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Counterexample-Driven Genetic Programming for
Symbolic Regression With Formal Constraints

Iwo Bł dek and Krzysztof Krawiec

Abstract—In symbolic regression with formal constraints, the
conventional formulation of regression problem is extended with
desired properties of the target model, like symmetry, monotonic-
ity, or convexity. We present a genetic programming algorithm
that solves such problems using a satisfiability modulo theories
solver to formally verify the candidate solutions. The essence
of the method consists in collecting the counterexamples result-
ing from model verification and using them to improve search
guidance. The method is exact upon successful termination, the
produced model is guaranteed to meet the specified constraints.
We compare the effectiveness of the proposed method with stan-
dard constraint-agnostic machine learning regression algorithms
on a range of benchmarks and demonstrate that it outperforms
them on several performance indicators.

Index Terms—Constraints, genetic programming (GP), satisfi-
ability modulo theories (SMTs), symbolic regression (SR).

I. INTRODUCTION

CONTEMPORARY machine learning continues to be pri-
marily data-centric in assuming that most of relevant

information about a problem can be induced from its training
sample. This simplifies designing models and training algo-
rithms, but also deprives them of valuable domain knowledge,
and increases their proneness to overfitting, especially when
data are scarce.

While full account of domain knowledge is usually out of
reach in practical settings, parts of it are often available and
can be conveniently expressed as constraints. The usefulness
and expressive power of constraints have been demonstrated
by, among others, the theory and practice of continuous and
discrete optimization. In regression problems, which are the
subject of the study, a simple constraint may for instance
require the output variable to be bounded to avoid damage to
a controlled hardware component. More complex constraints
can engage multiple variables, e.g., the predicted dose of
an active substance administered to a patient may need to
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monotonously increase with patient’s weight, or/and decrease
with the duration of therapy.

In conventional regression, constraints are implicitly
imposed by the choice of the form of the model; for instance,
a logistic model will be more appropriate for some problems
than a linear one. However, just choosing the form of a model
is often insufficient to reflect the relevant intricacies of the
domain. Moreover, in symbolic regression (SR) that we con-
sider here, the exact form of the model is not mandated: it is
constrained only by the grammar of expressions that can be
built from the available set of arithmetic operators, elemen-
tary functions, and constants. The space of models in SR often
subsumes the conventional regression (linear, polynomial, and
more), and overfitting becomes thus even more likely.

To address this challenge, we propose an SR method that,
in addition to the training sample, can incorporate constraints
expressed in transparent fashion and produces models that are
guaranteed to meet them. We coin such augmented task SR
with formal constraints (SRFC), and formalize it in Section II.
The constraints can be supplied by the user, who either knows
beforehand that they are true of the system in question, or
simply finds them desirable or beneficial. In Section III, we
enumerate and exemplify a range of types of constraints of
practical relevance. In Sections IV and V, we present the
method and related work. In Section VII, we assess it on a suite
of benchmarks proposed in Section VI, both in quantitative
fashion, by measuring test-set generalization error, as well as
in a qualitative fashion, i.e., in terms of constraints that are sat-
isfied by the synthesized regressor. Computational experiments
include analyzing different variants of the method and com-
parison with the state-of-the-art constraint-agnostic regression
algorithms.

II. SYMBOLIC REGRESSION WITH FORMAL CONSTRAINTS

Following our preliminary study on this topic [1], we define
SRFC as an extension of the SR task in which, alongside
a set of input–output examples (tests), a set of constraints
is also given, which the synthesized function is supposed to
satisfy. SRFC is a special case of supervised learning with
constraints [2].

Definition 1 (SR With Formal Constraints): Given: 1) a
training set T of n examples (x(1), y(1)), . . . , (x(n), y(n)); 2) an
error function L : Rn × R

n → R; 3) a set M of admissible
mathematical expressions; and 4) a set of constraints C, find a
function f ∈M that minimizes L and satisfies all constraints
in C.
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As in ordinary regression, L measures and aggregates the
deviation of each ŷ(i) = f (x(i)) from the corresponding y(i).
Each constraint in C is a logical formula that should be sat-
isfied by f for an (often infinite) subset of its domain, for
example ∀x : f (x) ≥ 0, or ∀x : f (x) = f (−x). Technically, a
constraint can define function’s output for a single input (e.g.,
f (3) = 7), making it similar to the examples in T . However,
such hard constraints do not allow for any error and are thus
not equivalent to examples in T . When C = ∅, the above task
reduces to conventional SR.

The definition of SRFC is similar in spirit to that of syntax-
guided synthesis (SyGuS) [3], where solutions are required
to be constructed based on the provided formal grammar.
Contrary to SyGuS, however, in SRFC there is a set of train-
ing examples, which are not necessarily supposed to be fitted
perfectly (as this may lead to overfitting), but rather serve as
a basis for the discovery of the model that explains them most
adequately in terms of the error L and constraints C.

III. SOURCES AND TYPES OF CONSTRAINTS

Constraints can be easily deduced from the symbolic form
of a model; but how to obtain them for real-world problems,
when the underlying model is unknown? We argue that there
are several sources of constraints in such scenarios.

1) Inference from a training set—training data can be
inspected for the satisfaction of a certain set of con-
straints. Presence of noise can make this harder and
require relaxation of constraint satisfiability.

2) Desirable or required properties of models—in some
applications it is beneficial (and sometimes critical) for
models to exhibit certain properties. For example, if one
needs to explain the predictions of a model (e.g., regard-
ing credit), then monotonicity w.r.t. the most important
features may be required [4]. If the output of a model is
meant to control a piece of hardware, that will usually
require bounding it to a technically admissible interval.

3) Expert knowledge and common sense—sometimes cer-
tain properties of a model are known or assumed a
priori. For example, constraints appear in the domain
of marketing mix modeling [5], where it is common
to assume that an increase of advertising cannot nega-
tively impact sales [6]. Another example is the use of
constraints representing linguistic knowledge in natural
language processing tasks, e.g., identifying roots of
Hebrew words [7], or learning named entities, and
relations between them [8].

4) Scientific method—positing the existence of specific
constraints is a typical part of the hypothesis-driven sci-
entific process, which is in fact never based only on
observation (induction), but also on empirical falsifi-
cation of hypotheses formulated given the knowledge
obtained at the earlier stages of the process.

In the remainder of this section, we present a number of for-
mal constraints that are common in practical applications of
SRFC. For each constraint, we discuss plausible usage sce-
narios and provide its specification in SMT-LIB [9], [10],
the standard language of communication with Satisfiability

Modulo Theories (SMTs) solvers, which we use in our
approach.

Symmetry With Respect to Arguments: Many multivariate
models are expected to be symmetric with respect to the order
of their arguments. Examples include the equivalent resistance
of a number of electrical resistors (chained or arranged in
parallel), and the force of gravity that remains the same if
the interacting masses are swapped. In SMT-LIB, this can be
expressed as:

(assert (= (f x1 x2) (f x2 x1)))

In SRFC, this assertion would be included in the set of con-
straints C, while the examples would be placed in T . However,
let us emphasize again that the assertion requires f to meet
the constraint for all possible values of x1 and x2, not only
for those present in T . Upon successful solving of an SRFC
task, the synthesized model is guaranteed to be symmetric with
respect to its arguments.

Symmetry With Respect to Argument’S Sign: It is some-
times desirable to require models to be even functions (f (x) =
f (−x)) or odd functions (−f (x) = f (−x)). In classical physics,
the direction of the restoring force of a spring depends on the
direction of displacement, which implies that the dependency
in question is an odd function F(x) = −kx, where k is the
spring constant. Expressing such constraints in SMT-LIB is
straightforward:

(assert (= (f x) (- (f (- x))))).

Such symmetry may be also useful when constraining multi-
variate models, where it may be selectively applied to individ-
ual variables. A bivariate model f(x,y) can be demanded to
be even with respect to x with the following assertion:

(assert (= (f x y) (f (- x) y)))

Bound (Range): There are multiple scenarios in which
domain knowledge excludes certain ranges of values from f ’s
codomain. In classical physics, mass cannot be negative and
velocity cannot exceed the speed of light. In econometrics,
employee’s wage cannot be negative. In medicine, it may not
make sense to estimate patient’s life expectancy to more than
120 years. The last of these constraints can be expressed in
SMT-LIB as:

(assert (<= (f x y) 120.0))

Monotonicity: Monotonicity is one of the most common
properties required from models. In transportation, the cost of
delivery is almost always a monotonically increasing function
of distance (or time). Such a constraint can be encoded as:

(assert (forall ((x Real)(x1 Real))
(=> (> x1 x) (> (f x1) (f x)))
))

Convexity/Concavity: Convex models are often desirable,
because they can be later efficiently optimized. Convexity of
a univariate function can be defined using Jensen’s inequality

∀x,y,t∈[0,1] f (tx+ (1− t)y) ≤ tf (x)+ (1− t)f (y).
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Similarly, as for monotonicity, convexity constraint requires
the universal quantifier:

(assert (forall ((t Real)(x Real)(x1 Real))
(=> (and (>= t 0.0) (<= t 1.0))
(<= (f (+ (* t x) (* (- 1.0 t) x1)))
(+ (* t (f x)) (* (- 1.0 t) (f x1)))))
))

Changing this constraint to concavity requires replacing <=
with >= in the quantified formula; replacing it with < would
mandate the function to be strictly convex.

Slope: In a given application, it may be known that the rate
of change of model’s output with respect to its input cannot
exceed a certain threshold. For instance, a body free-falling
in Earth’s gravitational field cannot accelerate faster than
9.81 m/s2. For SMT solvers, we express that by approximat-
ing the derivative with a finite differential (f (x+ ε)− f (x))/ε.
In the following SMT-LIB formulation, we assume that the
expected derivative of a function f (x) is 2 at x = 1, ε = 10−6,
and the error tolerance of 0.001:

(define-fun df ((x Real)) Real
(/ (- (f (+ x 0.000001)) (f x)) 0.000001))
(assert (=> (= x 1.0)
(<= (abs (- (df x) 2.0)) 0.001))).

Note that this constraint affects only the slope of f at point
1.0, while not determining the desired value at that point.
Therefore, it cannot be alternatively enforced with input–
output tests in T that would implicitly constrain the slope,
because such tests would also necessarily fix the values of f .

Discussion: The above list presents only the simplest and
most common constraints. Other examples include periodicity
f (x) = f (x+ kT), k ∈ Z, additivity f (x+ y) = f (x)+ f (y), and
multiplicativity f (xy) = f (x)f (y). Constraints can be easily
combined with logical operators, e.g., with conjunction. Also,
all above constraints can be defined either globally (i.e., in the
entire domain of the function) or locally (i.e., in an interval,
at a given point, or otherwise constrained part of function’s
domain).

IV. COUNTEREXAMPLE-DRIVEN SYMBOLIC REGRESSION

Counterexample-driven SR (CDSR) [1] allows genetic pro-
gramming (GP), a heuristic global optimization technique, to
produce provably correct solutions to SRFC tasks. It builds
upon counterexample-driven GP (CDGP) [11], [12], and uses
an SMT solver to formally verify correctness of candidate
solutions and use the resulting counterexamples to augment
the training set.

Fig. 1 presents the key components of CDSR, which
correspond to the elements of SRFC task (Section II).

1) GP Search: An algorithm responsible for generating
candidate programs in M. We use conventional gen-
erational GP, with initialization and search operators
detailed in the experimental part; however, in princi-
ple any generate-and-test search algorithm could be used
here.

Fig. 1. Conceptual diagram of CDSR.

2) The Working Set of Test Cases: Tall = T∪Tcounter∪Tprops,
initialized with the training set (T) and augmented with
additional tests created from counterexamples (Tcounter)
and constraints (Tprops; only in the CDSRp variant; see
Section IV-C).

3) Testing: A procedure for evaluating candidate programs
and returning their fitness computed on Tall. In the sim-
plest scenario, fitness is the error L committed by a
program on both the training set and counterexamples.

4) Verification: An SMT solver that verifies the correctness
of programs with respect to constraints in C.

The main loop of CDSR extends the traditional fitness eval-
uation of GP as follows. The GP search produces a candidate
solution p and submits it to Testing. The error committed by
p on Tall becomes its fitness. If p passes at least the ratio
α of tests in T ∪ Tcounter, it is submitted to verification. If p
does not satisfy the constraints in C, then, a counterexample
is found and added to Tcounter. If p satisfies the constraints,
the search still continues, since minimization of the error L is
one of the objectives in SRFC. We detail these components in
the sections that follows.

A. Verification of Programs

For formal verification of candidate solutions, CDSR uses
an SMTs solver [13], [14]. An SMT problem is an extension
of the SAT problem that allows for terms and operators from
specific theories, e.g., the theory of nonlinear real arithmetic
(NRA) used in this work. Crucially, SMT provides decision
procedures for proving logical formulas expressed in a given
theory.

A formal specification is assumed to have the form (Pre,
Post), where Pre and Post are logical formulas over a cer-
tain theory. Pre(x) is the precondition that must be met by an
input x to the program, and Post(x, y) is the postcondition, a
logical predicate that should hold upon program completion.
The constraints presented earlier in Section III are examples
of postconditions. An SMT solver can be used to verify if a
given program p meets the specification by proving that

∀x Pre(x) =⇒ Post(x, p(x)) (1)

where p(x) is the output returned by p for x. In practice,
it is common to request the solver to disprove the above
implication, i.e., prove that

∃x Pre(x) �=⇒ Post(x, p(x)). (2)

If the solver decides that formula (2) is unsatisfiable, p is guar-
anteed to meet the specification; otherwise, the solver produces
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Algorithm 1 Evaluation in CDSR, given the current popula-
tion P, the current sets of tests (T , Tcounter, Tprops), program
specification Spec ≡ (Pre, Post), and verification ratio α,
returns the evaluated population together with an updated
set of counterexamples. NUMPASSED counts the number of
passed tests. VERIFY verifies a program and returns a coun-
terexample when it is incorrect. See Algorithm 2 for EVAL

1: function CDSREVAL(P, T , Tcounter, Tprops, Spec, α)
2: Tnew ← ∅
3: Tα ← T ∪ Tcounter
4: for all p ∈ P do
5: p.eval← EVAL(p, T , Tcounter, Tprops, Spec)
6: if NUMPASSED(p.eval, Tα) ≥ α|Tα| then
7: xc ← VERIFY(p, Spec)
8: if xc �= ∅ then
9: Tnew ← Tnew ∪ {(xc, null)}

10: Tcounter ← Tcounter ∪ Tnew

11: return (P, Tcounter)

a logical model, i.e., an input x for which the above implication
holds. Since this logical model consists of an input exposing
the wrong behavior of the program, it is commonly referred
to as a counterexample.

B. Evaluation of Programs

The main evaluation loop in CDSR is presented in
Algorithm 1. In evaluation of the population P in a given
generation, the newly created test cases are collected in a tem-
porary set Tnew, and that set is merged into Tcounter only at the
end of a generation so that all solutions in P are assessed with
respect to the same set of tests. Duplicates are discarded in
merging.

The verification is invoked in line 6 of the algorithm and
produces a counterexample xc if a program does not satisfy
the constraints. We want to use xc as additional guidance for
GP search, in addition to the original examples. However, xc

only defines an input that violates the specification, which is
incompatible with the (x, y) representation of regular tests. For
such inputs, there are usually many (and often infinitely many)
corresponding outputs that meet the postcondition. Therefore,
we transform xc into an incomplete test of the form (xc, null).
Incomplete tests require different handling than the complete
tests (x, y) provided in T . We denote the set of all incomplete
tests by Tcounter.

Verification can be computationally costly, so CDSR verifies
only programs that pass at least the ratio α of tests from Tα =
Tall \Tprops, α ∈ [0, 1], calculated by NUMPASSED in line 6 of
the algorithm. Passing is defined differently for incomplete and
complete tests, and in both cases is based on the information
returned by the EVAL function (Algorithm 2) called in line 5
that returns an evaluation vector eval of errors committed by
a program p on all tests in Tall. The error on an incomplete
test (t.x, null) is determined by calling the SMT solver via
ISCORRECT in line 6 of Algorithm 2, which returns 0 to mark
passing of a test (p(t.x) satisfies the constraints), and 1 for

Algorithm 2 Evaluation of a single program p in CDSR,
given the current sets of tests (T , Tcounter, Tprops), and pro-
gram specification Spec ≡ (Pre, Post), returns an evaluation
vector. ISCORRECT returns 0 if output of a program p for
input t.x satisfies spec, and 1 otherwise. SATPROPERTY returns
0 if a program p satisfies the constraint associated with test
t ∈ Tprops, and 1 otherwise

1: function EVAL(p, T , Tcounter, Tprops, Spec)
2: eval← []
3: for all t ∈ T do
4: eval.append(|p(t.x)− t.y|)
5: for all t ∈ Tcounter do
6: eval.append

(
ISCORRECT(p(t.x), t.x, Spec)

)

7: for all t ∈ Tprops do
8: eval.append

(
SATPROPERTY(p, t)

)

9: return eval

failing. The error on a complete test (t.x, t.y) is determined
in a conventional way, by calculating the difference between
the output p(t.x) produced by the program and t.y (line 4),
and the corresponding element of eval is set to |p(t.x)− p.y|.
Solutions with smaller values in eval are preferred, and a zero
eval vector is an ideal evaluation.

The evaluation vector eval is used at a few steps of the
algorithm, one of them being the determination of the number
of passed tests in the NUMPASSED function mentioned earlier:
for incomplete tests, we simply count the number of those
passed; for complete tests, we use a relative threshold of 5% of
the target output of a given test, i.e., a test (x, y) is considered
passed if |ŷ− y|/|y| < 0.05. Another use of eval is to perform
selection of candidate solutions (Section IV-D).

It is worth noting that the SMT solver serves two purposes
in CDSR: 1) verification of programs (VERIFY) and 2) testing
of programs on tests (ISCORRECT, SATPROPERTY).

C. CDSRp: CDSR With Properties

In the basic variant of CDSR described above, the out-
come of the program’s confrontation with the specification in
VERIFY does not influence its evaluation vector eval: it can
only give rise to an incomplete test to be used for evaluating
programs in subsequent generations. One may wonder whether
allowing programs to be directly confronted with constraints
could lead to a more informative search guidance.

This observation inclined us to introduce an extended vari-
ant, dubbed CDSRp, in which we augment Tall with the
additional tests Tprops that verify if a candidate program passes
a given constraint. Technically, given a specification (Pre,
Post), Post can be represented as a conjunction of one or more
properties Posti. For each property, we create a test of the form
(Pre, Posti). In EVAL, properties are treated similarly to incom-
plete tests, i.e., the SMT solver is invoked to verify whether
p meets a property, in which case we set the corresponding
element of eval to 0, and otherwise to 1. In Algorithm 2,
this is represented by calling the function SATPROPERTY in
line 8. In the following, we treat properties like incomplete
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tests, with the exception that they are not counted toward
the verification ratio α, since that could stop the counterex-
ample generating process altogether in certain circumstances
(e.g., α = 1). Unless stated otherwise, further considerations
about CDSR apply also to CDSRp.

D. Using Evaluation Vectors for Selection

The basic variant of CDSR uses simple tournament selec-
tion, which requires scalar fitness, so we compute the sum of
squares of the elements of eval (i.e., the square error), and use
the resulting scalar as fitness to be minimized. The impact of
failing an incomplete test (and a property in CDSRp) is thus
unitary (deteriorates the fitness by 1), while each complete test
(x, y) contributes |ŷ−y|2 to the fitness. The relative influence of
complete and incomplete tests depends thus on the errors com-
mitted on complete tests. This is, unfortunately, task-specific:
if the output variable y has large magnitude or/and the train-
ing set T is large, the relative importance of constraints is
low. This could be addressed by weighing the elements of
eval that represent the outcomes of complete and incomplete
tests. However, tuning that parameter per benchmark would
likely be tedious.

Rather than that, we propose a nonscalar variant of CDSR,
which relies on lexicase selection [15], a selection method
that treats each test as a separate objective and so avoids
aggregation of solution’s performance on individual tests.
This characteristic addresses the incomparability of solution’s
performance on complete and incomplete tests. We rely on
ε-lexicase [16], which can handle continuous test outcomes,
and let it directly inspect the evaluation vectors. Given a pop-
ulation P of programs, each holding an evaluation vector eval
of length n, a single act of selection proceeds as follows.

1) Let I be the set of indices of tests, I = {1, . . . , n}.
2) A random index i is drawn from I without replacement.
3) If i corresponds to an incomplete test in Tall, all pro-

grams that fail it are discarded from P (unless they all
fail, in which case P remains intact). If i corresponds to a
complete test, programs that commit on it errors greater
than the median absolute deviation from the median of
errors committed by all programs on that test [16] is
discarded.

4) If |P| = 1, the only program left in P is returned as the
outcome of selection.

5) If I = ∅, a random element of P is returned. Otherwise,
go to step 2.

E. Weighing of Properties in CDSRp

Lexicase selection does not fuse the outcomes of com-
plete and incomplete tests and is thus immune to the output
magnitude problem. Nevertheless, the relative importance of
complete tests and properties in CDSRp still depends on their
numbers in Tall. The number of properties is usually small
(up to 7 in the benchmarks used in this article) compared to
the size of the training set (300). As a result, their impact on
selection can be relatively low.

To address this problem, we equip CDSRp with a param-
eter wp that weighs the contribution of properties to the

selection process. When using CDSR with lexicase selection,
wp impacts the odds of drawing incomplete tests in step 2
(Section IV-D. Consider Tall that holds nine complete tests and
one property: with the default setting of wp = 1, the proba-
bility of using the property in the first iteration of selection is
(1/10). Setting wp = 3 increases it to (3/12). Analogously, in
the CDSR variant with tournament selection, the binary out-
comes of testing programs for properties (0 or 1) are multiplied
by wp, so that they effectively become 0 or wp, and thus not
satisfying a constraint is associated with a larger penalty.

F. Stopping Condition and Calculation of Result

To reduce overfitting, CDSR performs early stopping by ter-
minating search when the error of the best-so-far solution on
a validation set (comprising 75 examples in our experiments)
does not improve in a certain time window (here: 25 genera-
tions). The solution with the lowest error on the validation set
is updated throughout the run and returned as a final result.

V. RELATED WORK

Apart from the CDGP [11], [12] that CDSR is based
on, only a handful of studies explicitly introduce formal
constraints in evolutionary program synthesis.

Johnson [17] incorporated model checking by specifying
tasks via computation tree logic (CTL) to evolve finite state
machines, and used it to learn a controller for a vending
machine. The fitness was the number of satisfied CTL for-
mulas. A similar approach by He et al. [18] computed fitness
as the number of postcondition clauses which can be inferred
from the precondition and the program being evaluated. Hoare
logic was used to specify tasks and verification.

Katz and Peled [19], [20] considered combining model
checking and GP. In their method, program specification
consists of several independent linear temporal logic (LTL)
properties, and several levels of passing a property are
defined (i.e., passing for all/some/no input). Other than these
levels and the LTL formalism, this approach is very sim-
ilar to the two described above. For parametric programs
(i.e., with unbounded input size), the authors abandoned the
idea of providing full correctness guarantees and tested pro-
grams on counterexamples found by model checking. Katz
and Peled [19] briefly considered using an SMT solver for
verification instead of model checking, and even used coun-
terexamples to provide for more granular fitness in a similar
spirit as CDSR.

The use of coevolutionary GP to synthesize programs from
formal specifications in first-order logic (augmented with
arrays and arithmetic operators) was researched by Arcuri
and Yao [21]. They maintained separate populations of tests
(generated from the specification) and programs within a com-
petitive coevolution framework. Programs were rewarded for
passing tests and tests for failing programs. The fitness of
programs was calculated using a heuristic that estimated how
close a postcondition was from being satisfied by the pro-
gram’s output for specific tests, so there is no guarantee that
the returned program is consistent with the specification for
all possible inputs.
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TABLE I
LIST OF SRFC BENCHMARKS. �f (x) > 0 MEANS f IS MONOTONOUSLY INCREASING WITH x

In formal approaches to program synthesis, the closest
approach to CDSR is counterexample guided inductive syn-
thesis (CEGIS), introduced by Solar-Lezama et al. [22], [23].
CEGIS is a general scheme of combining an inductive pro-
gram synthesizer with a formal verification procedure. One
starts with a randomly generated test case, from which the syn-
thesizer produces a program. The program is verified, which
returns a counterexample that is added to the set of test cases.
This cycle is repeated until a globally correct program is found.
From that perspective, CDSR is an instance of CEGIS, where
the inductive program synthesizer is GP, and the verification
is realized by an SMT solver.

VI. BENCHMARKS

Since there are no well-established benchmarks for
SRFC, we adapted several well-known regression benchmarks
from [24] (page 8, Table 3) and defined formal constraints for
them; see Tables I and II. We included also three benchmarks

(gravity, res2, and res3) from our previous work [1] based on
the well-known laws of physics—Newton’s law of universal
gravitation, and the equivalent resistance of two and three
resistors connected in parallel, respectively. Additionally, we
included a real-world benchmark hardware and its modi-
fied version hardware2, both with unknown correct model,
described in more detail in Section VIII.

Each benchmark consists of the following.
1) Preconditions specifying which function’s arguments are

valid. For example, for gravity these are m1, m2, r > 0.
2) A set of formal constraints that we devised based

on the properties of solutions. For example, for
gravity, we selected symmetry with respect to masses
g(m1, m2, r) = g(m2, m1, r), non-negative codomain
g(m1, m2, r) ≥ 0, and increasing monotonicity with
respect to masses.

3) 500 examples generated from the benchmark-dependent
uniform distribution specified in Table II—for problems
with a known target model (all except hardware
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TABLE II
CHARACTERISTICS OF THE SRFC BENCHMARKS. U(a, b) STANDS FOR A

UNIFORM DISTRIBUTION IN RANGE [a, b], INCLUSIVE FOR a AND b

Listing 1. res2 benchmark in SyGuS format (noise-free version). Each
constraint defines one property. Constraints representing tests are omitted.

benchmarks). All examples are required to meet the
precondition. Examples are generated once per each
benchmark, and in every algorithm’s run, they are
randomly partitioned into a training set (300 examples),
a validation set (75), and a test set (125).

There are two variants of each benchmark (with the excep-
tion of the hardware benchmarks): 1) in the noise-free bench-
marks, examples are generated directly from the ground truth
formulas and 2) in the noisy ones (“N” appended to name),
inputs and outputs generated for the noise-free benchmark are
distorted by a multiplicative Gaussian noise with μ = 1 and
σ = 0.01 [i.e., x′j = xj ·N (1, 0.01)].

The benchmarks are represented in the SyGuS format [25],
which we slightly extended to explicitly delineate precondi-
tions; see example in Listing 1.

VII. EXPERIMENTS

We examine the efficiency and generalization power of
CDSR variants in different configurations. CDSR inherits most
of its hyperparameters and components from GP and adds sev-
eral of its own. The hyperparameters of CDSR that remain
constant throughout experiments are shown in Table III. All
setups use the most common GP search operators, i.e., subtree-
swapping crossover and a mutation operator that replaces a
randomly selected subtree with a new randomly generated
subtree.

TABLE III
SETTINGS OF HYPERPARAMETERS OF CDSR

TABLE IV
SETTINGS OF HYPERPARAMETERS OF CONVENTIONAL REGRESSION

ALGORITHMS USED IN THE EXPERIMENT

Fig. 2. Grammar of programs generated by CDSR. xi is the ith input variable,
and U(−1, 1) is an random constant sampled from [− 1, 1].

The instruction set of CDSR contains standard arithmetic
operators (+, −, *, /), and the formal grammar is presented
in Fig. 2. Division by 0 is not tolerated and is penalized with
the worst possible fitness (+∞).

Our implementation1 uses the Z3 [26], [27] SMT solver.

1https://github.com/iwob/CDGP
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TABLE V
SUCCESS RATES FOR ALL BENCHMARKS (N = NOISE)

A. Impact of Verification Threshold α

In the following, we compare CDSR and CDSRp in combi-
nation with two considered selection methods: 1) tournament
and 2) ε-lexicase, with various settings of hyperparameters.
For CDSRp, we use wp = 1 and wp = 5. We also employ reg-
ular GP as a baseline, which is configured in the same way as
CDSR but no formal verification is conducted during runtime
and constraints are effectively ignored.

We assess first the impact of α, the ratio of tests that a
program must pass in order to be submitted to verification.
Table VII presents the average ratios of satisfied constraints,
aggregated across all benchmarks, for α = 0.75 and α = 1.0.
Note that this metric is different from the success rate, where
“success” is identified with all constraints being satisfied. We
can observe that α did not make a big difference in the num-
ber of constraints satisfied by the algorithms. However, the
MSE on test set was overall much better for α = 1.0, and
thus, we continue our analysis only for that setting, which
requires a program to pass all tests in order to be submitted
to verification.

B. Comparison of CDSR Variants

We evaluate the variants of CDSR on the success rate
(Table V), the ratio of satisfied constraints to the total number
of constraints of a given benchmark (“qualitative” gener-
alization, Table VI), and on the median MSE on test set
(“quantitative” generalization, Table VIII). Overall, the highest
success rate and satisfiability ratio, both on benchmarks with
and without noise, was obtained by CDSRp/Lex/wp = 5. This
proves that the additional focus on constraints was effective.

TABLE VI
AVERAGE RATIO OF SATISFIED CONSTRAINTS FOR

ALL BENCHMARKS (N = NOISE)

TABLE VII
AVERAGE RATIO OF SATISFIED CONSTRAINTS,

AGGREGATED ACROSS ALL BENCHMARKS

This was, however, achieved at the cost of a significantly worse
MSE, especially for CDSRp with lexicase selection.

For CDSRp, lexicase achieves better constraints satisfia-
bility than the corresponding tournament selection variants.
However, for test-set MSE, tournament variants of CDSRp

are better than the lexicase ones. Interestingly, the situation
is reversed for “vanilla” CDSR, where lexicase leads to lower
MSE on the test set, while the fraction of satisfied constraints
is higher for tournament selection. Unsurprisingly, GP fares
the worst in terms of satisfaction of constraints, although it
must be noted that its test-set MSE is competitive and, in the
case of lexicase selection, outperforms the CDSR variants.

Statistical analysis with the Friedman test and Nemenyi
post-hoc test [28] showed that CDSRp/Lex/wp = 5 satis-
fies significantly more constraints (p-values < 0.0023) than
all other configurations except CDSRp/Tour/wp = 1 and
CDSRp/Lex/wp = 1, the latter of which satisfies signifi-
cantly more constraints (p-value < 0.0078) than the worst
CDSR configuration, i.e., CDSR/Lex, and all GP configura-
tions (p-values < 0.002). For test-set MSE, CDSR/Lex was
better (p-values < 0.002) than both CDSRp/Lex variants, and
GP/Lex was better than all CDSRp/Lex (p-values = 0.001)
and CDSRp/Tour variants (p-values < 0.022).
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TABLE VIII
MEDIAN MSE ON TEST SET FOR ALL BENCHMARKS (N = NOISE)

C. Comparison With Conventional Regression Algorithms

In this section, we compare CDSR with several popular
constraint-agnostic regression algorithms. For such algorithms,
the only source of information about a regression problem
is the training set of examples. Therefore, if a model they
produce meets the constraints, this can be only due to some
inherent biases of a given algorithm, its (usually implicit) capa-
bility of “inferring” a constraint from the training sample, or
simply pure chance.

The regression algorithms, together with a grid of hyperpa-
rameters they were tested on, are presented in Table IV. We
followed [29] in the selection of algorithms and their hyperpa-
rameters and used the open-source framework proposed there.2

We assess each setting of hyperparameters with the average
prediction error obtained from fivefold cross-validation. To
measure the performance of the best parametrization of a given
algorithm (i.e., that with the lowest cross-validation error), we
test it on the test set. This entire procedure is repeated ten times
for different partitioning of data into training set and test set,
and the average test error is the final measure of quality of the
regression algorithm.

Because some of the regression algorithms considered here
produce models that involve operations not supported by the
NRA logic in contemporary SMT-solvers (e.g., logarithms
or trigonometric functions), we cannot apply to them formal
verification to determine whether a model satisfies a given con-
straint or not. Therefore, we apply approximate verification, in
which for each constraint we check whether it is satisfied for
a number of points in the grid of benchmark’s inputs domain
(Table II). We use the following heuristic to determine the
number of points for each benchmark: a grid of 41 equally

2https://github.com/EpistasisLab/srbench

TABLE IX
AVERAGE RATIO OF SATISFIED CONSTRAINTS. THE DEEPER THE

SHADING, THE BETTER; BEST PER-BENCHMARK VALUE IN BOLD

spaced points per dimension for arity 1 (41 points in total),
11 points for arity 2 (121 points in total), and 7 points for
arity 3 (343 points in total). For the hardware benchmarks
with arity 6, there are 1024 points in total. This evaluation
is only approximate, and false positive errors (i.e., constraints
incorrectly claimed as satisfied) can occur; for CDSR runs, we
compared the results of the approximate verifier with those of
the formal verification, and the discrepancy was low.

We evaluate the algorithms on the ratio of satisfied con-
straints (Table IX) and the MSE on the test set (Table X). As
expected, the benchmarks vary in difficulty. The best MSE is
achieved by KernelRidge, which has also a decent rate of satis-
fied constraints. In contrast, the second algorithm with the best
MSE, i.e., multilayer perceptron (MLP), achieved the lowest
ratio of satisfied constraints. The presence of noise, at least
at the assumed magnitude (normal distribution with σ = 1%
of the value which is being distorted), does not have much
effect on the number of satisfied constraints. The success rate
(not presented here for brevity) was either 0% or 100%, and
the latter case was always co-occurring with 100% of satisfied
properties.

Friedman’s test for multiple achievements of multiple sub-
jects with the Nemenyi post-hoc test [28] indicates that
AdaBoost, RandomForest, and XGBoost satisfy significantly
more constraints (p-value < 0.025) than MLP. As for the
MSE on the test set, there were several statistically signif-
icant differences—LassoLars, LinearRegression, LinearSVR,
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TABLE X
MEDIAN MSE ON TEST SET (N = NOISE). DARKER SHADING MARKS BETTER VALUES; BEST VALUE IN BOLD

TABLE XI
COMPARISON OF THE BEST CONSTRAINT-AGNOSTIC REGRESSION

ALGORITHMS WITH THE BEST CONFIGURATIONS OF CDSR

and SGD were dominated (p-values < 0.034) by all other
approaches with the exception of AdaBoost, which was sig-
nificantly better (p-values < 0.04) only than LassoLars and
LinearSVR. Only KernelRidge managed to be significantly
better than AdaBoost (p-value 0.03).

In Table XI, we juxtapose the above best constraint-agnostic
algorithms, RandomForest (the best ratio of satisfied con-
straints and success rate) and KernelRidge (the best MSE on
the test set), with the two best-performing CDSR configura-
tions: CDSRp/Lex/α = 1.0/wp = 5 (the best ratio; CDSRsat
in the following) and CDSR/Lex/α = 1.0 (the best MSE;
CDSRMSE in the following). CDSRsat boasts the best average
success rate of 42% and ranks first on this metric calculated
per benchmark. Its success rate per benchmark is also much
more evenly distributed, in contrast to the constraint-agnostic
algorithms, which either have a success rate of 0% or 100%. To
ensure fair comparison, all methods are verified stochastically,

i.e., by querying models on inputs sampled uniformly from the
domains listed in Table II and checking whether the constraints
are met. Notice that this does not guarantee meeting the con-
straints, but only indicates that no constraint violation has been
observed in the process.

Surprisingly, both constraint-agnostic methods managed to
satisfy on average a greater fraction of constraints than the best
variants of CDSR. This may, however, originate in the specific
choice of constraints used in our benchmark suite. To investi-
gate that aspect, in Table XII, we present the satisfiability ratio
for each constraint in each benchmark, and label them by type
(for brevity, we present these only for the noise-free bench-
marks; the results for the noisy benchmarks are very similar).
Clearly, some constraints are easy to satisfy for CDSRsat and
hard for constraint-agnostic algorithms, for example the equal-
ity constraint for keijzer12 (x = y = 0 =⇒ f (x, y) = 0),
monotonicity constraints for gravity (�f (mi) > 0), and the
output bound for res2 (f (r1, r2) ≤ r1 ∧ f (r1, r2) ≤ r2).
On the other hand, CDSR is worse on many other con-
straints. A clear pattern can be observed in terms of types
of constraints: while the conventional algorithms outperform
CDSR on symmetry constraints and bound constraints, CDSR
is unmatched on monotonicity and equality constraints. The
prevalence of the former two types of constraints in our suite
(34 versus 12 constraints) is indeed the cause of better aver-
age satisfiability of constraint-agnostic methods, reported in
Table XI.

In Table XI, CDSRMSE achieves the best average rank on
MSE, and in general, most of the lowest MSE scores were
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Fig. 3. Comparison in terms of rank on test-set MSE (minimized), success
rate (maximized), and satisfaction of constraints (marker size and hue).

obtained by either of the CDSR variants. This result is sur-
prising: it is natural to expect CDSR, and especially CDSRsat
(which uses CDSRp), to trade its MSE in favor of meeting the
constraints. A possible explanation is that the search space for
CDSR, restricted by the constraints, is effectively smaller than
for the constraint-agnostic methods, which reduces the risk of
overfitting and improves generalization. However, the proper-
ties of representations used by particular methods (regression
trees and kernels versus explicit mathematical formulas used
by CDSR) can play a role here too.

Statistical analysis with the Friedman test and Nemenyi
post-hoc test [28] reveals that all algorithms satisfy
significantly more constraints than CDSRMSE (p-values
< 0.017), CDSRMSE achieves significantly lower MSE
than RandomForest and CDSRsat (p-values 0.001), and
KernelRidge had significantly lower MSE than RandomForest
(p-value < 0.003).

The conventional regression algorithms are much faster than
CDSR, which is slowed down by the burden of formal veri-
fication. The fraction of the runtime spent in the SMT solver
to the total runtime of CDSR is on average 0.1 for α = 1
and 0.3 for α = 0.75, while for CDSRp it is about 0.9 for
tournament selection and 0.3 for lexicase selection, regardless
of the value of α—lexicase selection is more expensive com-
putationally, and thus, the calls to the solver take a smaller
fraction of total time than for tournament selection. However,
optimizing CDSR for maximum speed was not our priority,
and relatively easy improvements (e.g., approximate verifica-
tion of constraints in CDSRp instead of full verification with
the SMT solver) could significantly reduce its runtime.

Fig. 3 summarizes the results visually in terms of gener-
alization (test-set MSE, horizontal axis, and minimized rank)
and the average success rate (vertical axis and maximized).
The Pareto front spanning these two metrics is formed mostly
by configurations of CDSR, stretching from CDSR/Lex/α =
1.0 on one end to CDSRp/Lex/α = 0.75/wp = 5 on the other.

TABLE XII
SATISFIABILITY RATIO OF INDIVIDUAL CONSTRAINTS FOR THE

NOISE-FREE BENCHMARKS. LEGEND: (E) EQUALITY ,

(C) CONSTANT OUTPUT BOUND , (V) VARIABLE OUTPUT BOUND ,

(S) SYMMETRY W.R.T. ARGUMENTS , (M) MONOTONICITY . THE

ORDER OF CONSTRAINTS IS THE SAME AS IN TABLE I

The only nondominated reference method is GP/Lex, but it is
located at the very end of the front and achieves a very low
success rate. Notably, many of the reference methods align
in two horizontal bands, which is due to the fact that they
meet the constraints by mere chance and do that on a system-
atic basis. The percentage of satisfied constraints (reflected by
marker size) significantly correlates with the average success
rate, though less so for the constraint-agnostic methods.

VIII. REAL-WORLD CASE STUDY

Even though some of the benchmarks used here can be
viewed as realistic in concerning the known laws of physics
and involving noise, most of them do not involve real data. To
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corroborate our claims in a real-world scenario, our suite of
benchmarks includes also the Computer Hardware Data Set
problem from the UCI ML repository [30], for which the
underlying true model of the sought dependency is not known.
The task is to estimate the relative performance score of a CPU
based on six integer-valued parameters (the largest number in
our suite): machine cycle length, the size of cache memory, the
minimum and maximum admissible size of memory, and the
minimum and maximum number of channels. The dataset con-
tains 209 examples, which we split randomly into a training
set (157 examples) and a test set (52 examples).

We devise three constraints for this task that seem plausi-
ble according to the domain knowledge: 1) the performance
score must be non-negative (range constraint); 2) the score
cannot deteriorate when decreasing the machine cycle length;
and 3) when increasing the cache size (monotonicity).

Applying all CDSR variants and the reference regres-
sion methods to this problem reveals the superiority of
GradientBoosting in terms of the training-set MSE (median
of 9.6 × 101). However, the test-set MSE of this model
is much worse (2.3 × 103), suggesting heavy overfitting,
and many configurations of CDSR catch up with it: the
median MSE ranges from 2.8 (CDSR/Tour/α = 1.0) to
5.6 × 103 (CDSRp/Lex/α = 1.0/wp= 1). In terms of con-
straints, GradientBoosting and a few other reference mod-
els (AdaBoost, LassoLars, RandomForest, and XGBoost)
achieve 100% ratio of satisfied constraints on average, while
CDSR configurations manage to meet between 25% of con-
straints (CDSR/Tour/α = 0.75) and 89% of constraints
(CDSR/Lex/α = 1.0/wp = 5); nevertheless, many CDSR runs
produced models that met all constraints.

We hypothesize that the main reason why CDSR yields to
the reference methods is the relative simplicity of the hardware
problem—the authors of the benchmark admit that even a sim-
ple linear regression model achieves almost perfect correlation
with the target score. To illustrate validity of this claim, we
consider a transformed variant of this problem, in which we
replace the machine cycle variable with its reciprocity, i.e., the
frequency of the CPU clock. While both CDSR and reference
methods sustain roughly the same ratio of satisfied properties,
the test-set MSE of the latter deteriorates substantially and
ranges between 2.4 × 103 and 1.8 × 104. CDSR, to the con-
trary, maintains roughly the same MSE on the test set as on
the training set, ranging from 3.1×103 to 5.4×103. This sug-
gests that the reference methods meet the required constraints
by mere chance, and fail to generalize well when a problem
becomes more complex. CDSR, to the contrary, provides both
good generalization and good ratio of fulfilled constraints.

The detailed results for the original benchmark (hardware)
and its modified version (hardware2) are included at the
bottom of the previously presented tables.

IX. CONCLUSION

We demonstrated that CDSR achieves better success rate,
better MSE on the test set, can synthesize models that
satisfy constraints which prove impossible to achieve for
the constraint-agnostic approaches, and performs well on

real-world problems. This clearly merits involving formal
verification, which allows virtually unlimited expressiveness.
In this study, we used fairly general constraints; there are
arguably many applications where domain knowledge implies
constraints that are more complex and precise, which may
further limit the search space and improve generalization.

We consider the satisfiability ratio of formal constraints
to be an interesting measure of generalization. At a more
detailed level, individual properties can be considered a form
of multiobjective characterization of generalization. Contrary
to the quantitative evaluation of generalization that reflects the
point-wise errors, constraints describe behavior that a function
exhibits over multiple data points, and thus can be thought
of as a “higher-order generalization”, or, as we call it in
this study, qualitative generalization. Exploring a conceptual
framework built on these observations can be an interesting
avenue of future research.
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