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Abstract
Conventional genetic programming (GP) can guarantee only that synthesized pro-
grams pass tests given by the provided input-output examples. The alternative to such
a test-based approach is synthesizing programs by formal specification, typically real-
ized with exact, nonheuristic algorithms. In this article, we build on our earlier study on
Counterexample-Based Genetic Programming (CDGP), an evolutionary heuristic that
synthesizes programs from formal specifications. The candidate programs in CDGP
undergo formal verification with a Satisfiability Modulo Theory (SMT) solver, which
results in counterexamples that are subsequently turned into tests and used to calculate
fitness. The original CDGP is extended here with a fitness threshold parameter that de-
cides which programs should be verified, a more rigorous mechanism for turning coun-
terexamples into tests, and other conceptual and technical improvements. We apply it
to 24 benchmarks representing two domains: the linear integer arithmetic (LIA) and
the string manipulation (SLIA) problems, showing that CDGP can reliably synthesize
provably correct programs in both domains. We also confront it with two state-of-the
art exact program synthesis methods and demonstrate that CDGP effectively trades
longer synthesis time for smaller program size.

Keywords
Genetic programming, formal verification, counterexamples, SMT.

1 Introduction

Genetic programming (GP) is an inductive program synthesis technique, in which de-
sired program behavior is defined by a set of input-output test cases. While this kind of
specification is usually easy to provide, it is by definition incomplete—in general noth-
ing (or at best, very little) can be guaranteed about program behavior for other inputs.
Guaranteeing correctness by enumerating all inputs is impossible, except for toy ex-
amples. This is limiting, as many applications require a guarantee of correct program
behavior for every possible input (which may be infinite in number), or to ensure that a
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certain property is always met. Examples include hardware design, safety-critical sys-
tems, and finding mathematical structures with certain properties.

An alternative to test-based specification is to encode the semantics of a program
in some formal logic. Program behavior is then reasoned about within that logic, con-
fronting it with a formal specification which defines the desired behavior. When thus
conducted, the reasoning certifies program correctness. If the answer is positive, the pro-
gram is guaranteed to behave as desired for all inputs allowed by specification, thereby
addressing the problem of incomplete testing. Otherwise, a counterexample can be con-
structed that exemplifies a flaw in the program. Program verification is nowadays a ma-
ture branch of research in computer science, offering a range of efficient tools which
facilitate reasoning about program properties (Section 2).

Verification cannot be used directly for synthesis, as it requires a program to work
with—it cannot come up with program candidates on its own. In Krawiec et al. (2017),
we proposed counterexample-driven genetic programming (CDGP), an approach in
which a GP algorithm serves as such a generator. The method, detailed in Section 3,
submits the candidate programs to verification, collects the counterexamples produced
whenever a program fails to meet the prescribed specification, and uses them as test
cases, thereby eliciting the fitness to guide the GP search process. To the best of our
knowledge, CDGP is the first GP-based approach utilizing counterexamples obtained
via formal verification.

This study extends Krawiec et al. (2017) in several ways. Firstly, the original CDGP
occurred in two variants, namely conservative and nonconservative, which varied in
the policy used to decide when a (potentially costly) call to the verifier should be made.
Here, we unify those variants and control this aspect with a continuous parameter,
which also allows us to explore intermediate strategies of engaging the verifier. Sec-
ondly, we provide a more rigorous and systematic approach to evaluation modes, prop-
erties of the specification-based problems, and their consequences on the workings of
CDGP (Section 3.2). Thirdly, we extend CDGP beyond the integer domain, making it
applicable to programs that operate on character strings. Fourthly, in the experimen-
tal part (Section 5), we apply CDGP to a broader suite of benchmarks, and provide a
more in-depth presentation of results and their analysis. Last but not least, we confront
CDGP with formal synthesizers (Section 5.7), which leads to interesting insights about
their advantages and disadvantages compared to CDGP and GP in general.

2 Formal Verification

In formal approaches to program verification and synthesis, it is usually assumed that
the desired behavior of a program is given in the form of a contract, a pair of logical for-
mulas: a precondition, Pre, the constraint imposed on program input, and a postcondition,
Post , a logical clause that should hold upon program completion.

Verifying a given program p then consists of proving that

∀inP re(in) �⇒ Post (in, p(in)), (1)

where p denotes a program and p(in) the output produced by p when applied to input
in. For instance, the contract for verifying a program that calculates the maximum of
two integers (x, y), called hereafter Max2, can be defined as follows:

Pre((x, y)) ⇐⇒ (x, y) ∈ Z
2

Post ((x, y), o) ⇐⇒ o ∈ Z ∧ o ≥ x ∧ o ≥ y ∧ (o = x ∨ o = y). (2)

442 Evolutionary Computation Volume 26, Number 3



Counterexample-Driven Genetic Programming

This is an example of a complete specification, which defines the desired behavior of
the sought program for all possible inputs, the number of which happens to be infinite
here.

To determine whether a given program p fulfills (1), p and the specification are
provided as inputs to a satisfiability (SAT) solver. Technically, the solver attempts to
disprove (1), that is prove that

∃inP re(in) ��⇒ Post (in, p(in)). (3)

For the Max2 problem (2), inputs in to the program would be two integer variables
x and y. If the solver produces an assignment to in that validates (3), p does not behave
as specified and is thus incorrect. The variable assignment in question, called a model in
propositional logic, forms a counterexample. Otherwise, p meets the contract and is thus
correct. Crucially, the solver performs verification without actually running the pro-
gram, because the properties of the output can be logically inferred from the properties
of the input and those of the program code.

In practice, the solver must be equipped with an additional abstraction layer, a the-
ory, in order to be able to reason in terms of, for instance, integer arithmetic (which we
already assumed in the above Max2 example). This leads to the concept of satisfiabil-
ity modulo theories (SMT) used both in program verification and synthesis (Jha et al.,
2010; Gulwani et al., 2010; Srivastava et al., 2010). For Max2, the theory of linear integer
arithmetic (LIA) (Barrett et al., 2016) may be used.

It may be worth mentioning that SMT solvers can be also directly used for program
synthesis. A synthesis task (Pre, Post ) can be posed as proving that

∃p∀inP re(in) �⇒ Post (in, p(in)), (4)

where the source code of the program p is controlled by a set of free variables. For in-
stance, programs represented as sequences of n instructions can be encoded with n such
variables, each in [1, k], where k is the number of available instructions. If a solver suc-
ceeds to prove (4) and the proof is constructive, its transcript produces as a “side effect”
such a p that fulfills (4). However, due to the presence of two quantifiers (existential
and universal), solving a synthesis task posed in the above way requires much higher
computational effort, as compared to the corresponding verification task that uses just
one quantifier because the program is already given there. In practice, therefore, only
very short programs can be synthesized in this way. For this reason, methods which
synthesize programs by direct invocation of solvers are few and far between; more so-
phistication is needed to make that process effective. Nevertheless, there are a range of
methods that rely on some form of SMT-based synthesis (Srivastava et al., 2010; Gul-
wani et al., 2010).

2.1 Bridging Test-Based and Formal Specifications

Test-based synthesis and spec-based synthesis may seem irreconcilable due to the dif-
ferent ways in which they specify the desired behavior of programs. In fact, they
can be united, and illustrating this can be useful in explaining the rationale behind
CDGP.

Example 2.1: For the Max2 problem (2), the following set of input-output pairs might
form a test-based specification:
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Figure 1: The conceptual diagram of conservative CDGP.

x y max(x, y )

0 0 0
1 0 1
4 3 4
· · · · · · · · ·

We can translate this specification into a conjunction of first-order logic constraints
and the LIA theory that provides the semantics of the arithmetic operators:

[(x = 0 ∧ y = 0) �⇒ max(x, y) = 0] ∧
[(x = 1 ∧ y = 0) �⇒ max(x, y) = 1] ∧
[(x = 4 ∧ y = 3) �⇒ max(x, y) = 4] ∧

· · ·
This compound constraint forms a postcondition Post (x, y), which can be fed into
a solver together with some candidate program p (i.e. a specific implementation of
max(x, y)). In response, the solver verifies whether p meets this contract by trying to
find a counterexample (3). Success implies that at least one of the constituent impli-
cations above is not true; failure implies that they are all fulfilled and the program is
correct; however, correct here obviously means “only with respect to the given tests.”

3 Counterexample-Driven Genetic Programming

Example 2.1 illustrates that the feedback obtained from verification (whether applied to
formal specification or to tests) can be only twofold: success or failure. Program verifi-
cation is thus of little help, at least in such a simple scenario, for search-based synthesis
algorithms (such as GP) that require more graded guidance through the search space.
Though in principle the postcondition could be rephrased to calculate also the number
of passed constraints (cf. Johnson, 2007; see also related work in Section 4), this can be
done much more easily (and more efficiently) by just running the program on tests, as
practiced in GP. Therefore, rather than trying to elicit richer feedback from verification,
in CDGP we rely on conventional GP fitness. Formal verification is used only to decide
whether a given candidate program is correct, while the counterexamples become new
test cases and provide the algorithm with a search gradient.

Figure 1 presents the conceptual diagram of CDGP. The GP search module is a con-
ventional GP algorithm (equivalently, any generate-and-test metaheuristic) equipped
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with arbitrary selection and search operators. The generated solutions are evaluated by
the Testing module by running them on the set Tc of test cases collected during the run.
After evaluation, some candidate programs are sent to the Verification module, which
performs verification using an SMT solver and pushes the resulting counterexamples
to Tc, gradually increasing the test base. Note that technically counterexamples consist
only of program inputs and are not therefore fully-formed tests; we detail and handle
this issue in Section 3.2, but for the time being use these terms interchangeably.

3.1 Evaluation and Verification

The complete evaluation stage is realized by function CDEval shown in Algorithm 1.
CDEval consists of both testing and verification and is launched once per generation.
In contrast to conventional GP evaluation that utilizes only a set of tests Tc (which is ini-
tially empty here), CDEval accepts also a formal specification (Pre, Post ). Upon com-
pletion, CDEval returns the evaluated population P and the updated set of tests Tc ∪ T .
Eval(p, Tc) is the conventional fitness function that returns the number of tests from Tc

that are passed by p. Verify(p, (Pre, Post )) executes the solver and returns the coun-
terexample resulting from verifying p on the specification (Pre, Post ). We illustrate
Verify with the following example.

Example 3.1: Assume the task is to synthesize a program that meets the Max2 specifica-
tion (Eq. 2), and that the GP algorithm produced the following program p to evaluate:

(ite (>= y x) x y),

where ite is an if-then-else instruction. When p is sent to Verify, CDGP creates the
query to the solver shown in Listing 1, formulated in the SMT-LIB language (Barrett
et al., 2015, 2016), which we briefly cover in Section 3.3. Notice that p is encapsulated in
the body of the max function (define-fun max). In the lines that follow, free variables
x and y are declared (declare-fun), and the assert statement defines the specification
by implementing the formulation of verification from Eq. (3). Once this sequence of
commands is passed to the solver and followed by the check-sat statement, the solver
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Listing 1: Example of the verification query for the Max2 problem, formulated in SMT-
LIB language ver. 2.6.

will try to find such values of x and y that falsify the specification (notice the not in the
assertion).

After execution of check-sat, the get-value statement is used to retrieve the val-
ues of x and y found by the solver, and those values form a counterexample. The re-
turned counterexample depends on solver tactics; the Z3 solver (de Moura and Bjørner,
2008) that we use in the experimental section responds here with (x=-1, y=0). The
reader can verify that the result of p for this input is indeed incorrect with respect to the
specification. When a correct program is verified (i.e., (ite (>= x y) x y) or any se-
mantically equivalent program), then the solver returns unsat, the search process stops,
and the program is returned. �

In the first generation of CDEval (Algorithm 1) Tc = ∅, so all programs in P receive
zero fitness and the attendant selection of parent programs is random. Nevertheless,
this first generation will typically discover a few counterexamples, which provide for
some degree of discrimination of programs in the second generation. In this way, the
verification outcomes supply CDGP with an increasingly fine-grained fitness function
and more precise search gradient.

Which of the evaluated programs should be subject to verification is an important
design choice, to which we pay special attention in this study. In the conservative variant
which we introduced in Krawiec et al. (2017), we verified only the programs that passed
all test cases previously collected in Tc. This variant is not only computationally efficient
(verification can be costly), but also arguably most natural, as a program that does not
pass all available tests cannot by definition be correct. However, by requiring all tests to
be passed, the conservative scheme can lead to stagnation: it can happen that the SMT
solver produces a test which is particularly difficult, and the GP algorithm may struggle
to generate a program capable of passing it (and all other tests in Tc simultaneously).
As a result, many generations may elapse before GP produces a program good enough
for the next verification and Tc becomes augmented by the resulting counterexample.
Such a course of events can be particularly harmful in the initial stages of a CDGP run,
when Tc is small and thus provides little search gradient.

To mitigate this problem, in this study we extend CDGP with the fitness threshold q

of the ratio of passed tests from Tc required to apply verification (line 5 of Algorithm 1).
For the conservative variant, q = 1.0. The other extreme is setting q = 0.0 (dubbed non-
conservative in Krawiec et al. (2017)), which causes all evaluated programs to undergo
verification, regardless of fitness value, and is thus rather costly in computation. We
anticipate that setting q to intermediate values can be beneficial, avoiding the above-
mentioned stagnation on one hand, and excessive cost of verification on the other.
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Listing 2: Example of the query used for evaluation of incomplete tests.

3.2 Turning Counterexamples into Tests

As signaled above and illustrated in Example 3.1, counterexamples are instances of pro-
gram input (in), and as such do not form tests that require also the associated correct
program output (out). Therefore, we allow Tc to hold two types of tests:

Complete tests A complete test is a test of the form (in, out ). It is equivalent to the
notion of test used in conventional GP and can be evaluated by executing the pro-
gram on in and comparing the obtained result to the expected output out . CDGP
uses this mode of evaluation for all complete tests.

Incomplete tests An incomplete test is a test of the form (in, null). The expected output
for this test is not defined explicitly. This can happen for example if there are many
(potentially even infinitely many) correct outputs for in.

In conventional test-based GP, incomplete tests are useless, as they do not say any-
thing about the desired program behavior. In the spec-based CDGP, programs can be
still evaluated on them by sending an appropriate query to the SMT solver, which we
demonstrate in the following example.

Example 3.2: We use the program p =(ite (>= y x) x y) from Example 3.1 and
the counterexample (x=-1, y=0) obtained there, which we express as an incomplete
test ((x=-1, y=0), null). The query that would evaluate p on this test, presented in
Listing 2, differs in two details from the verification query (Listing 1): the postcondition
is not negated, and the free variables are bound to constants from the incomplete test.

For this query, the solver returns unsat, because p does not meet the specification
for the considered input. For some other inputs however (e.g., (x=0, y=0)), this in-
correct program may pass the specification, causing the solver to return sat. �

Though the possibility of testing programs on incomplete tests is appealing, it has a
critical downside: calls to the solver are computationally costly, and the above approach
becomes prohibitively expensive in the presence of many incomplete tests. Therefore,
CDGP transforms incomplete tests into complete ones whenever possible. This, how-
ever, requires meeting certain formal properties that we detail in the following.

3.2.1 Single-Output Property
It is typically assumed in GP that for every program input in there is only one correct
output out , and that programs returning a value other than out are incorrect. This is,
however, not necessarily the case for arbitrary formal specifications. For example, for
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Listing 3: SMT query that checks whether the Max2 problem has the single-output
property.

the following specification of a desired program behavior f :

f (in1) > 0,

where ini ∈ Z, there are infinitely many acceptable outputs for any given input in1. Sim-
ilarly for the specification:

(in2 = 0 �⇒ f (in2) = 0) ∧
(in2 > 0 �⇒ f (in2) = in2 + 1).

The second case is particularly interesting, since for some of the inputs (in2 < 0) the
output of f is undefined, which implies that any returned value is correct.

As we aim at collecting complete tests in Tc and so avoiding costly solver costs to
determine output’s correctness (Example 3.2), we must require that a given input has the
single-output property, that is it has only one correct corresponding output. If we ignored
that aspect and associated an arbitrarily selected correct output out with a given in, the
resulting test (in, out ) could unfairly fail many programs that return a different correct
output for in.

To address this issue, prior to applying CDGP to any given problem, we use the
SMT solver to determine whether the single-output property holds for it. To illustrate,
Listing 3 presents the SMT query that verifies this property for the Max2 problem. When
queried, the solver will search for such values of x, y for which it is possible to find
two different outputs out1, out2 that meet the specification. If the solver returns sat,
such outputs were found and the problem does not have the single-output property.
If the solver returns unsat, then the problem has single-output property. Occasionally,
the solver may return unknown, signaling that either the property cannot be verified in
a given logic or that the available computational resources (time, memory) have been
exhausted. In such cases, we assume that the single-output property does not hold.

More precisely, the single-output property can be defined in two ways: globally, as
a property of a problem (i.e. for all inputs), or locally, as a property of an input (given
problem). Verity of the former implies the latter. However, the absence of the global
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single-output property does not imply that single output cannot be determined for spe-
cific inputs. Therefore, in case the single-output property does not hold globally, CDGP
attempts to find out if it holds locally for every new counterexample, which is explained
in Section 3.2.3.

3.2.2 Single-Invocation Property
Ensuring that the single-output property holds is not the only issue we must take into
account. In the following specification:

f (x, y + 1) = f (x, y) + 1 ∧
f (x + 1, y) = f (x, y) + 1,

function f is invoked multiple times with different arguments. As a result, whether a
program returns the correct output for some input depends on the values it returns for
some other inputs. To create a complete test, we need a single input to execute the pro-
gram on it and then compare the obtained result with the expected output. But for which
arguments should the output of f be taken, when there are several of them? In general,
we must account for outputs of f for every unique combination of its arguments in
the specification, but they again can recursively depend on yet some other invocations
of f . Therefore, a single input-output pair is not sufficient to test a program on it, and
this necessitates the creation of an incomplete test, like for example ((x=0, y=0), null),
which will be evaluated by the solver.

If the function to be synthesized is called always with the same arguments in for-
mal specification, the problem has the single-invocation property (Reynolds et al., 2017).
Checking this property is relatively simple and can be done by syntactic analysis of the
specification.

3.2.3 Finding Outputs for Incomplete Tests
It should be clear from the two previous subsections that the desired output for an in-
complete test can be unambiguously determined using a solver if both of the above-
mentioned properties hold. We summarize this observation in the following theorem:

Theorem 1: To create a complete test (in, out ) from an incomplete test (in, null), in must
have the single-output property, and the problem (specification) must have the single-invocation
property.

The practical upshot of the above observation is that a problem without single-
invocation property would force calling the solver whenever testing a program on any
(incomplete) test. Though CDGP can handle such problems, we do not consider them
in the experimental part, because calling the solver for each program generated by GP
and each test in Tc is prohibitively expensive.1

Determining the local single-output property for an input of the incomplete test
is realized by the same query which is responsible for searching for the correct output.
This query, presented in Listing 4, simply represents the output to be produced by a pro-
gram as a single variable, and solves for its value for the provided inputs. The resulting
value of the output is then combined with the input to form a complete test. The key
observation is that we can search for the correct output twice, the second time exclud-
ing the answer we obtained the first time. If the answer for the second query is unsat,

1In contrast, note that the solver is called for verification (Algorithm 1) at most once per evaluated
program (the number of tests in Tc has no impact on the number of solver’s calls used for verification).
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Listing 4: SMT query that finds an output for an incomplete test.

then the input has the single-output property and a complete test is created. The second
query has an additional constraint (assert (distinct out value)), where value is
the output obtained in the first query.

It may also happen that the first query returns unsat. This means that the specifica-
tion is contradictory and no program can satisfy it, and thus the search process would
end with the appropriate message.

3.3 Representation of Solutions

As programs in CDGP need to be verified by the SMT solver, they can use only the
semantics (types, operators, instructions, etc.) available in the background theory sup-
ported by the solver, for example LIA or Strings (SLIA). In principle, any programming
language could be used to represent programs in CDGP, given the appropriate con-
verter to SMT-LIB language (Barrett et al., 2015, 2016), which is accepted as an input lan-
guage by most modern SMT solvers. In this study, for simplicity, we decided to evolve
programs directly as SMT-LIB expressions. SMT-LIB is a functional language and is
similar in many aspects to LISP, so the traditional tree-based GP was most adequate.

4 Related Work

Formal methods for program synthesis have a long history, preceding heuristically in-
formed stochastic methods such as GP by some decades (Cohen, 1994). The literature
for formal approaches to synthesis (and verification) is correspondingly vast; for recent
overviews see Boca et al. (2009) and Almeida et al. (2011). In contrast, we are aware of
only few program synthesis approaches which combine formal techniques with heuris-
tic search. To our knowledge, the earliest work combining the aspects of evolutionary
search and formal approaches was that by Haynes et al. (1996), where GP was used to
produce entailment proofs, an initial step for potentially using it to automate the spec-
ification refinement process.

An approach due to Johnson (2007) incorporated model-checking with the spec-
ification of the task expressed via computation tree logic (CTL) to evolve finite state
machines, and was used to learn a controller for a simple vending machine. The fitness
was computed as the number of CTL properties which were verified to hold for a given
program. A similar approach by He et al. (2011), the Hoare logic-based GP, computes
fitness as the number of postcondition clauses which can be inferred from the precon-
dition and the program being evaluated. Instead of model-checking, the Hoare logic
(Hoare, 1969) is used for the specification of the task and verification.
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From 2008, Katz and Peled (2008, 2014, 2016) authored a series of papers combining
model-checking and GP in which they progressively refine their MCGP tool based on
linear temporal logic (LTL). They use enhanced model-checking to impose a gradient on
the fitness function by distinguishing several levels of passing an LTL property (met for
all inputs, met for only some inputs, met for no input). Apart from that, this approach
is very similar to the two previously described. It is worth noting that Katz and Peled
(2014) also considered briefly using SMT solver for verification in the similar way as
model-checking, and even similarly to CDGP utilized counterexamples to provide for
more granular fitness. However, they only reported trying to solve a simple problem,
and seemingly abandoned this line of research after that. By utilizing counterexamples,
this initial work is the most similar to CDGP out of all related works mentioned here.

The use of coevolutionary GP to synthesize programs from formal specifications
was researched by Arcuri and Yao (2007, 2014). They maintained joint populations of
tests and programs within a competitive coevolution framework. Fitness of programs
was calculated using a heuristic that estimated how close a postcondition was from
being satisfied by the program’s output for specific tests. While allowing the synthe-
sis of programs with GP from a formal specification, such an approach provides no
guarantees that program deemed correct by their method will be consistent with the
specification for all possible inputs.

In the emerging area of genetic improvement (the modification of pre-existing pro-
gram code via search), there have been a number of recent articles incorporating formal
approaches. Kocsis et al. (2016) report a 10,000-fold speedup of Apache Spark database
queries on terabyte datasets. In Burles et al. (2015), a 24% improvement in energy con-
sumption was achieved for Google’s Guava collection library by applying the “Liskov
substitution principle,” the formal cornerstone of object-orientation. Some recent work
has also used category theory to perform formal transformations on datatypes (Kocsis
and Swan, 2014, 2017) in order to join together parts of a program which are otherwise
unrelated, a technique applicable to “Grow and Graft Genetic Programming” (Harman
et al., 2014).

There are also many well-known systems that perform synthesis under the broad
heading of Inductive Logic Programming (Muggleton, 1994). In particular, IGOR II
(Hofmann, 2010; Hofmann et al., 2008) is known to perform well on a range of prob-
lems. As extended by Katayama (2012), it combines an “analytic” approach based on
analysis of fitness cases with the generate-and-test approach more familiar to the GP
community.

An alternative to spec-based synthesis is “program sketching” (Solar-Lezama et al.,
2006), a technique whereby a program contains “holes” which are automatically filled
in (e.g., using an SMT solver) with values satisfying a specification. However, the ap-
proach has limited scalability since the exact search method used has exponential run-
time in the number of variables. More recently, evolutionary program sketching (EPS)
has been proposed (Błądek and Krawiec, 2017). EPS is presented as a GP alternative that
evolves partial programs and then uses an SMT solver to complete them, attempting to
maximize the number of passing test cases. For the small set of benchmarks under con-
sideration, EPS outperforms conventional GP (e.g., in the number of optimal solutions
found).

5 Experiments

In the following sections, we describe the experimental framework, including informa-
tion about benchmarks, some implementation choices, tested configurations of CDGP,
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Table 1: LIA benchmarks. The input type is In and the output type is I (I=integer).
Some functions were tested in variants with different arities.

Name Arity Semantics

CountPos 2, 3, 4 The number of positive arguments
IsSeries 3, 4 Do arguments form an arithmetic series?
IsSorted 4, 5 Are arguments in ascending order?
Max 4 The maximum of arguments
Median 3 The median of arguments
Range 3 The range of arguments
Search 2, 3, 4 The index of an argument among the other arguments
Sum 2, 3, 4 The sum of arguments

and baselines. Then, in Section 5.6, we analyze the results of the experiments and the
characteristics of CDGP dependent on its settings. In Section 5.7, we confront CDGP
with exact, nonheuristic algorithms of program synthesis. The source code of CDGP,
along with specifications of problems, is available at: https://github.com/kkrawiec
/CDGP.

5.1 Benchmark Suite

We consider a range of spec-based synthesis benchmarks of varying difficulty and char-
acteristics, representing two domains: the theory of linear integer arithmetic (LIA) and
the theory of strings (SLIA, strings and linear integer arithmetic) (Barrett et al., 2016).
Part of the benchmarks come from the SyGuS repository maintained for the annual
“Syntax-Guided Synthesis” competition (Alur et al., 2015, 2013). We detail the domains,
grammars, and benchmarks in the following, first for LIA and then for SLIA.

5.1.1 LIA Benchmarks
In LIA benchmarks, presented in Table 1, the task is to synthesize a program with a sig-
nature In →I, where I stands for integer type and n is program’s arity. Max, Search,
and Sum come from the SyGuS competition (Alur et al., 2015, 2013); the remaining
benchmarks are of our own design. Some benchmarks (IsSeries, IsSorted, Search) in-
terpret input arguments as a fixed-size ordered sequence of type I. In the IsSeries
and IsSorted tasks, the program is required to return 1 if the arguments form, respec-
tively, an arithmetic series or are sorted in ascending order, 0 otherwise. In the Search
benchmark, a correct program should find the 0-based index of the last argument in an
“array” of length n formed by the remaining arguments (which are constrained by a pre-
condition to be sorted). Hence, for instance Search2(3,7,1)=0, Search2(3,7,4)=1,
and Search2(3,7,10)=2, where index in the benchmark’s name refers to the size of
“array.”2

The grammar for LIA programs includes two types, Int (I) and Boolean (B) (see
Figure 2). To avoid multiplying the input variables by themselves (and so building
programs that involve nonlinearity), we introduce an additional type C for integer

2A Search n benchmark thus diverges from the naming convention followed in the remaining bench-
marks (i.e., the arity of the synthesized program is n + 1), but we do not address this for conformance
with the SyGuS benchmark suite (Alur et al., 2015, 2013).

452 Evolutionary Computation Volume 26, Number 3



Counterexample-Driven Genetic Programming

Figure 2: The grammar defining the domain of LIAprograms. vi is the ith input variable,
ite is the conditional statement, % is the modulo operator. The starting symbol is I.

Listing 5: The Max4 benchmark expressed in the SyGuS language (fg_max4.sl file in the
SyGuS repository). Compare with the specification of the Max2 problem in Eq. (2).

constants. The corresponding production also explicitly defines the range of integers
that can be used in the programs generated by CDGP.3

Search k is the only group of LIA benchmarks in our suite without the global
single-output property (Section 3.2.1) because the desired output is not defined for ar-
rays which are not sorted, and thus any output is correct for such inputs. The single-
invocation property holds for every benchmark in our suite.

To illustrate, Listing 5 presents the specification of the Max4 benchmark expressed
in the SyGuS language (Raghothaman and Udupa, 2014).4 The synth-fun statement
defines the signature of the function to be synthesized. The constraint commands
define the specification and are combined with logical conjunction by the solver. The
declare-var commands declare universally quantified variables, which can be then
used in the constraints. Preconditions can be defined by implications with conditions
on the values of the variables. In this example there are no implications, so this specifi-
cation consists of only the postcondition—the precondition is empty, that is, the inputs
to Max4 are only required to belong to the type Int.

3The original LIAgrammar does not define such a range, and formal synthesis methods can thus gen-
erate programs with arbitrary integers. This becomes relevant when comparing CDGP against formal
methods in Section 5.7.

4http://www.sygus.org/
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Table 2: SLIA benchmarks. Input type is S or S2 and the output type is S (S=string).

Name Arity Semantics

dr-name 1 Extract first name from full name and prepend it with “Dr.”
firstname 1 Extract first name from full name
initials 1 Extract initials name from full name
lastname 1 Extract last name from full name
combine 2 Combine first and last name into full name
combine-2 2 Combine first and last name into first name followed by initial
combine-3 2 Combine first and last name into initial followed by last name
combine-4 2 Combine first and last name into last name followed by initial
phone 1 Extract the first triplet of digits from a phone number
phone-1 1 Extract the second triplet of digits from a phone number
phone-2 1 Extract the third triplet of digits from a phone number
phone-3 1 Put first three digits of a phone number in parentheses
phone-4 1 Change all “-” in a phone number to “.”

Figure 3: The grammar defining the domain of String programs. inputs are the input
variables, constants is a benchmark-specific set of constants of the same type as the
production, ++ is string concatenation. The starting symbol is S.

5.1.2 SLIA Benchmarks
The SLIA benchmarks, presented in Table 2, are based on those from the “Program-
ming by Examples” track in SyGuS competition. The original benchmarks are all
test-based, and our benchmarks are extended to the simplest formal specification
that generalises the original set of tests. For example, the original benchmark “dr-
name” included input-output pairs: ("Nancy FreeHafer", "Dr. Nancy"), ("Andrew

Cencici"), "Dr. Andrew"), ("Jan Kotas", "Dr. Jan"). The corresponding formal
specification states that: a) the first token of the output is "Dr." and b) the second token
of the output is equal to the first whitespace-delineated token of the input. The other
SLIA benchmarks are similarly defined.

The grammar for SLIA programs, shown in Figure 3, includes two types: String (S)
and Int (I).5 To realize the functionality requested by the benchmarks, relatively sim-
ple capabilities are required: splitting a string into words; extracting the first letter
form a word; concatenating strings, and combining the input string(s) with some con-
stant characters. However, different benchmarks require different character constants;
for instance, the dr-name benchmark requires the “.” character. Therefore, the SLIA

5In the original SLIA grammar of the SyGuS competition there was also a production for the
Boolean (B) type, but it was not used in other productions, and consequently it was never utilized
in our experiments.
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grammar is adapted to individual benchmarks by including the required characters via
the constants term.

SLIA benchmarks are mostly guarded by some preconditions and thus the global
single-output property is not met, the only exception being the combine benchmark se-
ries. The single-invocation property holds for every SLIA benchmark.

5.2 Search Operators

We guarantee that programs initialized and bred within a run belong to the given do-
main by using a typed variant of GP and conforming with a theory-specific grammar.

Initialization recursively traverses the derivation tree from the starting symbol of
the grammar and randomly picks expressions from the right-hand sides of pro-
ductions. Once the depth of any node of the program tree reaches 4, the operator
picks the productions that immediately lead to terminals whenever possible. If the
depth exceeds 5, the tree is discarded and the process starts anew.

Mutation picks a random node in the parent tree, and replaces the subtree rooted in
that node with a subtree generated in the same way as for initialization. To con-
form to the grammar, the process of subtree construction starts with the grammar
production of the type corresponding to the picked location (e.g., if the return type
of the picked node is I, generation of the replacing subtree starts with production
I of the grammar).

Crossover draws a random node in the first parent program, and builds a list L of the
nodes in the second parent that have the same type. If L is empty, it draws a node
from the first parent again and repeats this procedure. Otherwise, it draws a node
from L uniformly and exchanges the subtree rooted there with the subtree drawn
from the first parent. This process is guaranteed to terminate, since both parent
trees always feature at least one node of the type associated with the root node (I
for LIA and S for SLIA) and the root nodes are also allowed to be swapped.

To control bloat, a program tree resulting from any of these search operators is con-
sidered feasible unless its height exceeds 12. Should that happen, the program is dis-
carded and the search operator is queried again. Additionally, whenever a tournament
selection or deselection is used, it includes lexicographic parsimony pressure (Luke and
Panait, 2002), that is, in case of a tie on fitness, the smaller program is preferred.

5.3 Communication with the Solver

Communication with the solver is realized via the SMT-LIB standard (Barrett et al.,
2015), recognized by most contemporary SMT solvers. We employ the well-known Mi-
crosoft Z3 SMT solver (de Moura and Bjørner, 2008), one of the most performant and
widely-used noncommercial solvers. This choice was arbitrary; that is, no Z3-specific
features were used.

Our implementation of Verify(p, (Pre, Post )) in Algorithm 1 translates the tree
representation of an evolved program p into a function definition in the SMT-LIB lan-
guage, combines it with the contract (Pre, Post ), and calls the solver to verify whether p

meets (Pre, Post ) (see Section 3.1 for more details). The runtime of the solver may vary
with the size of the verified program and its structure. In the experiments conducted
here, the average time the solver needed for verifying a single program ranged from
0.03s to 0.35s, depending on CDGP variant and fitness threshold. However, occasionally
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Table 3: Parameters of the evolutionary algorithm.

Parameter Value

Number of runs 25
Population size 500
Maximum height of initial programs 5
Maximum height of trees inserted by mutation 5
Maximum height of programs in population 12
Maximum number of generations 100000
Maximum runtime in seconds 3600
Probability of mutation 0.5
Probability of crossover 0.5
Tournament size 7

it took much longer, up to 30s. For this reason, we cap the time of a single run to 1
hour, which becomes our additional stopping criterion, atop of the maximum number of
generations.

5.4 Configurations

Table 3 presents the settings of our evolutionary algorithm. Our default configuration
involves tournament selection, a common choice for GP that proved useful in many
past studies. However, recall that the working set of tests Tc is initially empty and may
grow slowly. With a handful of tests, the fitness function (Eval in Algorithm 1), which
counts the fraction of passed tests, can assume only a few distinct values and has thus
little discriminatory power. Ties on fitness are likely, which causes tournament selection
to act at random and weakens the selective pressure.

Therefore, we consider an alternative setup equipped with lexicase selection (Hel-
muth et al., 2015). In each selection event, lexicase starts with a pool of all programs
from the population. A random test t is drawn from Tc without replacement, and pro-
grams that do not pass t are discarded from the pool. Drawing tests and discarding
programs from the pool is repeated until only one program is left, in which case it is
selected; if all tests have been used, or the current test would reduce the pool to the
empty set, the winner is drawn uniformly from the remaining pool. We do not use lex-
icographic parsimony pressure in configurations that involve lexicase selection.

In Section 3, we presented CDGP as a generational evolutionary algorithm. Note that
for the initial population, the solver is called for each program being evaluated, as each
such program formally passes all tests in Tc, which is initially empty (no matter what the
fitness threshold q is). Given that the population is quite sizeable (500, Table 3), this may
lead to high computational cost. More importantly however, each such evaluation will
produce a counterexample. Many of them, though unique, can be redundant in Tc, i.e.
verify the same property of programs. For instance for the Max4 benchmark, the input-
output pairs ((2,1,1,1),2) and ((2,0,1,1),2), even though technically distinct, essentially
test the same characteristics of programs, that is, their capability of returning the first
argument if it happens to be greater than all the remaining ones.

Arguably, neither of the above is desirable, so we consider the steady-state evolution-
ary algorithm as an alternative to the generational one. In that variant, an iteration (gen-
eration) consists in first discarding a poorly-performing program from the population
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(using a negative tournament selection of size 7), and then breeding a new program
with a randomly chosen search operator (mutation or crossover). The program created
in this way replaces the removed one in the current population and is subject to evalua-
tion. As a result, it may undergo verification if required by Algorithm 1, and the result-
ing counterexample tc is immediately added to Tc. If tc is new to Tc, the fitness values
of all programs in the population are updated by applying them to tc, so that they are
consistent with the contents of Tc. To make the comparison between steady state and
generational configurations fair, for steady state we multiply the maximum number of
generations by the population size (500), so that the maximum number of evaluated
solutions in both cases is the same.

The key feature of the steady state approach is thus that fitness values of all pro-
grams in the population are updated promptly, as soon as new tests arrive in Tc. We
anticipate this to make search process more reactive and potentially more efficient.

Additionally, we assess the impact of fitness threshold q on evolution by testing
CDGP on the range of its values: {0.0, 0.25, 0.5, 0.75, 1.0}. As was discussed in Sec-
tion 3.1, high values of q result in lower number of performed verifications, while low
values provide for better gradient of the fitness function. We find the trade-off between
those two effects worth a closer investigation.

We here summarize the differences in experimental configuration with Krawiec
et al. (2017). Differences include the presence of lexicographic parsimony pressure (only
for tournament selection), initial population not being verified in the steady-state vari-
ant, and smaller interval of integers for drawing random tests in the control approach
GPR (described later). In this new series of experiments, all algorithms maintain 500
candidate solutions. Moreover, we also use a newer release of the Z3 solver, which may
impact the computing time and characteristic of returned counterexamples.

5.5 Baseline: GPR

Our baseline is GPR (GP Random), which proceeds as CDGP, except for line 9 in Algo-
rithm 1, where it adds to T a randomly generated test, rather than the counterexample
returned by the solver. In this way, the dynamics of GPR are similar to the conserva-
tive variant of CDGP; that is, the test base gets extended when a program in population
manages to pass all of them. As in CDGP, multiple new tests may be added to Tc in a
single generation, duplicates in Tc are eliminated, and Tc may grow indefinitely dur-
ing a run. We use GPR only with q = {0.75, 1.0}, because (i) CDGP fares best for these
values and (ii) setting q to lower values leads to exorbitant numbers of tests in Tc. By
comparing CDGP with GPR, we intend to determine whether synthesizing tests from a
specification makes CDGP any better than generating them at random.

In GPR, we create random tests by drawing program inputs at random. For LIA
benchmarks, we draw numbers uniformly from [−100, 100]n where n is the input arity
of synthesized function. We anticipate that the width of this interval is not critical, given
that in most benchmarks (except for Sum and IsSeries) the functions to be synthesized
should interpret their inputs as ordinal variables.

5.6 Performance Analysis

We discuss the results for LIA and SLIA benchmarks separately due to their volume and
varying characteristics. In Tables 4, 5, and 6 we present respectively the success rate,
the end-of-run size of Tc, and the runtime in seconds, for individual variants of CDGP
and GPR on the LIA benchmarks. Recall that for spec-based synthesis, a success means
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synthesizing a provably correct program that is logically consistent with the specification
(in contrast to a conventional GP which is concerned with passing supplied tests).

CDGP is clearly more likely than GPR to synthesize correct programs, which con-
firms that counterexamples are more useful than random inputs. Due to the curse of
dimensionality, covering the input space becomes increasingly difficult in higher di-
mensions and GPR’s performance quickly degrades with the growing cardinality of
input. CDGP is affected by this phenomenon too, but to a much lesser extent. We also
hypothesize that randomly drawing inputs which test certain “corner cases” (e.g., an
array of the same repeated value in IsSorted) is particularly unlikely. In CDGP, to the
contrary, the gradually increasing quality of programs forces the solver to come up with
more and more sophisticated tests.

Using the fitness threshold q to control when programs should be verified is clearly
beneficial when compared to the extremes, that is, to the conservative variant (q = 1)
and non-conservative one (q = 0). Setting q to 0.75 turns out to be optimal here. As an-
ticipated in Section 3, we hypothesize that the conservative approach is too demanding
and tends to wait too long for new tests to arrive, depriving itself of potentially valu-
able search guidance. This is confirmed by the end-of-run size of Tc (Table 5), which is
typically between one and two orders of magnitude smaller than for non-conservative
variant.

Verifying all evaluated programs in the non-conservative variant (q = 0) is also sub-
optimal. What comes as a bit of a surprise is that this does not seem to lengthen the run-
time (Table 6)—presumably, if all programs in a population are being verified, many
of them have low fitness, and their incorrectness can be quickly proven by the solver.
There must be thus another reason why the success rate for q ≤ 0.5 is systematically
worse than for q = 0.75. We posit that many tests collected in these settings may be in
fact redundant, i.e. examine the same properties of programs (recall the earlier exam-
ple of mutually redundant tests for the Max4 benchmark). Because CDGP cannot detect
such redundancy, such pairs of tests (and consequently groups of tests) can coexist in Tc.
The obvious consequence is that Tc grows large and slows down the evaluation. Even
though this does not seem to be challenging given the time budget available here, the
presence of many redundant tests decreases the relative importance of the “essential”
ones. For the setups equipped with tournament selection, the contribution of nonredun-
dant tests to the overall fitness is low, and so is the likelihood that they affect selection.
In lexicase selection, the probability that such tests will reduce the pool of solutions at
some point is low.

Though q = 0.75 seems to provide the right balance, this is not to say that this value
should be considered optimal. We speculate that setting q to values closer to, yet still
smaller than 1 may have a similar effect.

Concerning the type of evolutionary algorithm engaged, the results invalidate the
hypothesized superiority of steady-state evolution thanks to updating solution fitness
online, right after a new counterexample arrives to Tc. The possible reason is that steady-
state runs tend to collect noticeably fewer tests than the generational variant.

Statistical analysis corroborates the above observations. We employ the Friedman’s
test for multiple achievements of multiple subjects (Kanji, 2006) on the success rate of
all 28 configurations shown in the tables (20 for CDGP and 8 for GPR). The p-value
2.2 × 10−38 strongly indicates that at least one configuration performs significantly dif-
ferent from the remaining ones. The following table presents them ordered by the av-
erage rank, from best to worst (G/S = generational/steady state, T/L = tournament/
lexicase):
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GL75 SL75 GT75 ST75 GL5 GL1 GT1 GL25 SL5 GL0 SL1 GT5 SL0 ST5
4.6 5.1 5.2 6.9 7.5 8.3 9.0 9.5 10.4 11.2 11.7 12.6 12.7 14.2

SL25 GPRGL1 GPRGT1 GT25 GT0 GPRGL75 ST25 ST1 GPRGT75 ST0 GPRST1 GPRSL75 GPRSL1 GPRST75
14.5 16.6 17.1 17.8 18.8 19.2 20.4 20.7 21.0 21.3 21.8 22.2 22.4 23.0

Table 7: Success rate for SLIA benchmarks.

All CDGP configurations with q = 0.75 clearly rank at the top, followed closely
by the CDGP configurations for other values of q. The GPR control configurations, on
the other hand, gather at the bottom of the ranking, with a few exceptions of CDGP
configurations that use the extreme q of 0 or 1.

To determine the significantly different pairs of configurations, we conduct post-
hoc analysis using symmetry test (Hollander et al., 2013). The analysis reveals that all
CDGP configurations with q = 0.75 are better than all GPR configurations (p < 0.05),
except for ST75 that is not significantly better than GPRGL1 and GPRGT1. A number of
other configurations of CDGP (GL25, GL5, GL1, GT1) also tend to be statistically better
than four or more GPR configurations (particularly than those GPR configurations that
use tournament selection).

Though the average success rates for the optimal q = 0.75 are very similar for both
tournament and lexicase selection, the latter typically provides better rates for the re-
maining values of q. We may thus conclude that lexicase has once again proved its use-
fulness, corroborating many other studies and our results from Krawiec et al. (2017).
This is even more impressive given that the lexicase algorithm is actually quite costly in
execution compared to tournament selection, which becomes reflected in the average
number of generations elapsed—1069 versus 102.5 for the generational variant, and 2.8
million vs. roughly 100 thousand for the steady-state variant. As a consequence, lexi-
case runs typically evaluate an order of magnitude fewer solutions than the tournament
runs—yet, despite that, perform on a par or better.

In Tables 7, 8, and 9, we present the success rate, end-of-run size of Tc, and the run-
times for the string domain SLIA. We do not run GPR this time, as there is no obvious
way of automatically generating plausible tests for these benchmarks, which are for the
most part guarded by preconditions. A character string generated at random is very
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Table 8: End-of-run size of Tc for SLIA benchmarks.

Table 9: Average runtime for SLIA benchmarks (in seconds).

unlikely to pass the precondition, and consequently test any program property that
would relate to a given task.

The overall success rates for the SLIA benchmarks turn out to be slightly smaller
than for the LIA domain. We observe a similar pattern of sensitivity to the q threshold
as for LIA benchmarks: best success rates for fitness thresholds around 0.75, and smaller
sizes of Tc for higher fitness thresholds. Interestingly, this time the steady-state variant
is noticeably better, which is striking, as the number of tests collected there is often very
small, in single digits. This indicates that the good performance of these configurations
is more due to visiting a large number of candidate solutions (again, often one or more
orders of magnitude more than for the generational variant) than to usefulness of tests
elicited by CDGP from formal verification.

We scrutinize these results statistically using the same apparatus as for the LIA
benchmarks, running the Friedman’s test (Kanji, 2006) on the success rate of configura-
tions shown in the tables, the number of which is this time 20. The p-value amounts to
3.5 × 10−14 and so indicates significant differences. The configurations rank as follows
(G/S = generational/steady state, T/L = tournament/lexicase):

Evolutionary Computation Volume 26, Number 3 463
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ST1 SL75 ST75 SL1 ST5 GL75 GT1 SL5 GL1 GT75 ST25 GT5 GL5 SL25 GL25 SL0 GT25 ST0 GT0 GL0
5.4 5.8 6.2 7.0 7.5 8.6 9.0 9.3 9.4 9.5 10.3 10.7 11.0 12.1 12.7 13.6 15.3 15.3 15.3 15.8

As for LIA, the CDGP configurations with q = 0.75 tend to rank at the top, how-
ever, this time accompanied by a few configurations with q = 1. The superiority of the
steady-state approach is evident. However, post-hoc analysis using the symmetry test
(Hollander et al., 2013) reveals that most of pairwise differences are statistically insignif-
icant. For instance, even though ST1 and ST75 top the ranking, each of them significantly
outranks only the four CDGP configurations from the very bottom of the ranking (GL0,
GT0, GT25, ST0). The moderate number of pairwise significant differences was however
expected, given that there are no dramatic differences between success rates for SLIA
benchmarks—the average success rates range in [0.54, 0.82] (Table 7).

In summary, CDGP equipped with tournament selection and admitting programs
for verification only if they pass at least 75% of tests is the configuration that tops the
success rate on our benchmark suite. This holds for both the generational and steady-
state variant, though the latter is noticeably faster than the former on SLIA problems
and thus may be preferred in practice.

5.7 Comparison with Formal Approaches

We compare CDGP with two exact solvers for program synthesis: EUSolver (Alur et al.,
2017), and CVC4 (Barrett et al., 2011). CVC4 is the latest in the “Cooperating Validity
Checker” series of SAT-based solvers, developed over the last 30 years. It is well-known
that SMT solvers do not perform well in proving universally quantified expressions
to be satisfiable. CVC4 therefore supports refutation-based synthesis, for which a model
of the function to be synthesized is obtained from the proof that the negation of the
synthesis formula is unsatisfiable.

Since naïve enumerative approaches to program synthesis do not scale, EUSolver
seeks to provide scalable enumeration via a divide and conquer approach that sep-
arately enumerates a) predicates for partitioning the inputs and b) small expressions
which are correct on a subset of inputs. The problem of combining predicates and ex-
pressions is then treated as a multilabel decision tree learning problem. By working
with a probability distribution over labels, EUSolver can take advantage of standard
information-gain heuristics to induce compact trees.

We apply CVC4 and EUSolver to the LIAbenchmarks, and CVC4 to the SLIAbench-
marks (EUSolver cannot handle formal String specifications). As the exact algorithms
are deterministic, we run them only once on each benchmark. Both methods need only
a fraction of a second to synthesize a correct program for all LIA benchmarks; the av-
erage runtime of EUSolver is 0.4s (max 1.5s), and for CVC4 it is hardly measurable
(below 0.01s). We may conclude that, in terms of efficiency, CDGP is no match for the
exact algorithms in the LIA domain. In the SLIA domain, however, purely formal string
specifications proved hard for CVC4, which managed to find a correct program only
for 2 (name-combine, name-combine-3) out of 13 benchmarks.

There are, however, other metrics that make the comparison more interesting. Fig-
ure 4 juxtaposes the best-of-run programs produced by the exact methods to the aver-
age sizes of those synthesized by CDGP (in the generational variant with tournament
selection and q = 0.75). We factor these results by benchmark class and present them as
a function of instance size, i.e. the number of inputs. The sizes of programs produced
by CVC4 and EUSolver grow very fast with instance size, close to exponentially (note
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Figure 4: Program sizes for CDGP (left), EUSolver (middle), and CVC4 (right). For each
group of benchmarks that represent the same problem class, we form a dataseries in
function of input arity (instance size). Notice the logarithmic scale of the program size
axis.

the log scale of the vertical axis). For CDGP, on the other hand, the growth is moder-
ate and closer to linear. However, we should add at this point that CDGP simplifies the
best-of-run solution using the SMT solver in a semantic-preserving manner. While the
simplification utility is not a part of the SMT-LIB standard (Barrett et al., 2015), it is
present in some SMT solvers. In Z3, we use the simplify command that checks locally
whether a subexpression can be replaced with a shorter one (e.g., (+ 1 1) would be
rewritten as 2). The results shown in Figure 4 count that aspect in, so one might argue
that they can be biased in favor of CDGP. On the other hand, the preference for shorter
programs is to some extent built into CVC4 and EUSolver by design.

To illustrate the differences in length, we present the shortest programs found for
the CountPos2 problem, in which a program was supposed to count the number of
arguments (a, b) greater than zero. The programs produced by EUSolver and CVC4
were additionally passed through simplification by Z3, in the same way as it is done
in CDGP. Though the programs produced by CDGP for this problem were generally
rather large on average (Fig. 4), the following elegant solution was found in one of the
evolutionary runs:

(+ (ite (>= 0 b) 0 1) (ite (>= 0 a) 0 1)).

In comparison, EUSolver returned a solution of the following simplified form:

(ite (and (<= a 0) (<= b 0)) 0 (ite (and (not (<= b 0))

(not (<= a 0))) 2 1)),

and the simplified solution synthesized by CVC4 was even longer:

(ite (and (not (>= a 1)) (not (>= b 1))) 0 (ite (and (or (not (>= a 1))

(>= b 1)) (or (>= a 1) (not (>= b 1)))) 2 (ite (or (not (>= a 1))

(not (>= b 1))) 1 0))).

6 Discussion

The results indicate that counterexamples collected from verification in CDGP prove
more useful as tests than the inputs constructed at random in GPR. On one hand, this

Evolutionary Computation Volume 26, Number 3 465
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was expected, because, in contrast to counterexamples, random tests are not derived
from the problem specification and in this sense convey less problem-specific knowl-
edge. On the other hand, SMT solvers follow sophisticated search tactics, reportedly
built on years of expert experience and as such involving certain search biases. It is
thus not obvious that counterexamples they identify should be effective when used as
“search drivers” (Krawiec, 2016) in a stochastic synthesis process.

On the other hand, it is fair to say that the effectiveness of GPR is quite high, par-
ticularly on the simpler benchmarks. The success rate of this baseline approach could
form a measure of problem difficulty, which does not seem to trivially correlate strongly
with input arity; compare for instance the staggering differences in success rates for
CountPos4 and Search4 (Table 4). This is, however, not to say that GPR could form a
competitive alternative to CDGP.

The reader familiar with contemporary software engineering has likely noticed that
CDGP can be seen as an automatic analog to test-driven software development (Beck, 2002),
where a software developer iteratively constructs tests of gradually increasing difficulty
that detect flaws in the current implementation and so help improving it. This anal-
ogy holds also for other counterexample-driven methods (Jha et al., 2010; Solar-Lezama
et al., 2006), and naturally brings to mind the coevolutionary metaphor, as posited in
related works (Katz and Peled, 2016). Indeed, a natural follow-up of this study could
involve borrowing the developments from coevolutionary algorithms, in particular co-
evolving the tests alongside with programs, and using measures like distinctions or in-
formativeness to maintain them (Ficici and Pollack, 2001).

7 Conclusions

This contribution builds upon our original study on counterexample-driven genetic
programming (Krawiec et al., 2017), a method for synthesizing programs from speci-
fications. We extended CDGP with a fitness threshold parameter that controls the fre-
quency of program verification, found that setting it to a non-extreme value (0.75) tends
to systematically improve the odds of successful synthesis, and proposed an explana-
tion for this observation. We introduced a rigorous conceptual framework for turning
counterexamples into tests, based on the well-defined notions of single-output property
and single-invocation property. We updated and improved several technical internals
of the method and applied it to a larger suite of benchmarks, showing, among others,
its capability to synthesize both integer-based (LIA) and string-processing (SLIA) pro-
grams. Last but not least, we compared CDGP to two state-of-the-art exact methods
of formal program synthesis; CDGP, albeit slower, has been shown to produce shorter
programs.

With this work, we also hope to help bridge the gap between the test-based and
spec-based synthesis. As we argued in Section 2.1, these two paradigms, though often
perceived as disparate, have certain commonalities and their marriage can be mutually
beneficial. Test-based synthesis, by opening to formal specifications, may gain correct-
ness guarantees. Spec-based synthesis, faced with the combinatorial explosion of sys-
tematic search, may benefit from including heuristics as a search guidance, and thanks
to that scale better. From a broader perspective, such “middle ground” approaches ad-
dress one of the fundamental—if not existential—questions of program synthesis, that
is, how should user intent (Gulwani, 2010) be expressed? It is clear that tests and spec-
ifications are just the extremes of a conceivably rich spectrum.

CDGP in its current form is admittedly not free from certain challenges. The main
shortcoming of the approach presented in this article are search operators. The way
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CDGP exploits knowledge obtained through the use of a solver is far from sophisticated,
to say the least. The search operators, taken verbatim from the standard GP, are unaware
of how programs interact with tests. It seems thus desirable to make search operators
better informed by the verification process, which we find the most promising further
research direction.

Acknowledgments
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