Evolutionary Program Sketching

Iwo Btadek, Krzysztof Krawiec

Poznan University of Technology

19.04, Evostar 2017

|. Btadek, K. Krawiec Evolutionary Program Sketching

Outline of the Presentation

0 Introduction

|. Btadek, K. Krawiec Evolutionary Program Sketching

Software Engineering point of view

In SE programs are expected to be:
@ correct (no bugs).
@ easy to understand for the programmer.

@ as efficient as possible without breaking the above constraints. :)

|. Btadek, K. Krawiec Evolutionary Program Sketching

Software Engineering point of view

In SE programs are expected to be:
@ correct (no bugs).
@ easy to understand for the programmer.

@ as efficient as possible without breaking the above constraints. :)

Q: How close at the moment is GP to meeting those objectives in
practice?

|. Btadek, K. Krawiec Evolutionary Program Sketching

Software Engineering point of view

In SE programs are expected to be:
@ correct (no bugs).
@ easy to understand for the programmer.

@ as efficient as possible without breaking the above constraints. :)

Q: How close at the moment is GP to meeting those objectives in
practice?
A: Not very close.

@ Correctness outside of test cases not specified (induction).

@ Results hard to understand.

© Resulting programs may be efficient (provided this is mandated by
fitness function).

|. Btadek, K. Krawiec Evolutionary Program Sketching 3/27

Arbitrary constants

Problem definition

@ Synthesizing programs containing constants is problematic. For
example, the target optimal program may be:

f(Xl,X27X3) = 100017x7 + 128.2x, — 0.12782x3 + 190

@ Our hypothesis: Constants may be found by the dedicated solver,
thus increasing efficiency of GP, and potentially making programs
easier to understand (constants may be derived directly).

|. Btadek, K. Krawiec Evolutionary Program Sketching

Sketch* — a partial program, in which certain parts are unspecified.
Content of those parts will be found by an SMT solver. In general, holes
may stand for any subprogram.

Example:

‘constl‘ ’ X1 ‘ ‘constz‘ ’ X2

* (Solar-Lezama et al., 2006, Combinatorial Sketching for Finite Programs)

|. Btadek, K. Krawiec Evolutionary Program Sketching 5 /27

Evolutionary Program Sketching

Population of programs
Mutation or Selection &I
Crossover % .

% [H]
i DQE
EPS-L EPS-B

Fitness and substitution H « x

SMT synthesis

|. Btadek, K. Krawiec Evolutionary Program Sketching

Outline of the Presentation

@ Satisfiability Modulo Theories (SMT)

|. Btadek, K. Krawiec Evolutionary Program Sketching

Satisfiability Problem (SAT)

Question: Is the given logical formula satisfiable?

Examples:

—a VvV b
SAT: a = false, b = true

aAN-aANb
UNSAT

|. Btadek, K. Krawiec Evolutionary Program Sketching

Satisfiability Modulo Theories (SMT)

Question: Is the given logical formula satisfiable under the theory T,
which defines semantics of a certain set of functions?

Examples:

QF_LIA (Quantifier-Free Linear Integer Arithmetic)
X, ¥,z €7

a € {false, true}

(10-x=20) A a
SAT: x =2, a = true

(x<y) AN(y<z) A (z<x)
UNSAT

(x<y) A (y<z) A (z<x)
SAT: x=0, y=0, z=0

|. Btadek, K. Krawiec Evolutionary Program Sketching

Satisfiability Modulo Theories (SMT)

Question: Is the given logical formula satisfiable under the theory T,
which defines semantics of a certain set of functions?

Examples:
NIA (Non-Linear Integer Arithmetic)
X,y €Z

x24+1<2-x
SAT: x =1

Vay (x+y)? > x%+y?
UNSAT

|. Btadek, K. Krawiec Evolutionary Program Sketching

SMT Solvers

SMT Solver — any software that can check satisfiability of formulas
modulo the given theory. J

Notable SMT solvers:
e CVC4 (open source)
o MATHSAT (free for non-commercial use)

@ 73 (open source, project of Microsoft Research)

SMT-LIB language — language created to standardize interaction with
different SMT solvers.

|. Btadek, K. Krawiec Evolutionary Program Sketching 10 / 27

Outline of the Presentation

© SMT-Based Synthesis

|. Btadek, K. Krawiec Evolutionary Program Sketching

e pre(in) — precondition
Behavior of the program is specified only for inputs that satisfy this
formula.
eg. inn>0 A inp>0

e program(in, out) — encoding of the program
Ensures that out must have the same values as it would have if the
original program was executed.

e.g. outy =iny +iny — (in2 — in2)

@ post(in, out) — postcondition
Describes the expected behavior of the program.

e.g. out; >inp+inp A outy <2-(ing +iny)

|. Btadek, K. Krawiec Evolutionary Program Sketching 12 /27

Program Synthesis Formula

Program synthesis formula:

svarsVinout Pre(in) A program(svars, in, out) == post(in, out)

where:

@ svars — Structural variables
Variables controling the shape of the synthesized program.

|. Btadek, K. Krawiec Evolutionary Program Sketching 13 /27

An Example of SMT Synthesis

Task: Compute a maximum of two numbers x and y.

General structure of the solution (sketch):

if (H1):
res = H2
else:
res = H3

H1, H2, H3 — holes to be filled by the synthesizer.

|. Btadek, K. Krawiec

Evolutionary Program Sketching

An Example of SMT Synthesis

Program’s encoding in the SMT-LIB language:
(assert
(forall ((x Int)(y Int)(res Int)(|lres’’| Int)(|lres’| Int))
(=>
; PROGRAM:
(and
(=> (H1StartO x y) ;TRUE IF BRANCH
(and (= res (H2StartO x y)) (= |res’’| res)))
(=> (not (H1StartO x y)) ;ELSE IF BRANCH
(and (= |res’| (H3StartO x y)) (= |res’’| |res’|)))
)
; POSTCONDITION:
(and (>= |res’’| x) (>= |res’’| y)
(or (= lres’’| x) (= lres’’| y)))

|. Btadek, K. Krawiec Evolutionary Program Sketching

An Example of SMT Synthesis

Encoding of hole’s grammar (for H2):

(define-fun H2Start0 ((x Int) (y Int)) Int
(ite (= H2Start0_r0 0)

(ite (= H2Start0_r0 1)
X
(ite (= H2Start0_r0 2)
y
(ite (= H2Start0_r0 3)
(+ x y)
(ite (= H2Start0_r0 4)
(- xy)
)

Structural variables:
H2Start0_r0,

|. Btadek, K. Krawiec Evolutionary Program Sketching

An Example of SMT Synthesis

Model returned by SMT solver:

(model
(define-fun Hi1StartO_BoolO () Bool false)
(define-fun HiStartO0_rO () Int 2)
(define-fun H1StartO_Int0 () Int (- 2))
(define-fun O Int 2)
(define-fun H2StartO_r0 () Int 1)

Final synthesized code, created from model:

if (o= x y):
res = X
else:
res =y

|. Btadek, K. Krawiec Evolutionary Program Sketching

Outline of the Presentation

@ Evolutionary Program Sketching

|. Btadek, K. Krawiec Evolutionary Program Sketching

EPS

EPS-L — “Lamarckian” EPS

After evaluation holes are permanently filled with content found by the
solver. New holes may be introduced only via mutations.

Population of programs

Mutation or Selection % ...
Crossover <~ J LH
]

SMT synthesis

Fitness and substitution H « x

|. Btadek, K. Krawiec Evolutionary Program Sketching 19 / 27

EPS

EPS-B — “Baldwinian” EPS

After evaluation holes remain in a program. Content found by the solver is
discarded.

Population of programs

Mutation or Selection

Crossover

SMT synthesis

Fitness and substitution H « x

|. Btadek, K. Krawiec

Evolutionary Program Sketching

EPS

Types of holes

C — Constant holes
Can be filled with an arbitrary integer constant.

V — Variable holes
Can be filled with one of the input variables.

CV - Constant & Variable holes
Can be filled with either an integer constant or an input
variable.

|. Btadek, K. Krawiec Evolutionary Program Sketching

Experiments

Benchmarks

Benchmark #vars Formula F#tests
Keijzer12 2 Xt — 3 +x5/2 — x 49
Kozal 1 x4+ 53+ x% 4+ x 11
Kozal-p 3x* —2x3 +6x2 +3x — 4
Koza1-2D Xt + 3 + x4+ xo 49
Kozal-p-2D 3x¢ — 2x3 + 6x2 + 3x — 4

Logic: NIA (Non-linear Integer Arithmetic)

|. Btadek, K. Krawiec Evolutionary Program Sketching

Experiments

Evolution parameters

Parameter Value
Number of runs 100
Maximum number of generations 100
Population size 250
Maximum height of initial programs 4
Maximum height of subprograms inserted by mutation 4
Constant terminals drawn from interval [0, 5]
Probability of mutation 0.5
Probability of crossover 0.5
Tournament size 7
Solver timeout [ms] 1500

|. Btadek, K. Krawiec Evolutionary Program Sketching

Number of optimal solutions found (/100)

GP EPS-L EPS-B
GP GPt GPs000 c v cv c v cv
Keijzer12 0 0 5 0 0 1 39 1 0
Kozal 19 68 96 33 - 32 100 - 100
Kozal-p 0 0 0 5 - 3 100 - 100
Kozal-2D 1 12 20 2 0 11 80 21 23
Kozal-p-2D 0 0 0 0 0 1 75 0 0
Average runtime [s]
GP EPS-L EPS-B
GP GPr GPs000 c % cv c v cv
Keijzeri2 15 11331 493 772 488 1579 15440 21173 28354
Kozal 5 201 46 700 - 801 652 - 696
Kozal-p 5 963 344 892 - 972 978 - 982
Kozal-2D 16 7636 432 793 479 1791 9077 16281 23034
Kozal-p-2D 15 9206 515 750 511 1726 11986 12391 27875
|. Btadek, K. Krawiec Evolutionary Program Sketching 24 /27

Ratio of UNKNOWN solver response

EPS-L EPS-B
c % cv c v cv
Keijzer12 0.058 0.004 0.104 0.229 0.106 0.297
Kozal 0.080 - 0.058 0.127 - 0.120
Kozal-p 0.078 0.060 0.113 0.112

Kozal-2D 0.065 0.006 0.118 0.276 0.117 | 0.372
Kozal-p-2D 0.062 0.004 0.112 0.301 0.051 | 0.407

Source code:

O https://github.com/iwob/EPS

|. Btadek, K. Krawiec Evolutionary Program Sketching

https://github.com/iwob/EPS

EPS:
@ Evolution responsible for program structure, SMT solver cares about
the details (fills in the gaps).
@ Improves over standard GP.
© Works particularly well for constants.

Part of our agenda of combining heuristics with SMT solvers for program

synthesis.

Evolutionary Program Sketching

|. Btadek, K. Krawiec

Final words

Thank you for your attention!

Our next paper:
GECCO 2017, “Counterexample-Driven Genetic Programming”

(Krawiec, Btadek, Swan)

|. Btadek, K. Krawiec Evolutionary Program Sketching

	Introduction
	Satisfiability Modulo Theories (SMT)
	SMT-Based Synthesis
	Evolutionary Program Sketching

