
SimultaneousSynthesisofMultipleFunctions
usingGeneticProgrammingwithScaffolding

Iwo Bladek and Krzysztof Krawiec
{ibladek|kkrawiec}@cs.put.poznan.pl

Institute of Computing Science, Poznan University of Technology, Poland

Overview
• Scenario: several functions to be synthe-

sized, potentially dependent on each other
(multisynthesis).

• Sequential and parallel approaches to mul-
tisynthesis.

• A novel application of scaffolding to calls to
other functions being synthesized.

• Computational experiments prove parrallel
multisynthsis more effective.

Scaffolding
A technique devised originally to facilitate evolution of recursive programs [1].

1

IF

=

0x x

∗

f

1x

-

0 1

1 1

2 2

3 6

x f(x)

f(x-1)

x-1

f:
The principle: If the argument of a recursive
call occurs on the list of fitness cases, return
the associated output (rather than recursively
calling the program).

Key observation: Scaffolding can also be used in multisynthesis.

Sequential Synthesis (SEQ)
Functions are synthesized in an order provided by the user. Subsequent
runs add to instruction set all previously synthesized programs (I – the
common instruction set).

f1 I GP

p1
f2 I

p1

f3 I
p1

p2

p1

p2

p3

GP

GP p1 p2

Run 2:

Run 1:

Run 3:

Parallel Synthesis (PAR)
Functions are synthesized simultaneously. Each function may call other
functions, but cyclical calls are not allowed. GP is expected to discover
potential dependencies between the functions being synthesized.

f1

f2

f3 I

I

I

GP

p3p2

f2
f3

f1
f3

f1
f2

p1

p2

p3p2

Benchmarks and Program Representation
• Instruction set: a subset of the Scala programming language.

• Benchmarks: various generic meth-
ods of the List class. Each benchmark
has three functions to be synthesized:

– one dependent function,

– two helper functions.

Benchmark Dependent function Helper functions
last last(list:List[T]):T at,size
patch patch(list:List[T],d:Int,p:List[T],u:Int):List[T] drop,take
slice slice(list:List[T],d:Int,u:Int):List[T] drop,take
splitAt splitAt(list:List[T],i:Int):(List[T],List[T]) drop,take

• Program representation: purely functional; only
function calls, immutable values and constants.

• Solution: a triple of programs.

Exemplary synthesized solution:
splitAt: tuple(take(list, i), drop(list, i))

drop: slice(list, n, *(7, 4))

take: takeRight(reverse(takeRight(reverse(list), n)), n)

Configuration
• Population size: 500
• Evaluation budget: 150000
• Mutation (0.5) and crossover (0.5)
• Runs per variant: 25

Tested variants:
• ∗opt: optimal ordering of functions.
• ∗exp: randomized ordering of functions.
• ∗nsga: NSGA2 selection with 3 criteria: num-

bers of tests passed for each target function.
• ∗s: scaffolding with an oracle used for calls

to other functions.

Results
• The table: average numbers

of synthesized functions in
best-of-run programs.

• Conclusions: parallel syn-
thesis gave on average better
results on the number of cor-
rectly synthesized functions
than SEQexp.

• The presence of multiple con-
tracts (constraints) changes
the fitness landscape.

Method last patch slice splitAt Average
SEQopt 2.23 2.13 1.36 2.69 2.10
SEQexp 1.11 1.73 0.97 1.56 1.34
PAR 2.00 1.50 0.72 1.80 1.51
PARs 1.90 1.47 0.59 1.94 1.48
PARnsga 2.03 1.47 0.53 2.17 1.55
PARs

nsga 2.18 1.40 1.05 1.88 1.63

Acknowledgments
Work supported by grant 2014/15/B/ST6/
05205 funded by the National Science Centre,
Poland.

References
[1] A. Moraglio, F. Otero, C. Johnson, S. Thompson, and A. Freitas. Evolving recursive programs

using non-recursive scaffolding. In Proceedings of the 2012 IEEE Congress on Evolutionary Compu-
tation, pages 2242–2249, Brisbane, Australia, 10-15 June 2012.


