
Evolutionary Program Sketching

Iwo Błądek and Krzysztof Krawiec

Institute of Computing Science, Poznan University of Technology
Piotrowo 2, 60-965 Poznań, Poland

ibladek@cs.put.poznan.pl, krawiec@cs.put.poznan.pl

Abstract. Program synthesis can be posed as a satisfiability problem
and approached with generic SAT solvers. Only short programs can be
however synthesized in this way. Program sketching by Solar-Lezama
assumes that a human provides a partial program (sketch), and that
synthesis takes place only within the uncompleted parts of that pro-
gram. This allows synthesizing programs that are overall longer, while
maintaining manageable computational effort. In this paper, we pro-
pose Evolutionary Program Sketching (EPS), in which the role of sketch
provider is handed over to genetic programming (GP). A GP algorithm
evolves a population of partial programs, which are being completed by
a solver while evaluated. We consider several variants of EPS, which vary
in program terminals used for completion (constants, variables, or both)
and in the way the completion outcomes are propagated to future gen-
erations. When applied to a range of benchmarks, EPS outperforms the
conventional GP, also when the latter is given similar time budget.
Keywords: program synthesis, satisfiability modulo theory, program
sketching, genetic programming.

1 Introduction

Program synthesis (PS), as many other search tasks, can be posed as a satisfiabil-
ity problem: given a contract, i.e., a logical predicate that describes the desired
input-output behavior, and an encoding of program’s structure parametrized
with Boolean variables, determine whether a valuation of those variables exists
that makes the program satisfy the contract. To obtain this valuation, called
in propositional logic a model, the synthesis formula is passed to a SAT solver,
which produces a feasible variable assignment, and thus a program that is guar-
anteed to meet the contract, or otherwise states that the sought program does
not exist. In practice, the solver is equipped with an additional abstraction layer,
a theory that enables reasoning in terms of, for instance, integer arithmetic. This
leads to the concept of satisfiability modulo theories (SMT) used in a range of
past works on program synthesis [5,6,18].

SMT solvers implement exact algorithms supported by heuristics which are
guaranteed to find the sought program in the prescribed search space (unless
they time out). Nevertheless, the above approach to PS suffers from poor scal-
ability: the assumed maximum length of a synthesized program determines the
number of involved variables, and search space grows exponentially with that

mailto:ibladek@cs.put.poznan.pl
mailto:krawiec@cs.put.poznan.pl

number. Additionally, solving an SMT problem involves solving a SAT prob-
lem as a subtask, which is known to be NP-complete. Even with contemporary
sophisticated SMT solvers, only short programs can be synthesized with this
approach in a reasonable time.

To address this problem, Solar-Lezama proposed program sketching [16].
Therein, one assumes that a partial program (sketch) is provided, with one or
more holes marking the locations of missing code pieces. The synthesis takes
place only in the holes, while the sketch remains intact. In this way, the total
length of the program (sketch length plus the length of the synthesized code
pieces) is increased, while the task remains manageable for the solver.

In the original sketching, it is assumed that a human provides the sketch.
Indeed, there are plausible scenarios in which a programmer may come up with
an overall program structure, yet fails to implement all the details. This endows
sketching with certain interactive flavor, which is often desirable in software
development. On the other hand, human-provided sketch can be suboptimal for
completion, or in an extreme case incorrect, i.e., such that cannot be completed
to satisfy the contract.

Evolutionary Program Sketching (EPS) we propose in this paper substitutes
the human sketcher with an evolutionary process. A GP algorithm evolves partial
programs with holes. When evaluating a program, the solver attempts to com-
plete the holes with code pieces; in this preliminary study, we fill the holes with
constants and input variables. Fitness measures the extent to which the holes
can be completed to meet the contract. We consider several variants of EPS,
which vary in the way they handle code completions, in particular in whether
the holes persist after evaluation. Experimental verification proves EPS feasible
and points to interesting potential extensions of this approach.

2 Program Sketching

Presentation of program sketching requires brief introduction to SMT-based pro-
gram synthesis. The synthesis task is given by a contract, typically a pair of
logical formulas: a precondition Pre – the constraint imposed on program in-
put, and a postcondition Post – a logical clause that should hold upon program
completion. The content (code) of a candidate program is controlled by a vector
of variables b. For instance, when synthesizing sequential programs n instruc-
tions long, with each instruction taken from an instruction set of cardinality k,
one would assume b ∈ [1, k]n, i.e., that each program corresponds one-to-one
to a vector of n variables controlling the choices of instructions on particular
positions.

Let pb denote a program determined by a specific vector b, and let pb(in)
denote the output produced by pb when applied to input in. Solving a synthesis
task (Pre, Post) is equivalent to proving that

∃b∀inPre(in) =⇒ Post(in, pb(in)), (1)

where Pre(in) is the precondition valuated for the input in, and Post(in, pb(in))
is the postcondition valuated for the input in and the output produced by pb
for in.

For illustration, consider synthesizing a program that calculates the maxi-
mum of two integers (x, y). For this synthesis task, the contract is defined as
follows:

Pre((x, y)) ⇐⇒ (x, y) ∈ Z2

Post((x, y), o) ⇐⇒ o ∈ Z ∧ o ≥ x ∧ o ≥ y ∧ (o = x ∨ o = y) (2)

This is an example of a complete specification, which defines the desired behavior
of the sought program for all possible inputs, the number of which happens
to be infinite here. If programs are expressed in terms of the theory known
to the solver, the solver can prove (1), and so determine b and the sought
program pb. The solver achieves this without actually running any program,
because the properties of the output can be logically, modulo the theory, inferred
from the properties of the input and the properties of program code. For the
above problem to be solved, it would be sufficient to provide the solver with the
Linear Integer Arithmetic (LIA) theory [3]. The resulting synthesized program
pb is guaranteed to adhere to the contract or, in other words, it is correct by
construction.

This approach to synthesis, as elegant as it seems, is nevertheless feasible
only when the sought program is short. As the above example of sequential pro-
grams shows, the cardinality of the search space grows exponentially with pro-
gram length n, and even the modern SMT solvers, equipped with sophisticated
heuristics for prioritizing search, become quickly computationally inefficient.

Program sketching [16,17] extends the effective program length while keeping
the computational expense of synthesis at bay. This is achieved by assuming that
the sought program is to some extent fixed, and the fixed part forms a sketch,
a template that should be completed by a solver. For the max(x, y) synthesis
problem mentioned above, a template could have the following form:

if (h1) then h2 else h3, (3)

where h1, h2 and h3 are holes, i.e. program parts not specified by the sketch.
Crucially, only the instructions in the holes can be varied by manipulating the
control variables in b. The number and domains of these control variables depend
on assumed structure for the missing code. This structure is usually defined by a
grammar, and variables in b determine the traversal of production rules of that
grammar.

Example 1. Consider the max(x, y) problem presented above. The user starts by
constructing a sketch of the solution as in (3). She assumes that h1 should be
filled with a Boolean expression of the form var op var, where op is an arithmetic
operator ({>, =, <}) and vars are either x or y, and that both h2 and h3 should
be also filled with var. All such hole completions can be enumerated (encoded)
with five variables: four binary variables that control whether x or y should be

be filled in for h2, h3, and for both sides of op, and one ternary variable that
controls the choice of op. These five variables together determine the search space
for sketching (of size 24 · 3 = 48) and form the vector b that is controlled by the
solver. ut

We present here only the aspects that are relevant for this paper; the original
program sketching involves more mechanisms, among them maintaining a set of
test cases and augmenting them with counterexamples produced by the solver.
Overall, sketching has multiple merits: it not only increases the effective program
length, but delegates some control on the synthesis process to a human. Allowing
a user to express her intent in this way is often desirable in the practice of
software development. Nevertheless, there are limitations too. A human might
find it difficult to come up with a sketch featuring a number of holes small enough
for a solver to find a solution in an acceptable time. The provided sketch can be
suboptimal in not forming the most elegant (or the shortest) solution to a given
problem, or not enabling the solver to find the solution fast enough. In the worst
scenario, a human may propose a wrong sketch, which cannot be completed so
as to satisfy the contract. Evolutionary Program Sketching detailed in the next
section addresses some of these issues.

3 Evolutionary Program Sketching

EPS evolves partial programs (sketches) and evaluates them based on the substi-
tution for the missing parts determined by an SMT solver. The workflow of the
method is presented in Fig. 1, and in the following we detail its key components.

3.1 Problem specification

As the conventional GP, EPS assumes that a synthesis problem is given by a set
of instructions I of which the programs are to be built, and a set of examples T
(tests) on which the programs are evaluated. Each example is a pair (in, out) of
an input in and the corresponding desired output out. Such specification is par-
tial: the universal quantifier in (2) is bound to T (∀(in,out)∈T), the precondition
is always true, and the postcondition simply checks whether pb(in) = out. This
stands in contrast to the complete formal specification of the max(x, y) example
in the previous section, and places GP and EPS in the realm of inductive ap-
proaches to PS, where the behavior of the synthesized program beyond the set
of examples cannot be in general predicted.

3.2 Instruction set

As in sketching (Section 2), we allow for incomplete (partial) programs. To this
aim, we extend the instruction set I with a set of terminal instructions H con-
taining a symbol for each kind of hole allowed in a program. The kind of a

Population of programs

SMT synthesis

H

H

HH

H

Fitness and substitution H ← x

Mutation or
Crossover

EPS-L
x

EPS-B
H

Selection

Fig. 1. The flow of candidate programs in EPS. H represents a hole, and x the content
assigned to the hole. The EPS-L and EPS-B variants are described in Section 3.4.

hole determines the content it may be filled with, e.g. an integer or Boolean
expression, or linear or nonlinear arithmetic expression. In conclusion, the GP
process works with the set of instructions I ∪ H, where each h ∈ H is treated
like other terminal symbols (i.e., it is subject to search operators, and in the case
of strongly-typed GP it has an assigned type).

3.3 Fitness function

Partial programs are incomplete and thus cannot be evaluated in the common
GP fashion, i.e. by executing them on examples in T . This is, however, not a
problem if evaluation is to be based on a query to an SMT solver which can
substitute the missing code pieces, as in the original sketching. But the outcome
of the completion process described in Section 2 is only twofold: either a perfect
completion (and thus a correct program) is found and the search terminates,
or there is no feasible completion1. There is no obvious way of eliciting a fine-
grained fitness from this binary outcome.

To address this issue, we reformulate the synthesis problem, originally posed
as a search problem in (1), as an optimization problem, asking the solver to
determine the hole completion that maximizes the number of tests passed by
the evaluated program. The number of passed tests becomes the (maximized)
fitness of the program:

f(p) = max
b
|(in, out) ∈ T : Pre(in) =⇒ Post(in, pb(in))|. (4)

Optimization is beyond the original formulation of SMT satisfiability problem,
and thus SMT solvers cannot be expected to handle it. However, in the case
of f(p), a bisection algorithm may be used, because we have a discrete and
1 Technically, the solver may also time-out, which we interpret as lack of feasible
completion too.

bounded set of possible fitness values. By halving intervals and adding appropri-
ate constraints, it is possible to determine the largest f(p) for which the synthesis
formula is still satisfied, using only log2 |T | solver queries. Alternatively, there
are solvers with a built-in capability for optimization, like Z3 [13] we use in Sec-
tion 5. Our implementation is based on the latter, because it proved to be more
efficient.

3.4 Exploiting the feedback from hole completion

The optimization process that calculates fitness in (4), apart from the number
of passed tests, produces also the optimal completion of holes (the model). Let
b∗ be the associated optimal assignment of variables found in (4). In the default
scenario, we discard it. However, one may argue that the assignment defined
by b∗ contains useful knowledge that can be leveraged. Thus, we consider an
alternative variant in which the completion defined by b∗ is incorporated in the
evaluated program, and the modified program replaces the original candidate
solution in the population (in other words, f has a side effect consisting in p
being modified).

In both variants, the process of hole completion can be seen as a local search,
or in evolutionary terms as an adaptation that takes place during individual’s
lifetime. It seems thus justified to liken the former variant to Baldwinian evo-
lution, in which such adaptations impact individual’s fitness, but do not get
explicitly inherited, and the latter to Lamarckian evolution, in which the ac-
quired adaptations do get inherited directly. We will refer to these variants in
this way and use the respective acronyms EPS-B and EPS-L.

4 Related work

The work most directly related to EPS is obviously program sketching [16,17],
presented in Section 2. There are, however, other studies that involve the two
distinguishing features of EPS:

– its formal (and unusual in GP) approach to program evaluation,
– evolution of partial programs.

We group them according to these characteristics.
Concerning the use of formal techniques in GP, Johnson [7] was probably

the first to use model checking for calculating fitness in GP. Model checking
is a specific approach to formal verification of programs and systems, which
essentially consists in determining whether a given program p meets the contract
(Pre, Post):

∀inPre(in) =⇒ Post(in, p(in)). (5)

Verification applies to an existing program and is thus computationally less
demanding than synthesis (1). In [7], Johnson used temporal logic to express
formal specifications that describe the desired time-wise behavior of finite state

machines. A fairly conventional GP algorithm was employed to evolve candidate
state machines, with fitness defined as the number of fulfilled constituent clauses
in the contract. The work demonstrated successful application of this approach
to synthesis of control programs for a vending machine.

Temporal logic and GP are also the underlying mechanisms in other related
work by Katz and Peled [8]. Similarly to [7] – and in contrast to this study –
the authors evolve complete programs. When evaluating them, they distinguish
four levels of program correctness: first, in which no scenario of program execu-
tion can satisfy the contract; second, in which some program executions satisfy
the contract; third, in which all terminating executions meet the contract, and
the highest level, in which all program executions meet the contract. Given this
distinction, the fitness measure counts the satisfied postconditions. The authors
apply the methods to examples from [19] and to synthesis of mutual exclu-
sion algorithms and correction of erroneous programs. To verify programs, they
consider both model checking and an SMT solver. Their use of SMT solver is,
however, different than in this paper. In EPS, SMT solver is used to synthesize
the content of a hole, while in [8] it is used solely for verification and producing
counterexamples.

Concerning evolving and completing partial programs, the latter EPS
feature identified at the beginning of this section, the related work is very limited.
Though partial programs are occasionally considered in GP (cf., e.g., program
contexts in semantic GP [12]), no GP approach known to us explicitly maintains
them in population. However, program completion in EPS is limited to single-
node terminals, and as such can be likened to optimizing constants in programs,
which attracted significant attention in GP research. Among past contributions,
Sarafopoulos [15] hybridized GP with evolutionary strategies (ES), where the
ES component was responsible solely for fine-tuning the constants in candidate
programs. Azad and Ryan [1] extended GP with a simple local search that tunes
the instructions of individuals (including the internal nodes of program trees),
and implemented a caching mechanism to reduce the computational overhead of
tuning. When evaluated on a range of benchmarks, their approach synthesizes
fitter and smaller programs than standard GP. The cited work features compre-
hensive review of analogous techniques, which we redirect an interested reader
to.

In a broader perspective, EPS capability to improve candidate programs per-
tains also to memetic approaches, researched in numerous studies in the past.
For instance, semantic backpropagation [14] and memetic semantic genetic pro-
gramming [4] offer search operators that improve programs locally, i.e. at the
level of particular instructions/subprograms.

5 Experimental evaluation

Objectives. We compare the Baldwinian (EPS-B) and Lamarckian (EPS-L)
variants of EPS on a range of problems, in a few configurations detailed in the
following, within the conventional tree-based GP. Our goal is to find out which of

Fig. 2. The NIA grammar defining the set of considered programs. c stands for an
integer constant, vi for the ith input variable, and hj for the jth hole allowed in the
program. ite stands for if-then-else, the conventional conditional statement.

I ::= I + I | I - I | I * I | I / I | ite(B,I,I) | c
| v1 | v2 | ... | vk

| h1 | h2 | ... | hl

B ::= I < I | I <= I | I = I | B = B | I >= I | I > I

EPS variants and configurations fair the best and how its performance compares
to that of standard GP.

Domain. As follows from Section 2, applicability of EPS is conditioned on a
theory that supports the reasoning conducted by the SMT solver. Past research
led to elaboration of several popular theories and associated logics, now sys-
tematized by the SMT-LIB standard [2,3]. The theories vary in the data types
they support (e.g., Booleans, bit vectors, integers, floating point, reals) and in
logics that constrain the form of expressions/formulas (e.g., linear, nonlinear)2.
Wider logics offer more expressibility but typically require higher computational
effort from the solver. In this preliminary study, we settle on a mid-way compro-
mise in that trade-off, the Nonlinear Integer Arithmetic (NIA) logic. This choice
determines:

1. The types that can be used in expressions: integer (I) and Boolean (B),
2. The set of expressions that can be passed to the solver, which, by the design

of EPS, becomes also the instruction set to be used by the evolutionary
process.

A solver equipped with NIA can prove theorems that obey the grammar shown
in Fig. 2. For the sake of synthesizing programs that are k-ary integer functions
(Ik → I), we assume that the starting symbol of the grammar is I, even though
the top-level type of the predicates passed to the solver is naturally B, as follows
from the synthesis formula (1). The grammar diverges from the conventional
NIA in two ways:

– It features additional terminal symbols hi, which implement the holes to be
substituted by the solver in EPS.

– It does not contain some of the less common nonterminals, e.g. mod and abs.

Configurations. In sketching as introduced by Solar-Lezama [16], holes can be
filled by arbitrary code pieces (of the compatible type). However, the larger the
code pieces one considers to substitute for holes, the larger the search space and
the more expensive synthesis becomes. In this study, we consider the simplest
approach, i.e., we allow the holes to be substituted only with single-instruction
code pieces, more precisely the integer-valued terminals available in the NIA
2 http://smtlib.cs.uiowa.edu/logics.shtml

http://smtlib.cs.uiowa.edu/logics.shtml

Table 1. Compared configurations.

Configuration Terminals that can be substituted for holes
Constants c Input variables vi

GP
EPSc

EPSv

EPScv

Table 2. Program synthesis benchmarks.

Benchmark #vars. Formula Tests #tests
Keijzer12 2 x4

1 − x3
1 + x2

2/2− x2 x1, x2 ∈ {−3, . . . , 0, . . . , 3} 49
Koza1 1 x4 + x3 + x2 + x

x ∈ {−5,−4, . . . , 0, . . . , 4, 5} 11
Koza1-p 3x4 − 2x3 + 6x2 + 3x− 4
Koza1-2D 2 x4

1 + x3
2 + x2

1 + x2
x1, x2 ∈ {−3, . . . , 0, . . . , 3} 49

Koza1-p-2D 3x4
1 − 2x3

2 + 6x2
1 + 3x2 − 4

grammar. Nevertheless, even this simple design choice leads to several configu-
rations summarized in Table 1, which vary in the terminals that are substituted
for holes: constants only (EPSc), variables only (EPSv), or both (EPScv). These
three configurations together with two EPS variants (EPS-B, EPS-L) lead to six
setups. Naturally, standard GP cannot handle holes, so the hole terminals are
removed from the grammar for this method.

Benchmarks. NIA allows us to use benchmarks that are similar in spirit to
symbolic regression, albeit dwell in the integer domain. We employ the bench-
marks presented in Table 2; these are based on their real-valued counterparts
from the GP benchmarks suite [11], but by necessity use integer inputs, typically
from a wider interval than in the original benchmark.

Search operators. The presence of two types (I and B) implies that the GP
part of EPS implementation has to be typed. We impose the correct typing by
means of a grammar in Fig. 2 and constrain the actions of initialization, subtree
mutation and tree-swapping crossover operators, so that they guarantee produc-
ing programs that follow the grammar. When generating a random program for
the initial population, we traverse the grammar rules starting from the I sym-
bol, reducing the probability of nonterminals when closing to the allowable tree
height (Table 3); if the resulting program exceeds that limit, we scrap it and ini-
tialize a new program. For subprograms to be inserted by mutation we proceed
similarly, however starting either from the I or from the B symbol, depending on
the type of the instruction being replaced. The crossover operator picks a ran-
dom location from the first parent, draws a random location of the same type
in the second parent, and swaps the subtrees rooted at those locations. Should
it fail to find a type-compatible location in the second parent, it discards both
parents and starts anew with another selected pair of parents (this may happen

Table 3. Parameters of the evolutionary algorithm.

Parameter Value
Population size 250
Maximum height of initial programs 4
Maximum height of subprograms inserted by mutation 4
Constant terminals drawn from interval [0, 5]
Maximum number of generations 100
Probability of mutation 0.5
Probability of crossover 0.5
Tournament size 7

only for the B type, as at least one instruction of type I is guaranteed to exist
in every program).

Solver budget. In EPS, the solver is given the computational budget of 1.5
seconds for a single query. If it fails to find an optimal assignment in this time, the
evaluated program receives the worst possible fitness of zero. Handling timeouts
is essential, because it is very hard in general to estimate the upper bound on
solver’s computation time.

Implementation. EPS has been implemented in authors’ PySV (Python Syn-
thesis and Verification) framework (responsible for constructing queries to Z3
solver) and SMTGP Scala framework (responsible for running evolution with
holes). Sources of both of these frameworks are accessible on Github3. The latter
framework is based on two Scala libraries: Functional Evolutionary Algorithms
(FUEL) and Synthesis with Metaheuristics (SWIM), both originating in [9] and
also available on GitHub4. The SMTGP framework implements the conventional
GP workflow, with the exception of fitness function that passes the individuals
with holes to the PySV framework, which in turn handles the call to the SMT
solver. The communication with the solver is realized using the SMT-LIB stan-
dard [2]. We employ the Z3 SMT solver by Microsoft [13], one of the most efficient
and powerful non-commercial solvers.

Results. Table 4 presents the success rate of particular configurations on indi-
vidual benchmarks, and Table 5 and Fig. 3 the average fitness of the best-of-run
programs. Applying the configurations that substitute holes with variables only
(EPS-Lv and EPS-Bv) to univariate benchmarks is pointless, so such cases are
excluded from presentation. The figure reveals clear, repetitive pattern of rel-
ative performances of individual configurations. EPS-Bc fares the best: it tops
the other configurations in terms of success rate, and reliably produces an op-
timal program in each run for Koza1 and Koza1-p. The figure suggests that
EPS-Lcv and EPS-Lc are the two competing runners-up; however, Table 4 leaves
no doubts that they are much less likely to synthesize a correct program.

3 https://github.com/iwob
4 https://github.com/kkrawiec

https://github.com/iwob
https://github.com/kkrawiec

Table 4. The number of optimal solutions found (maximum: 100).

GP EP S
GP GPT GP5000 Lc Lv Lcv Bc Bv Bcv

Keijzer12 0 0 5 0 0 1 39 1 0
Koza1 19 68 96 33 - 32 100 - 100
Koza1-p 0 0 0 5 - 3 100 - 100
Koza1-2D 1 12 20 2 0 11 80 21 23
Koza1-p-2D 0 0 0 0 0 1 75 0 0

Table 5. Average end-of-run fitness.

GP EP S
GP GPT GP5000 Lc Lv Lcv Bc Bv Bcv

Keijzer12 15.85 23.02 25.06 23.92 18.05 27.77 39.05 20.45 17.47
Koza1 5.89 9.74 10.87 9.93 - 9.83 11.00 - 11.00
Koza1-p 2.59 4.45 3.98 9.05 - 8.78 11.00 - 11.00
Koza1-2D 16.54 29.73 33.18 23.39 19.47 31.29 45.42 27.36 23.70
Koza1-p-2D 9.29 17.18 14.60 22.60 10.66 29.47 46.23 12.56 15.41

Overall, the configurations that complete the holes with variables only (EPS-
Lv and EPS-Bv) fare the worst. This suggests that substituting with constants,
available in the other configurations of EPS, is essential. This capability is partic-
ularly important for the benchmarks considered here, which feature at most two
variables, and manipulating them does not leave much space for improvement.

Table 6 presents the average runtimes of configurations on particular bench-
marks, which reveals that engaging the SMT solver comes at a price: EPS runs
take up to four orders of magnitude longer than standard GP. One may question
thus whether comparing EPS with short-timed GP is entirely fair. To address this
issue, we devise another configuration, GPT , in which genetic programming uses
the same parameters as previously (Table 3), except for the maximum number
of generations, which is replaced by the time limit, equal to the average runtime
of the EPS configurations on a given benchmark. For instance for the Keijzer12
benchmark, GPT is allowed to run for 11,300 seconds.

By definition, GPT should not be worse than GP, which is confirmed in Fig. 3,
where the non-overlapping inter-quartile boxes suggest superiority of the former
to the latter. GPT also manages to produce more fit best-of-run individuals than
EPS-Lv and EPS-Bv. However, it seems incapable to catch up with the other
EPS configurations, in particular with the leading EPS-Bc.

We also include configuration GP5000, which is identical to GP except for
population holding 5000 programs. It proves to be much better than GPT on all
the tested benchmarks and often outperforms all EPS-L configurations. However,
in terms of success rate it still fares worse than EPS-BC .

GP GPT GP5000 EPS-Lc EPS-Lv EPS-Lcv EPS-Bc EPS-Bv EPS-Bcv
0

10

20

30

40

Fi
tn

es
s

Keijzer12 (optimal fitness=49)

GP GPT GP5000 EPS-Lc EPS-Lv EPS-Lcv EPS-Bc EPS-Bv EPS-Bcv
0

2

4

6

8

10

Fi
tn

es
s

Koza1 (optimal fitness=11)

GP GPT GP5000 EPS-Lc EPS-Lv EPS-Lcv EPS-Bc EPS-Bv EPS-Bcv
0

2

4

6

8

10

Fi
tn

es
s

Koza1-p (optimal fitness=11)

GP GPT GP5000 EPS-Lc EPS-Lv EPS-Lcv EPS-Bc EPS-Bv EPS-Bcv
0

10

20

30

40

Fi
tn

es
s

Koza1-2D (optimal fitness=49)

GP GPT GP5000 EPS-Lc EPS-Lv EPS-Lcv EPS-Bc EPS-Bv EPS-Bcv
0

10

20

30

40

Fi
tn

es
s

Koza1-p-2D (optimal fitness=49)

Fig. 3. Box-and-whiskers plots of the (maximized) fitness of the final solutions across
all configurations and benchmarks. Boxes mark lower and upper quartiles, red line –
median, red square – mean, whiskers – 1.5 of inter-quartile range below/above the
corresponding quartile, and crosses – the outliers. The missing plots for EPS-Lv and
EPS-Bv applied to Koza1 and Koza1-p are due to those benchmarks being univariate,
which makes variable substitution pointless.

Table 6. Average runtime in seconds.

GP EP S
GP GPT GP5000 Lc Lv Lcv Bc Bv Bcv

Keijzer12 14.8 11330.7 493.0 772.3 488.0 1578.6 15439.8 21172.6 28354.0
Koza1 4.8 291.0 46.3 699.8 - 801.4 652.0 - 695.8
Koza1-p 4.5 962.9 344.0 892.3 - 971.6 978.2 - 982.0
Koza1-2D 16.0 7635.8 431.9 793.1 478.7 1790.6 9076.9 16280.5 23033.8
Koza1-p-2D 15.4 9206.1 515.9 750.4 511.3 1725.7 11986.4 12390.8 27875.4

6 Discussion

Overall, the EPS-B configurations perform better than or at least as good as
the corresponding EPS-L configurations in terms of average end-of-run fitness
(Table 5). This holds for 10 out of 13 pairs of corresponding EPS-B and EPS-
L configurations. It seems thus that EPS favors the Baldwinian approach, in
which local, within-lifetime modifications (hole completions) affect individual’s
fitness but do not propagate to its offspring. Our working explanation is that,
by propagating to offspring, the unfilled holes in EPS-B prospectively make
it possible to find even better completions. In the Lamarckian variant, to the
contrary, fitness evaluation leaves no holes in the evaluated individuals. The only
supply of ‘fresh’ holes is the mutation operator, which affects on average only
half of the offspring (Table 3), but even in them it is not guaranteed to introduce
any new holes. Apparently, those holes are not sufficient in numbers to permit
completions that would make EPS-L outperform EPS-B.

The above pattern is however reversed for the configurations that permit
completion with both constants and variables, when applied to bivariate bench-
marks, i.e., EPS-Bcv vs. EPS-Lcv on Keijzer12, Koza1-2d and Koza-1-p-2d. This
may result from the overall worse performance of configurations that complete
holes with variables: when juxtaposing such configurations with their counter-
parts that do not involve variables (i.e., EPS-Bv vs. EPS-Bc, EPS-Lv vs. EPS-Lc,
EPS-Bcv vs. EPS-Bc, and EPS-Lcv vs. EPS-Lc), the former almost always fare
worse. The only exception is the last pair, EPS-Lcv vs. EPS-Lc, where the for-
mer may occasionally perform better (for Koza-1-2d and Koza-p-2d), but the
differences do not seem to be statistically significant. As signaled in the previous
section, this could be to some extent explained with the very low number of
variables in considered benchmarks: with only two variables at its disposal, the
solver has limited chance to complete the holes in a way that leads to high fit-
ness. However, this argument is unconvincing for the mixed configurations (cv),
where both variables and constants can be substituted.

Explanation for this phenomenon turns out to be of a different nature: in
EPS-Bcv, with the possibility of completing with both constants and variables,
and with relatively many holes to complete (due to following the Baldwinian
process), the search space of possible completions is on average the largest com-
pared to the other configurations. As a consequence, the solver faced with such
large problems is more likely to fail to return a definitive answer within the

prescribed computational budget of 1.5 seconds. This results with assigning the
worst possible fitness to an evaluated program and likely loss of potentially use-
ful code it may contain. This is confirmed by the statistics on solver behavior
we gathered: in EPS-Bcv, the solver fails to provide optimal completion on time
in roughly 35 percent of evaluations, compared to only 13 percent for EPS-Lcv.
Interestingly however, this does not turn out to be problematic for EPS-Bc,
which also suffers from quite high incidence of such cases (around 25 percent),
yet performs the best. Overall, these relatively high numbers suggest that solver
timeouts may have significant impact on search dynamics. However, this phe-
nomenon does not need to be pathological. To the contrary, it can serve as a
natural parsimony pressure: in EPS-L as well as in EPS-B, large programs tend
to have higher number of holes than small programs, and large number of holes
makes solver timeout more likely.

Interestingly, program evaluation in EPS-B can be said in resulting in prospec-
tive fitness: the fitness that the partial program being evaluated could achieve
in the future, given the optimal completion of its holes. This concept bears some
resemblance to potential fitness considered in past work [10].

Concerning the runtime, it is not surprising that the Baldwinian configura-
tions are, by a huge margin, more time consuming (except for the simpler Koza1
and Koza1-p benchmarks) than the corresponding Lamarckian variants – after
all they contain more holes. It is also interesting that the Lamarckian configura-
tions generally achieve end-of-run fitness (and, to a lesser extent, success rate)
that is comparable to GPT , which was granted much larger time budgets. This
however may be a result of bloat, which could have lessened the effectiveness of
GP.

7 Conclusion

This paper presented Evolutionary Program Sketching, a novel approach to pro-
gram synthesis that combines selected elements of genetic programming and for-
mal synthesis methods. EPS evolves partial programs and uses an SMT solver to
complete them so as to maximize the number of passed test cases. The experi-
ments have shown that EPS has the potential to be more efficient than standard
GP in some scenarios. Nevertheless, empirical evaluation conducted here was
rather constrained, which makes approaching a larger and more diverse bench-
mark suite our priority in further work on this topic.

As in all SMT-based approaches to program synthesis, the fact that candidate
programs are never executed opens interesting possibilities. In principle, EPS can
be used synthesize programs written in programming languages for which no
interpreter exists or program execution is particularly costly (albeit the theory
that backs up the language has to be known).

EPS as presented in this paper is an inductive synthesis method. However,
engaging a solver for evaluation opens up an interesting possibility of using GP
to synthesize programs from a complete formal specification (like the max(x, y)
specification in Formula (2)). Apart from this, future work may include filling

holes with more complex content than just constants and variables, and opti-
mizing the mechanism of querying the solver.

Acknowledgments. This work was supported by grant 2014/15/B/ST6/05205
funded by the National Science Centre, Poland.

References

1. Azad, R.M.A., Ryan, C.: A simple approach to lifetime learning in genetic program-
ming based symbolic regression. Evolutionary Computation 22(2), 287–317 (Sum-
mer 2014), http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00111

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.5. Tech.
rep., Department of Computer Science, The University of Iowa (2015), available
at www.SMT-LIB.org

3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

4. Ffrancon, R., Schoenauer, M.: Memetic semantic genetic programming. In: Silva,
S., Esparcia-Alcazar, A.I., Lopez-Ibanez, M., Mostaghim, S., Timmis, J., Zarges,
C., Correia, L., Soule, T., Giacobini, M., Urbanowicz, R., Akimoto, Y., Glasmach-
ers, T., Fernandez de Vega, F., Hoover, A., Larranaga, P., Soto, M., Cotta, C.,
Pereira, F.B., Handl, J., Koutnik, J., Gaspar-Cunha, A., Trautmann, H., Mouret,
J.B., Risi, S., Costa, E., Schuetze, O., Krawiec, K., Moraglio, A., Miller, J.F.,
Widera, P., Cagnoni, S., Merelo, J., Hart, E., Trujillo, L., Kessentini, M., Ochoa,
G., Chicano, F., Doerr, C. (eds.) GECCO ’15: Proceedings of the 2015 on Genetic
and Evolutionary Computation Conference. pp. 1023–1030. ACM, Madrid, Spain
(11-15 Jul 2015), https://hal.inria.fr/hal-01169074/document, gP Track best
paper

5. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Component based synthesis
applied to bitvector programs. Tech. Rep. MSR-TR-2010-12 (February 2010),
http://research.microsoft.com/apps/pubs/default.aspx?id=119146

6. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: 29th International Conference on Software Engineering (ICSE
’10). pp. 215–224 (May 2010)

7. Johnson, C.: Genetic programming with fitness based on model checking. In: Ebner,
M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) Proceed-
ings of the 10th European Conference on Genetic Programming. Lecture Notes in
Computer Science, vol. 4445, pp. 114–124. Springer, Valencia, Spain (11-13 Apr
2007), https://kar.kent.ac.uk/14594/1/Genetic.pdf

8. Katz, G., Peled, D.: Synthesis of parametric programs using genetic programming
and model checking. In: Clemente, L., Holik, L. (eds.) Proceedings 15th Inter-
national Workshop on Verification of Infinite-State Systems. EPTCS, vol. 140,
pp. 70–84. Hanoi, Vietnam (14 Oct 2013), http://www.fit.vutbr.cz/~holik/
INFINITY13/, invited talk

9. Krawiec, K.: Behavioral Program Synthesis with Genetic Programming, Studies
in Computational Intelligence, vol. 618. Springer International Publishing (2015),
http://www.cs.put.poznan.pl/kkrawiec/wiki/?n=Site.BPS

10. Krawiec, K., Polewski, P.: Potential fitness for genetic programming. In: Ebner,
M., Cattolico, M., van Hemert, J., Gustafson, S., Merkle, L.D., Moore, F.W., Con-
gdon, C.B., Clack, C.D., Moore, F.W., Rand, W., Ficici, S.G., Riolo, R., Bac-
ardit, J., Bernado-Mansilla, E., Butz, M.V., Smith, S.L., Cagnoni, S., Hauschild,

http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00111
https://hal.inria.fr/hal-01169074/document
http://research.microsoft.com/apps/pubs/default.aspx?id=119146
https://kar.kent.ac.uk/14594/1/Genetic.pdf
http://www.fit.vutbr.cz/~holik/INFINITY13/
http://www.fit.vutbr.cz/~holik/INFINITY13/
http://www.cs.put.poznan.pl/kkrawiec/wiki/?n=Site.BPS

M., Pelikan, M., Sastry, K. (eds.) GECCO-2008 Late-Breaking Papers. pp. 2175–
2180. ACM, Atlanta, GA, USA (12-16 Jul 2008), http://www.cs.bham.ac.uk/
~wbl/biblio/gecco2008/docs/p2175.pdf

11. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L.,
Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., O’Reilly, U.M.: Genetic pro-
gramming needs better benchmarks. In: Soule, T., Auger, A., Moore, J., Pelta,
D., Solnon, C., Preuss, M., Dorin, A., Ong, Y.S., Blum, C., Silva, D.L., Neu-
mann, F., Yu, T., Ekart, A., Browne, W., Kovacs, T., Wong, M.L., Pizzuti, C.,
Rowe, J., Friedrich, T., Squillero, G., Bredeche, N., Smith, S.L., Motsinger-Reif,
A., Lozano, J., Pelikan, M., Meyer-Nienberg, S., Igel, C., Hornby, G., Doursat,
R., Gustafson, S., Olague, G., Yoo, S., Clark, J., Ochoa, G., Pappa, G., Lobo, F.,
Tauritz, D., Branke, J., Deb, K. (eds.) GECCO ’12: Proceedings of the fourteenth
international conference on Genetic and evolutionary computation conference. pp.
791–798. ACM, Philadelphia, Pennsylvania, USA (7-11 Jul 2012)

12. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic pro-
gramming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcazar, A.I., De
Falco, I., Della Cioppa, A., Tarantino, E. (eds.) Proceedings of the 11th European
Conference on Genetic Programming, EuroGP 2008. Lecture Notes in Computer
Science, vol. 4971, pp. 134–145. Springer, Naples (26-28 Mar 2008)

13. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, Lecture Notes in Computer Science, vol. 4963, chap. 24, pp. 337–340.
Springer Berlin / Heidelberg, Berlin, Heidelberg (2008), http://dx.doi.org/10.
1007/978-3-540-78800-3_24

14. Pawlak, T.P., Wieloch, B., Krawiec, K.: Semantic backpropagation for design-
ing search operators in genetic programming. IEEE Transactions on Evolution-
ary Computation 19(3), 326–340 (Jun 2015), http://dx.doi.org/10.1109/TEVC.
2014.2321259

15. Sarafopoulos, A.: Evolution of affine transformations and iterated function sys-
tems using hierarchical evolution strategy. In: Miller, J.F., Tomassini, M., Lanzi,
P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds.) Genetic Program-
ming, Proceedings of EuroGP’2001. LNCS, vol. 2038, pp. 176–191. Springer-Verlag,
Lake Como, Italy (18-20 Apr 2001), http://www.springerlink.com/openurl.
asp?genre=article&issn=0302-9743&volume=2038&spage=176

16. Solar-Lezama, A.: Program Synthesis by Sketching. Ph.D. thesis, Electrical Engi-
neering and Computer Science, University of California, Berkeley, USA (fall 2008),
http://people.csail.mit.edu/asolar/papers/thesis.pdf

17. Solar-Lezama, A.: Program sketching. International Journal on Software Tools
for Technology Transfer 15(5), 475–495 (2013), http://dx.doi.org/10.1007/
s10009-012-0249-7

18. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. In: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. pp. 313–326. POPL ’10, ACM,
New York, NY, USA (2010), http://doi.acm.org/10.1145/1706299.1706337

19. Warren, H.S.: Hacker’s Delight. Addison Wesley (2002)

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2008/docs/p2175.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2008/docs/p2175.pdf
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1109/TEVC.2014.2321259
http://dx.doi.org/10.1109/TEVC.2014.2321259
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2038&spage=176
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2038&spage=176
http://people.csail.mit.edu/asolar/papers/thesis.pdf
http://dx.doi.org/10.1007/s10009-012-0249-7
http://dx.doi.org/10.1007/s10009-012-0249-7
http://doi.acm.org/10.1145/1706299.1706337

	Evolutionary Program Sketching

