and so neither is

the conventional �tness function. To combine such synthesis with

evolutionary search, one must resort to other means of program

evaluation. The method presented in this paper relies on program
veri�cation which consists in proving that, for a given program p,

∀inPre(in) =⇒ Post(in,p(in)). (4)

The practical di�erence with respect to spec-based synthesis

(1) is that veri�cation can be typically realized using conventional

SMT solvers at much lower computational cost, because it is applied

to an existing program. The result can be twofold: success when

p meets (4), or failure otherwise. Crucially, the latter outcome is

accompanied by a counterexample, i.e. an input in such that (4) does

not hold. This characteristic is essential for our method.

The top-level loop of Counterexample-Driven GP (CDGP) pro-

ceeds in a similar manner to conventional GP, where in each gen-

eration parent programs are selected, modi�ed, and evaluated. The

main di�erence is that evaluation involves both formal veri�cation

and evaluation on a set of tests Tc , collected from veri�cations

conducted in the previous generations. The evolutionary run starts

with an empty Tc . Programs in the working population are evalu-

ated on the tests in Tc in the conventional way, and the resulting

�tness drives the search process.

The procedure CDEval presented in Algorithm 1 is launched

once per generation. In contrast to conventional GP evaluation, it

accepts the formal speci�cation (Pre, Post) as an extra parameter.

As in conventional GP, each program p in the current population is

�rst evaluated on the tests currently available in Tc and assigned

the conventional �tness (3). If it happens to pass all of them, it is
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subject to formal veri�cation. A positive outcome of veri�cation

terminates search, with p returned as the resulting correct program.

Otherwise, the counterexample resulting from veri�cation extends

the working set of tests T , which is maintained separately from Tc
so that evaluation of successive programs in P remains una�ected.

Once all programs have been processed, Tc is extended with the

new tests from T . Since both Tc and T are sets, adding a test that

has been already collected earlier in a run has no e�ect — duplicate

tests are automatically discarded.

In the �rst generation Tc = ∅, so all programs in P receive

zero �tness and the attendant selection of parent programs is com-

pletely random. Nevertheless, this �rst generation will typically

discover a few counterexamples, which provide for some degree

of discrimination of programs in the second generation. In this

way, the veri�cation outcomes supply CDGP with an increasingly

�ner-grained �tness function and more precise search gradient.

For brevity, Algorithm 1 omits a technical yet important detail.

Eval expects inTc complete tests of the form (in,out), i.e. program

inputs accompanied with corresponding desired outputs. However,

the counterexamples resulting from Verify are not tests – each of

them is just the input in that caused p to fail veri�cation. Thus, the

tests added to T in line 9 have the form c = (in, ∅).
As a consequence, Eval needs to evaluate programs on both

well-formed tests (which it does in the conventional way, as in

(3)), as well as on incomplete tests of the form (in, ∅). In the lat-

ter case, Eval �rst applies the evaluated program to in, obtaining

the actual output outa . Then, it validates Post on outa , i.e. substi-

tutes the variables in the predicate Post with the values from outa
and determines if the resulting Boolean formula is true (cf. (2)). If

Post(in,outa ) holds, then outa is the correct output for in, and Eval

replaces (in, ∅) in T with (in,outa ).1 In future evaluations on this

tests, Eval can conventionally compare the actual program output

with the desired one, which is cheaper than validating Post . In

this way, the missing information on desired outputs for individ-

ual tests is gradually supplemented by the algorithm at moderate

computational overhead.

Algorithm 1 implements the ‘conservative’ variant of CDGP,

where the time-costly veri�cation is applied only to programs that

pass all tests and is thus used sparingly. Attempting veri�cation

of a program that is known to fail any tests in Tc may indeed

seem pointless, as such a program cannot be correct. However,

a counterexample resulting from such veri�cation does not have

to be identical to any of the tests already in Tc , because solvers

implement complex tactics, and the outcome of veri�cation may

depend on the speci�cation and program code in a nontrivial way.

This suggests that incorrect programs in the population may

also give rise to new counterexamples. Whether the tests built

from them are useful at guiding search or not remains an open

question. To answer this, we also investigate a non-conservative
variant of CDGP, where line 5 in Algorithm 1 is skipped, so that

each act of evaluating a program is followed by its veri�cation and

will produce a counterexample that may extend Tc (unless already

present there).

1
In general there may be other outputs that satisfy the speci�cation for a given in;

however we assume that (Pre, Post ) speci�es a function in the mathematical sense:

for a given input, only one correct output exists, and output depends deterministically

solely on the input (i.e. there is no ‘hidden’ global state).

4 RELATEDWORK
The application of formal methods to program synthesis precedes

heuristically-informed stochastic methods such as GP by several

decades [13], and the literature for formal approaches to synthesis

(and veri�cation) is vast (for recent overviews, see Boca et al [9] and

Almeida et al [1]). However, we are aware of only few approaches

which combine formal techniques with heuristic search.

In 2007, Johnson [23] incorporated model-checking (as speci�ed

via Computation Tree Logic) into the �tness measure of evolved

�nite state machines, and used this to learn a controller for a simple

vending machine. From 2008, Katz and Peled authored a series of

papers combining model-checking and GP [25–27] in which they

progressively re�ne their MCGP tool [26], based on Linear Tem-

poral Logic. They use ‘deep model checking’ to impose a gradient

on the �tness function, for which they report good �tness-distance

correlation. The most recent development of their tool [27] applies

a (µ + λ) evolutionary strategy to strongly-typed, tree-based tree

GP and gives example applications of program synthesis, program

improvement and bug-repair.

In common with our approach, Katz and Peled use feedback

from the veri�cation process to provide a �ner-grained measure of

program �tness. In contrast, CDGP formally ensures correctness,

whereas their approach does not achieve this in all cases (e.g. in

their application to synthesising concurrent programs). Veri�ca-

tion in our case is performed via SMT, in theirs via model-checking.

Last but not least, in Section 5 we combine CDGP with the recently

proposed Lexicase selection [18], and the domain-agnostic e�ec-

tiveness of CDGP is demonstrated on a wider range of benchmarks.

The possibility of using coevolutionary GP to synthesize pro-

grams from formal speci�cations was researched by Arcuri and Yao

[4, 5]. In their approach, populations of both tests and programs

are maintained in the competitive coevolution framework. Fitness

of programs is calculated using a heuristic that estimates how close

a postcondition is from being satis�ed by the program’s output for

speci�c tests. The population of test cases is initialized randomly

and then co-evolves with programs, guided by �tness function that

rewards failing as many programs as possible. The approach of

Arcuri and Yao, while allowing the synthesis of programs with

GP from a formal speci�cation, provides no guarantees that pro-

gram deemed correct by their method will be consistent with the

speci�cation for all possible inputs.

Amongst the dozen or more well-known systems that perform

synthesis under the heading of Inductive Logic Programming [34],

IGOR II [20] is known to perform well on a range of problems

[21]. As extended by Katayama [24], it combines an ‘analytic’

approach based on analysis of �tness cases with the generate-and-

test approach more familiar to the GP community.

In the related area of Genetic Improvement, there have been a

number of recent articles incorporating formal approaches. Kocsis

et al. [29] report a 10,000-fold speedup of Apache Spark database

queries on terabyte datasets. In work by Burles et al [10], a 24%

improvement in energy consumption was achieved for Google’s

Guava collection library by applying the Liskov substitution prin-

ciple that is the formal cornerstone of object-orientation. Some

recent work has also used category theory to perform formal trans-

formations on datatypes [28, 30], in order to join together parts
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Table 1: Program synthesis benchmarks. For all of them, the
input type is In and the output type is I (I=integer). Some
functions were tested in variants with di�erent arities.

Name Arity Semantics
CountPos 2, 3 The number of positive arguments

IsSeries 3 Do arguments form an arithmetic series?

IsSorted 4 Are arguments in ascending order?

Max 2, 4 The maximum of arguments

Median 3 The median of arguments

Range 3 The range of arguments

Search 2, 4 The index of an argument

among the other arguments

Sum 2, 4 The sum of arguments

of a program which are otherwise unrelated, a technique that is

applicable to ‘Grow and Graft Genetic Programming’ [17].

An alternative approach to spec-based synthesis is ‘program

sketching’ [35], a technique whereby a program contains ‘holes’

which are automatically �lled in (e.g. using an SMT solver) with

values satisfying an executable speci�cation. The method is known

to be complete for �nite programs (i.e. it can in principle synthesise

any required value). However, the approach has limited scalability

since the exact search method used is exponential in the number

of variables. More recently, Evolutionary Program Sketching (EPS)

has been proposed [11]. EPS is presented as a GP alternative that

evolves partial programs then uses an SMT solver to complete them,

attempting to maximize the number of passing test cases. For the

small set of benchmarks under consideration, EPS outperforms

conventional GP (e.g. in the number of optimal solutions found).

5 EXPERIMENT
To assess the e�ectiveness of CDGP, we apply it to a range of

spec-based synthesis benchmarks of varying di�culty.

We consider the benchmarks presented in Table 1, all of which

belong to the theory of Linear Integer Arithmetic (LIA) [7], where

the set of available instructions comprises linear arithmetic, ele-

mentary Boolean logic and conditional statements. In all selected

benchmarks, the task is to synthesize a certain function with a

signature In →I, where n is function arity. Max, Search and Sum

come from the SyGuS repository maintained for the annual ‘Syntax

Guided Synthesis’ competition [2, 3]; the remaining benchmarks

are of our own design. Some benchmarks (IsSeries, IsSorted, Search)

interpret input arguments as a �xed-size ordered sequence of type

I. In the IsSeries and IsSorted tasks, the program is required to

return 1 if the arguments respectively form an arithmetic series or

are sorted in ascending order, 0 otherwise.

Figure 1 presents the speci�cation of the Max4 benchmark ex-

pressed in the SMT-LIB language [6, 7]. The synth-fun state-

ment de�nes the signature of the function to be synthesized. The

constraint commands de�ne the speci�cation and are combined

with logical conjunction by the solver. In this speci�c case, each

constraint clause includes the reference to the synthesized func-

tion max4, which implies that this speci�cation de�nes only the

postcondition – the precondition is empty, i.e. the inputs to Max4

are only required to belong to the type Int (I in our framework).

(set-logic LIA)
(synth-fun max4 ((x Int) (y Int) (z Int) (w Int)) Int)

(declare-var x Int)
(declare-var y Int)
(declare-var z Int)
(declare-var w Int)

(constraint (>= (max4 x y z w) x))
(constraint (>= (max4 x y z w) y))
(constraint (>= (max4 x y z w) z))
(constraint (>= (max4 x y z w) w))
(constraint (or (= x (max4 x y z w))

(or (= y (max4 x y z w))
(or (= z (max4 x y z w))
(= w (max4 x y z w))))))

(check-synth)

Figure 1: The Max4 benchmark expressed in the SMT-LIB
language (fg_max4.sl �le in the SyGuS repository). Compare
with the speci�cation of the max2 problem in Equation 2.

The speci�cation for Max4 is complete, as its postcondition is appli-

cable to all possible inputs (which holds for all benchmarks).

Although the benchmarks’ semantics should be clear from Ta-

ble 1, Search deserves a comment. In that benchmark, a correct

program should �nd the 0-based index of the last argument (‘the

target’) in an ‘array’ of length n formed by the remaining argu-

ments (which are constrained by precondition to be sorted), such

that having the target at that index results in the array being sorted.

Hence, for instance Search2(3,7,1)=0, Search2(3,7,4)=1 and

Search2(3,7,10)=2, where index in the benchmark’s name refers

to the size of ‘array’.
2

In order to provide a frame of reference, we design a baseline

setup called GP Random (GPR). GPR proceeds as CDGP, except for

line 9 in Algorithm 1, where it adds to T a randomly generated

test rather than the counterexample returned by the solver. In this

way, the dynamics of GPR are similar to the conservative variant of

CDGP, i.e. tests are added toTc only when a program in population

manages to pass all tests already in Tc . As in CDGP, multiple new

tests may be added toTc in a single generation, duplicates are elim-

inated, and Tc may grow inde�nitely during a run. Comparison

between CDGP and GPR allows us to determine whether the di-

rected, spec-based synthesis of tests makes CDGP any better than

generating them at random.

The LIA domain includes two types, Int (I) and Boolean (B),

so a typed variant of GP is necessary to maintain their syntactic

correctness. We rely on a straightforward approach that guarantees

that programs initialized and bred within a run always conform

with the grammar shown in Fig. 2. The initialization operator recur-

sively traverses the derivation tree from the starting symbol of the

grammar (I) and randomly picks expressions from the right-hand

sides of productions. Once the depth of any node of the program

tree reaches 4, the operator picks productions that immediately lead

to terminals whenever possible. If the depth exceeds 5, it terminates,

discards the tree, and starts anew.

2
A Searchn benchmark thus diverges from the naming convention followed in the

remaining benchmarks (i.e. the arity of the synthesized program is n + 1), but we do

not address this for conformance with the SyGuS benchmark suite [2, 3].
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I ::= I + I | I - I | ite(B,I,I) | -1 | 0 | 1
| v1 | v2 | ... | vn

B ::= and(B,B) | or(B,B) | not(B) | B = B
| I < I | I <= I | I = I | I >= I | I > I

Figure 2: The grammar de�ning the set of considered pro-
grams (vi – ith input variable, ite – if-then-else, the condi-
tional statement). The starting symbol is I.

The mutation operator picks a random node in a parent tree, and

replaces the subtree rooted in that node with a subtree generated in

the same way as for initialization. To conform to the grammar, the

process of subtree construction starts with the grammar production

of the type corresponding to the picked location (e.g. if the return

type of the picked node is I, generation of the replacing subtree

starts with production I of the grammar).

Crossover draws a random node in the �rst parent program, and

builds the list l of the nodes in the second parent that have the same

type. If l is empty, it draws a node from the �rst parent again and

repeats this procedure. Otherwise, it draws a node from l uniformly

and exchanges the subtree identi�ed in this way with the subtree

drawn from the �rst parent. This is guaranteed to terminate, as

both parent trees always feature at least one node of type (I), i.e. the

root node, since it is also permissible for root nodes to be swapped.

A program tree resulting from any of these search operators is

considered feasible unless its height exceeds 12. Should that happen,

the program is discarded and the search operator is queried again.

Parameters of the evolutionary algorithm common to CDGP

and GPR are shown in Table 2. In GPR, we draw tests uniformly

from [−100, 100]n . We anticipate that the width of this interval is

not critical, given that in most benchmarks (except for Sum and

IsSeries) the inputs of the function to be synthesized are interpreted

as ordinal variables. While CDGP works with population size 500,

we double it for GPR (1000), so that it has more chance of drawing

important test cases (e.g. for border cases).

In both CDGP and GPR, the working set of tests Tc may grow

slowly. With only a small number of tests, the �tness function

can return just a few values and has little discriminatory power,

which may hamper population diversity. To address this issue, in

addition to the conservative and non-conservative CDGP and GPR,

we consider two independent extensions:

1. Lexicase selection. The variants marked with ‘Lex ’ are equipped

with Lexicase selection [18]. In these con�gurations, rather than

returning the number of tests inTc passed by p, Eval(p,Tc ) returns

a vector of |Tc | Booleans indicating the detailed interaction out-

comes, i.e. the ith element in that vector states whether p passed

the ith test from Tc (cf. the beginning of Section 3). Consistently,

line 5 in Algorithm 1 determines whether the number of trues in

that vector is |Tc |. The vector of interaction outcomes is then used

in selection phase, where each act of selection implements the algo-

rithm described in [18]: a random test t is drawn from Tc without

repetition, and all programs not passing t are discarded. Drawing

tests and discarding programs is repeated until only one program is

left (in which case it becomes selected); if all tests have been used,

the winner is drawn uniformly from the remaining programs.

Table 2: Parameters of the evolutionary algorithm.

Parameter Value
Number of runs 30

Population size 500/1000

Max. height of initial programs 5

Max. height of trees inserted by mutation 5

Max. height of programs in population 12

Max. number of generations 100

Probability of mutation 0.5

Probability of crossover 0.5

Tournament size 7

2. Steady-state EA. In the variants marked by the ‘Steady’, the de-

fault generational GP is replaced with the steady-state evolutionary

algorithm. Therein, a single iteration consists in �rst discarding a

poorly-performing program from the population (using negative

tournament selection of size 7), and then breeding a new program

with a randomly chosen search operator (mutation or crossover).

The program created in this way is immediately added to the current

population. Crucially, it also undergoes veri�cation as prescribed

by Algorithm 1 (conditionally in conservative CDGP and GPR, al-

ways in non-conservative CDGP). Should that process result in a

counterexample tc that is not in Tc , it is immediately added to Tc .

Subsequently, the �tness values of all programs in the population

are updated by applying them to tc , so that they are correct for the

current contents ofTc . The key feature of the steady state approach

is thus that �tness values of all programs in the population are up-

dated promptly, as soon as new tests arrive. It might be anticipated

that this would make the search process more reactive and result

in faster synthesis.

CDGP and GPR can be extended in both of the above ways inde-

pendently, so we consider all their combinations: tournament selec-

tion (Tour ) vs. Lexicase selection (Lex ), and generational evolution

(Gener ) vs. steady-state evolution (Steady). These combinations,

together with conservative and non-conservative CDGP, give rise

to eight con�gurations of CDGP and four con�gurations of GPR.

Communication with the solver is realized via the SMT-LIB stan-

dard [6], recognized by most contemporary SMT solvers. We em-

ploy the well known Microsoft Z3 SMT solver [14], one of the most

performant and widely-used non-commercial solvers. This choice

was arbitrary and no Z3-speci�c features were used. Our imple-

mentation of Verify(p, (Pre, Post)) in Algorithm 1 translates our

internal representation of program p into a function de�nition in

the SMT-LIB language, combines it with the contract (Pre, Post)
retrieved from the benchmark (the constraint clauses in example

in Fig. 1), and calls the solver to verify whether p meets (Pre, Post).
Solver then either returns a counterexample (inputs leading to fail-

ure) if p does not fully meet the speci�cation, or signalizes that p is

correct for all inputs. For the benchmarks considered in this study,

this process is su�ciently swift that we do not limit the solver’s

execution time. The source code of CDGP, along with speci�cations

of problems, is available at https://github.com/kkrawiec/CDGP.

Table 3 presents the success rates of particular variants of CDGP

and GPR. We de�ne success rate as the ratio of runs that end up

with a positively veri�ed (i.e. correct) program. The conservative
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Table 3: Success rate of particular variants of CDGP.
CDGP non-conservative CDGP conservative GPR

Generational Steady-state Generational Steady-state Generational Steady-state

Tour Lex Tour Lex Tour Lex Tour Lex Tour Lex Tour Lex
CountPos2 1.00 1.00 1.00 1.00 0.93 1.00 0.83 1.00 0.97 1.00 0.97 1.00

CountPos3 0.77 1.00 0.60 1.00 0.07 0.63 0.03 0.53 0.40 1.00 0.27 1.00

IsSeries3 0.43 1.00 0.43 1.00 0.37 1.00 0.53 0.93 0.00 1.00 0.20 0.00

IsSorted4 0.70 1.00 0.67 1.00 0.27 0.77 0.33 0.93 0.43 1.00 0.33 0.57

Max2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Max4 0.83 1.00 0.97 1.00 0.23 0.97 0.20 0.93 1.00 1.00 0.93 1.00

Median3 0.83 1.00 0.73 1.00 0.20 0.80 0.10 0.87 0.80 1.00 0.80 1.00

Range3 0.47 1.00 0.53 1.00 0.33 0.87 0.17 0.70 0.80 1.00 0.67 0.92

Search2 1.00 1.00 1.00 1.00 0.73 0.97 0.63 1.00 0.57 1.00 0.47 0.65

Search4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sum2 0.77 1.00 0.73 1.00 0.10 0.27 0.20 0.23 0.67 1.00 0.75 1.00

Sum4 0.00 0.12 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sum4 5567.0 32720.5 7527.6 50260.7 36.8 224.7 77.6 547.2 1952.0 27575.2 3733.3 22180.8

Table 4: Average runtime of particular variants of CDGP (in seconds).
CDGP non-conservative CDGP conservative GPR

Generational Steady-state Generational Steady-state Generational Steady-state

Tour Lex Tour Lex Tour Lex Tour Lex Tour Lex Tour Lex
CountPos2 37.4 14.7 73.7 49.8 6.5 7.3 30.4 31.1 263.0 636.5 2070.3 3157.1

CountPos3 341.2 98.7 597.7 505.4 39.2 86.7 76.1 281.5 2587.7 4304.5 5102.4 8048.3

IsSeries3 201.4 37.7 447.6 229.4 20.1 20.3 48.2 110.0 783.8 66255.9 2556.3 86402.5

IsSorted4 224.0 77.7 675.4 890.8 29.6 123.6 77.5 179.9 1213.2 13462.2 4256.9 55551.4

Max2 6.0 5.6 29.7 26.9 2.4 2.8 22.4 22.3 16.5 148.2 1532.4 1625.0

Max4 433.8 86.3 1136.2 908.2 33.6 71.3 73.2 192.1 367.2 353.2 2333.0 4383.1

Median3 274.7 82.5 661.7 555.0 34.5 89.4 70.4 229.8 731.7 788.4 2743.3 4143.5

Range3 579.5 100.6 934.9 587.0 23.5 37.1 56.6 158.0 991.0 3466.8 2528.4 20216.0

Search2 109.6 17.9 224.3 90.4 12.9 14.3 40.9 63.8 1218.2 11198.3 3503.4 44266.3

Search4 1326.8 23643.2 1990.8 54181.6 36.7 199.6 71.5 861.9 1539.3 67320.7 2392.8 86402.4

Sum2 151.6 48.5 395.3 330.9 23.7 92.3 51.6 209.9 1049.9 4946.0 2583.9 16110.5

Sum4 5567.0 32720.5 7527.6 50260.7 36.8 224.7 77.6 547.2 1952.0 7575.2 3733.3 22180.8

variants of CDGP are clearly worse than their non-conservative

counterparts, which suggests that ‘harvesting’ new tests from candi-

date programs that are known to be incorrect is bene�cial. Another

clear pattern is the superiority of con�gurations equipped with

Lexicase selection – this holds both for CDGP and GPR, and points

to the importance of behavioral diversi�cation of programs in the

population. Concerning comparison of generational and steady-

state con�gurations, introduction of the latter did not bring the

bene�ts postulated earlier in Section 5, neither when combined

with tournament selection nor with Lexicase selection. Regarding

all methods’ failure on Search4, this should be attributed to the

factually higher arity of this problem (�ve).

Compared to GPR’s baseline, CDGP o�ers on average greater

likelihood of synthesizing a correct program. Yet, the quantitative

di�erences are largely disappointing: the success rates on individual

benchmarks are usually only slightly better for CDGP than for GPR,

and on a few occasions GPR is better than the corresponding CDGP

variant. What is more, Lexicase selection boosts the performance of

all con�gurations and brings both CDGPLex and GPRLex close to

each other, with both of them failing only on the Search4 benchmark

and the latter yielding to the former only on Sum4.

On the face of it, this might seem to undermine the value of

CDGP and the usefulness of counterexamples produced by ver-

i�cation. However, the results presented in Table 3 ignore the

actual computational cost of synthesis. Although individual con�g-

urations were given the same limit on the number of evaluations

(100,000), their runtimes reported in Table 4 vary heavily. There are

several causes for this. On one hand, SMT-based formal program

veri�cation used in CDGP incurs signi�cant computational over-

head, being typically more expensive than running a program on

tests (where the latter takes place in both by CDGP and GPR). On

the other hand, the tests generated by GPR are random and thus

less likely to be duplicates of the tests already in Tc , which usually

makes this set grow faster than in CDGP, and make evaluation in

subsequent generations more expensive.

In order to take into account these and other potential factors

a�ecting the computational expenditure, we conduct another ex-

periment, where each con�guration of CDGP and GPR is given the

same time budget equal to the average runtime of successful runs
of all con�gurations from the �rst experiment, i.e. 158 seconds for

Max2, 531s for CountPos2, 953s for Median3, 971s for Max4, and

1639s for IsSeries3. The average runtimes for the remaining bench-

marks were higher and we decided to cap them to 1,800 seconds.

Table 5 presents the success rates for particular con�gurations

in the �xed-time setting. This time, CDGP clearly proves more

e�ective than GPR. Similarly as in Table 3, the non-conservative

variants of CDGP that use Lexicase selection have the lead, though

this time the generational variant is noticeably better.

The tests obtained from counterexamples thus prove more e�ec-

tive as a basis for a �tness function. This result is strengthened by

Table 6, where we present the average size of Tc at the end of runs.

The sizes are typically much smaller for CDGP, often several times.

Yet, in spite of working with such smaller test bases, CDGP is more

likely to synthesize a correct program.
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Table 5: Success rate of particular variants of CDGP in the �xed-time setting.
CDGP non-conservative CDGP conservative GPR

Generational Steady-state Generational Steady-state Generational Steady-state

Tour Lex Tour Lex Tour Lex Tour Lex Tour Lex Tour Lex
CountPos2 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.97 0.83 0.60 0.00 0.00

CountPos3 0.80 1.00 0.63 1.00 0.67 0.97 0.60 0.87 0.13 0.67 0.00 0.00

IsSeries3 0.93 1.00 0.73 1.00 0.90 1.00 0.97 0.97 0.27 0.00 0.03 0.00

IsSorted4 0.97 1.00 0.90 0.97 0.97 1.00 0.97 0.93 0.50 0.03 0.07 0.00

Max2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.03 0.00

Max4 0.83 1.00 0.33 0.63 1.00 1.00 0.97 1.00 0.83 0.90 0.00 0.00

Median3 0.83 1.00 0.70 0.73 0.83 1.00 0.67 0.93 0.77 0.97 0.00 0.00

Range3 0.73 1.00 0.73 0.97 0.63 1.00 0.63 0.83 0.50 0.53 0.07 0.00

Search2 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.60 0.10 0.00 0.00

Search4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sum2 0.97 1.00 1.00 1.00 0.50 0.43 0.13 0.27 0.43 0.10 0.20 0.03

Sum4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sum4 1625.3 4045.1 1183.8 1362.7 52.5 285.9 55.4 70.7 1000.0 1000.0 1000.0 1000.0

Table 6: End-of-run size of the set of tests Tc for particular variants of CDGP in the �xed-time setting.
CDGP non-conservative CDGP conservative GPR

Generational Steady-state Generational Steady-state Generational Steady-state

Tour Lex Tour Lex Tour Lex Tour Lex Tour Lex Tour Lex
CountPos2 60.6 55.9 59.2 48.2 24.9 23.1 24.1 24.7 1018.0 990.8 988.3 986.6

CountPos3 429.6 305.3 443.4 283.3 53.0 56.6 54.5 57.1 1000.1 1041.2 1000.0 999.9

IsSeries3 335.4 262.4 361.7 218.8 40.6 45.9 37.3 44.7 1109.4 1027.2 1001.3 1000.8

IsSorted4 753.9 520.8 647.5 409.1 64.8 75.5 60.7 74.1 1837.9 1000.0 1006.3 1000.0

Max2 36.5 41.4 30.2 28.2 24.6 23.6 23.2 23.3 987.6 988.6 987.9 987.7

Max4 1092.5 674.2 847.5 685.9 63.7 60.9 63.7 72.6 1077.2 1074.5 1000.0 1000.0

Median3 474.1 288.5 371.2 290.3 51.1 54.4 51.2 55.0 1023.1 1086.5 1000.0 999.9

Range3 527.9 277.0 482.3 274.7 39.6 42.9 39.6 41.1 1050.0 1007.3 999.9 999.9

Search2 143.1 108.5 149.7 104.0 29.1 29.9 28.6 29.1 1003.2 999.9 999.9 999.9

Search4 1137.3 805.9 988.3 578.8 85.1 237.3 77.0 78.0 1000.0 1000.0 1000.0 1000.0

Sum2 396.5 286.0 303.0 273.7 34.7 35.2 31.1 31.1 991.8 987.7 990.3 989.0

Sum4 1625.3 4045.1 1183.8 1362.7 52.5 85.9 55.4 70.7 1000.0 1000.0 1000.0 1000.0

6 DISCUSSION
The experimental outcomes corroborate our main hypothesis: the

counterexamples collected from veri�cation in CDGP prove more

useful as tests than the inputs constructed at random in GPR. On

one hand, this was expected – as opposed to counterexamples,

random tests are not derived from the problem speci�cation and

are in this sense knowledge-free. On the other hand, this result is

nontrivial, because counterexamples constructed by an SMT solver

re�ect its sophisticated search tactics, which are reportedly built

on years of expert experience, and as such involve certain search

biases. It is thus not obvious that counterexamples they identify

should be e�ective when used as ‘search drivers’ [31] in a stochastic

synthesis process.

On the technical side, it is interesting to see that SMT-based

veri�cation is e�cient enough to form a part of a �tness function,

called tens of thousands of times within a single evolutionary run.

At least for the range of benchmarks considered here, that is not

prohibitively expensive. SMT solvers support also veri�cation in

other domains, such as Reals, Strings or Lists. There are thus

no fundamental obstacles to adding SMT solvers and spec-based

synthesis to the GP toolbox.

As in other studies [18], Lexicase selection proved helpful, sig-

ni�cantly boosting CDGP’s performance on most tasks, and never

leading to a deteriorated success rate. The likely explanation is that

better exploration of the search space is a�orded by the diversi�ca-

tion of program behavior of this selection method.

7 CONCLUSION AND FUTUREWORK
We have presented CDGP, a method for speci�cation-based pro-

gram synthesis, via a hybrid of Genetic Programming and formal

veri�cation, in which the traditional evaluation phase of Genetic

Programming is augmented using new test cases obtained via coun-

terexamples generated from an SMT solver. The application of veri-

�cation to a pre-existing program means that our formal/stochastic

hybrid may be capable of performing synthesis at much lower

computational cost than via conventional SMT-based methods.

The overall positive conclusion of this work paves the way for

e�ective hybridization of heuristic search methods like GP with

spec-based synthesis. We �nd this possibility promising, given the

limitations of contemporary exact methods of program synthesis

that struggle to scale well with the length of synthesized programs.

In operation, CDGP could be said to resemble the software engi-

neering methodology of test-driven development ([32]), where a soft-

ware developer iteratively constructs tests of gradually increasing

di�culty, aimed at detecting �aws in the current implementation.

This analogy holds also for other counterexample-driven methods

[22, 35], and naturally brings to mind the coevolutionary metaphor,

as posited in related works [27]. Indeed, a natural follow-up of this

study could involve borrowing the developments from coevolution-

ary algorithms, in particular coevolving tests or using measures

like distinctions or informativeness to maintain them.

However, though such extensions are likely to improve success

rates, we do not expect them to bring a qualitative breakthrough.

CDGP in its current form does not scale well on all problems (cf.
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Search4, arity n = 5). Though CDGP involves a solver that ‘under-

stands’ the source code of candidate programs, the way it exploits

that knowledge is far from sophisticated, to say the least. The

search operators, taken verbatim from standard GP, are largely

ignorant about the strengths and weaknesses of a program they

modify, abstract from the nature of tests used to evaluate a program,

and do not distinguish whether a test originated randomly or via

counterexample. It seems thus desirable to make search operators

better-informed about the characteristics of parent programs. The

Lexicase selection we used here is a small step in that direction,

and we �nd applying analogous ideas to search operators the most

promising further direction.
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