
Tutorial on MPI: The
Message-Passing Interface

William Gropp
A

R
G

O
N

NE

NATIONAL LABORA
TO

R
Y

U
N

IVERSITY OF C
HIC

A
G

O

•

•

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439

gropp@mcs.anl.gov

1

Course Outline

� Background on Parallel Computing

� Getting Started

� MPI Basics

� Intermediate MPI

� Tools for writing libraries

� Final comments

Thanks to Rusty Lusk for some of the material in this
tutorial.

This tutorial may be used in conjunction with
the book \Using MPI" which contains detailed
descriptions of the use of the MPI routines.

� Material that beings with this symbol is `advanced'

and may be skipped on a �rst reading.

2

Background

� Parallel Computing

� Communicating with other processes

� Cooperative operations

� One-sided operations

� The MPI process

3

Parallel Computing

� Separate workers or processes

� Interact by exchanging information

4

Types of parallel computing

All use di�erent data for each worker

Data-parallel Same operations on di�erent

data. Also called SIMD

SPMD Same program, di�erent data

MIMD Di�erent programs, di�erent data

SPMD and MIMD are essentially the same

because any MIMD can be made SPMD

SIMD is also equivalent, but in a less

practical sense.

MPI is primarily for SPMD/MIMD. HPF is

an example of a SIMD interface.

5

Communicating with other processes

Data must be exchanged with other workers

� Cooperative | all parties agree to

transfer data

� One sided | one worker performs

transfer of data

6

Cooperative operations

Message-passing is an approach that makes

the exchange of data cooperative.

Data must both be explicitly sent and

received.

An advantage is that any change in the

receiver's memory is made with the receiver's

participation.

SEND(data)

Process 0 Process 1

RECV(data)

7

One-sided operations

One-sided operations between parallel

processes include remote memory reads and

writes.

An advantage is that data can be accessed

without waiting for another process

Process 0 Process 1

Process 0 Process 1

(Memory)

PUT(data)

(Memory)

GET(data)

8

Class Example

Take a pad of paper. Algorithm: Initialize with the
number of neighbors you have

� Compute average of your neighbor's values and
subtract from your value. Make that your new
value.

� Repeat until done

Questions

1. How do you get values from your neighbors?

2. Which step or iteration do they correspond to?
Do you know? Do you care?

3. How do you decide when you are done?

9

Hardware models

The previous example illustrates the

hardware models by how data is exchanged

among workers.

� Distributed memory (e.g., Paragon, IBM

SPx, workstation network)

� Shared memory (e.g., SGI Power

Challenge, Cray T3D)

Either may be used with SIMD or MIMD

software models.

� All memory is distributed.

10

What is MPI?

� A message-passing library speci�cation

{ message-passing model

{ not a compiler speci�cation

{ not a speci�c product

� For parallel computers, clusters, and heterogeneous
networks

� Full-featured

� Designed to permit (unleash?) the development of
parallel software libraries

� Designed to provide access to advanced parallel
hardware for

{ end users

{ library writers

{ tool developers

11

Motivation for a New Design

� Message Passing now mature as programming
paradigm

{ well understood

{ e�cient match to hardware

{ many applications

� Vendor systems not portable

� Portable systems are mostly research projects

{ incomplete

{ lack vendor support

{ not at most e�cient level

12

Motivation (cont.)

Few systems o�er the full range of desired features.

� modularity (for libraries)

� access to peak performance

� portability

� heterogeneity

� subgroups

� topologies

� performance measurement tools

13

The MPI Process

� Began at Williamsburg Workshop in April, 1992

� Organized at Supercomputing '92 (November)

� Followed HPF format and process

� Met every six weeks for two days

� Extensive, open email discussions

� Drafts, readings, votes

� Pre-�nal draft distributed at Supercomputing '93

� Two-month public comment period

� Final version of draft in May, 1994

� Widely available now on the Web, ftp sites, netlib
(http://www.mcs.anl.gov/mpi/index.html)

� Public implementations available

� Vendor implementations coming soon

14

Who Designed MPI?

� Broad participation

� Vendors

{ IBM, Intel, TMC, Meiko, Cray, Convex, Ncube

� Library writers

{ PVM, p4, Zipcode, TCGMSG, Chameleon,
Express, Linda

� Application specialists and consultants

Companies Laboratories Universities
ARCO ANL UC Santa Barbara
Convex GMD Syracuse U
Cray Res LANL Michigan State U
IBM LLNL Oregon Grad Inst
Intel NOAA U of New Mexico
KAI NSF Miss. State U.
Meiko ORNL U of Southampton
NAG PNL U of Colorado
nCUBE Sandia Yale U
ParaSoft SDSC U of Tennessee
Shell SRC U of Maryland
TMC Western Mich U

U of Edinburgh
Cornell U.
Rice U.
U of San Francisco

15

Features of MPI

� General

{ Communicators combine context and group for
message security

{ Thread safety

� Point-to-point communication

{ Structured bu�ers and derived datatypes,
heterogeneity

{ Modes: normal (blocking and non-blocking),
synchronous, ready (to allow access to fast
protocols), bu�ered

� Collective

{ Both built-in and user-de�ned collective
operations

{ Large number of data movement routines

{ Subgroups de�ned directly or by topology

16

Features of MPI (cont.)

� Application-oriented process topologies

{ Built-in support for grids and graphs (uses
groups)

� Pro�ling

{ Hooks allow users to intercept MPI calls to
install their own tools

� Environmental

{ inquiry

{ error control

17

Features not in MPI

� Non-message-passing concepts not included:

{ process management

{ remote memory transfers

{ active messages

{ threads

{ virtual shared memory

� MPI does not address these issues, but has tried to
remain compatible with these ideas (e.g. thread
safety as a goal, intercommunicators)

18

Is MPI Large or Small?

� MPI is large (125 functions)

{ MPI's extensive functionality requires many
functions

{ Number of functions not necessarily a measure
of complexity

� MPI is small (6 functions)

{ Many parallel programs can be written with just
6 basic functions.

� MPI is just right

{ One can access exibility when it is required.

{ One need not master all parts of MPI to use it.

19

Where to use MPI?

� You need a portable parallel program

� You are writing a parallel library

� You have irregular or dynamic data

relationships that do not �t a data

parallel model

Where not to use MPI:

� You can use HPF or a parallel Fortran 90

� You don't need parallelism at all

� You can use libraries (which may be

written in MPI)

20

Why learn MPI?

� Portable

� Expressive

� Good way to learn about subtle issues in

parallel computing

21

Getting started

� Writing MPI programs

� Compiling and linking

� Running MPI programs

� More information

{ Using MPI by William Gropp, Ewing Lusk,
and Anthony Skjellum,

{ The LAM companion to \Using MPI..." by
Zdzislaw Meglicki

{ Designing and Building Parallel Programs by
Ian Foster.

{ A Tutorial/User's Guide for MPI by Peter
Pacheco
(ftp://math.usfca.edu/pub/MPI/mpi.guide.ps)

{ The MPI standard and other information is
available at http://www.mcs.anl.gov/mpi. Also
the source for several implementations.

22

Writing MPI programs

#include "mpi.h"

#include <stdio.h>

int main(argc, argv)

int argc;

char **argv;

{

MPI_Init(&argc, &argv);

printf("Hello world\n");

MPI_Finalize();

return 0;

}

23

Commentary

� #include "mpi.h" provides basic MPI

de�nitions and types

� MPI_Init starts MPI

� MPI_Finalize exits MPI

� Note that all non-MPI routines are local;

thus the printf run on each process

24

Compiling and linking

For simple programs, special compiler

commands can be used. For large projects,

it is best to use a standard Make�le.

The MPICH implementation provides

the commands mpicc and mpif77

as well as `Makefile' examples in

`/usr/local/mpi/examples/Makefile.in'

25

Special compilation commands

The commands

mpicc -o first first.c
mpif77 -o firstf firstf.f

may be used to build simple programs when using
MPICH.

These provide special options that exploit the pro�ling
features of MPI

-mpilog Generate log �les of MPI calls

-mpitrace Trace execution of MPI calls

-mpianim Real-time animation of MPI (not available
on all systems)

There are speci�c to the MPICH implementation;

other implementations may provide similar commands

(e.g., mpcc and mpxlf on IBM SP2).

26

Using Make�les

The �le `Makefile.in' is a template Make�le.

The program (script) `mpireconfig' translates

this to a Make�le for a particular system.

This allows you to use the same Make�le for

a network of workstations and a massively

parallel computer, even when they use

di�erent compilers, libraries, and linker

options.

mpireconfig Makefile

Note that you must have `mpireconfig' in

your PATH.

27

Sample Make�le.in

User configurable options

ARCH = @ARCH@
COMM = @COMM@
INSTALL_DIR = @INSTALL_DIR@
CC = @CC@
F77 = @F77@
CLINKER = @CLINKER@
FLINKER = @FLINKER@
OPTFLAGS = @OPTFLAGS@
#
LIB_PATH = -L$(INSTALL_DIR)/lib/$(ARCH)/$(COMM)
FLIB_PATH =
@FLIB_PATH_LEADER@$(INSTALL_DIR)/lib/$(ARCH)/$(COMM)
LIB_LIST = @LIB_LIST@
#
INCLUDE_DIR = @INCLUDE_PATH@ -I$(INSTALL_DIR)/include

End User configurable options

28

Sample Make�le.in (con't)

CFLAGS = @CFLAGS@ $(OPTFLAGS) $(INCLUDE_DIR) -DMPI_$(ARCH)
FFLAGS = @FFLAGS@ $(INCLUDE_DIR) $(OPTFLAGS)
LIBS = $(LIB_PATH) $(LIB_LIST)
FLIBS = $(FLIB_PATH) $(LIB_LIST)
EXECS = hello

default: hello

all: $(EXECS)

hello: hello.o $(INSTALL_DIR)/include/mpi.h
$(CLINKER) $(OPTFLAGS) -o hello hello.o \
$(LIB_PATH) $(LIB_LIST) -lm

clean:
/bin/rm -f *.o *~ PI* $(EXECS)

.c.o:
$(CC) $(CFLAGS) -c $*.c

.f.o:
$(F77) $(FFLAGS) -c $*.f

29

Running MPI programs

mpirun -np 2 hello

`mpirun' is not part of the standard, but

some version of it is common with several

MPI implementations. The version shown

here is for the MPICH implementation of

MPI.

� Just as Fortran does not specify how

Fortran programs are started, MPI does not

specify how MPI programs are started.

� The option -t shows the commands that

mpirun would execute; you can use this to

�nd out how mpirun starts programs on yor

system. The option -help shows all options

to mpirun.

30

Finding out about the environment

Two of the �rst questions asked in a parallel

program are: How many processes are there?

and Who am I?

How many is answered with MPI_Comm_size

and who am I is answered with MPI_Comm_rank.

The rank is a number between zero and

size-1.

31

A simple program

#include "mpi.h"
#include <stdio.h>

int main(argc, argv)
int argc;
char **argv;
{
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("Hello world! I'm %d of %d\n",

rank, size);
MPI_Finalize();
return 0;
}

32

Caveats

� These sample programs have been kept

as simple as possible by assuming that all

processes can do output. Not all parallel

systems provide this feature, and MPI

provides a way to handle this case.

33

Exercise - Getting Started

Objective: Learn how to login, write,

compile, and run a simple MPI program.

Run the \Hello world" programs. Try two

di�erent parallel computers. What does the

output look like?

34

Sending and Receiving messages

Process 0 Process 1

A:

B:

Send Recv

Questions:

� To whom is data sent?

� What is sent?

� How does the receiver identify it?

35

Current Message-Passing

� A typical blocking send looks like

send(dest, type, address, length)

where

{ dest is an integer identi�er representing the
process to receive the message.

{ type is a nonnegative integer that the
destination can use to selectively screen
messages.

{ (address, length) describes a contiguous area in
memory containing the message to be sent.

and

� A typical global operation looks like:

broadcast(type, address, length)

� All of these speci�cations are a good match to
hardware, easy to understand, but too inexible.

36

The Bu�er

Sending and receiving only a contiguous array of
bytes:

� hides the real data structure from hardware which
might be able to handle it directly

� requires pre-packing dispersed data

{ rows of a matrix stored columnwise

{ general collections of structures

� prevents communications between machines with
di�erent representations (even lengths) for same
data type

37

Generalizing the Bu�er Description

� Speci�ed in MPI by starting address, datatype, and
count, where datatype is:

{ elementary (all C and Fortran datatypes)

{ contiguous array of datatypes

{ strided blocks of datatypes

{ indexed array of blocks of datatypes

{ general structure

� Datatypes are constructed recursively.

� Speci�cations of elementary datatypes allows
heterogeneous communication.

� Elimination of length in favor of count is clearer.

� Specifying application-oriented layout of data
allows maximal use of special hardware.

38

Generalizing the Type

� A single type �eld is too constraining. Often
overloaded to provide needed exibility.

� Problems:

{ under user control

{ wild cards allowed (MPI_ANY_TAG)

{ library use conicts with user and with other
libraries

39

Sample Program using Library Calls

Sub1 and Sub2 are from di�erent libraries.

Sub1();
Sub2();

Sub1a and Sub1b are from the same library

Sub1a();
Sub2();
Sub1b();

Thanks to Marc Snir for the following four examples

40

Correct Execution of Library Calls

Process 0 Process 1 Process 2

recv(any) send(1)

recv(any) send(0)

recv(1) send(0)

recv(2) send(1)

send(2) recv(0)

Sub1

Sub2

41

Incorrect Execution of Library Calls

Process 0 Process 1 Process 2

recv(any) send(1)

recv(any) send(0)

recv(1) send(0)

recv(2) send(1)

send(2) recv(0)

Sub1

Sub2

42

Correct Execution of Library Calls with Pending

Communcication

Process 0 Process 1 Process 2

recv(any) send(1)

send(0)

send(0)

recv(0)

recv(any)

send(1)

send(2) recv(1)

recv(2)

Sub1a

Sub2

Sub1b

43

Incorrect Execution of Library Calls with Pending

Communication

Process 0 Process 1 Process 2

recv(any) send(1)

send(0)

send(0)

recv(0)

recv(any)

send(1)

send(2) recv(1)

recv(2)

Sub1a

Sub2

Sub1b

44

Solution to the type problem

� A separate communication context for each family
of messages, used for queueing and matching.
(This has often been simulated in the past by
overloading the tag �eld.)

� No wild cards allowed, for security

� Allocated by the system, for security

� Types (tags, in MPI) retained for normal use (wild
cards OK)

45

Delimiting Scope of Communication

� Separate groups of processes working on
subproblems

{ Merging of process name space interferes with
modularity

{ \Local" process identi�ers desirable

� Parallel invocation of parallel libraries

{ Messages from application must be kept
separate from messages internal to library.

{ Knowledge of library message types interferes
with modularity.

{ Synchronizing before and after library calls is
undesirable.

46

Generalizing the Process Identi�er

� Collective operations typically operated on all
processes (although some systems provide
subgroups).

� This is too restrictive (e.g., need minimum over a
column or a sum across a row, of processes)

� MPI provides groups of processes

{ initial \all" group

{ group management routines (build, delete
groups)

� All communication (not just collective operations)
takes place in groups.

� A group and a context are combined in a
communicator.

� Source/destination in send/receive operations refer
to rank in group associated with a given
communicator. MPI_ANY_SOURCE permitted in a
receive.

47

MPI Basic Send/Receive

Thus the basic (blocking) send has become:

MPI_Send(start, count, datatype, dest, tag,
comm)

and the receive:

MPI_Recv(start, count, datatype, source, tag,
comm, status)

The source, tag, and count of the message actually
received can be retrieved from status.

Two simple collective operations:

MPI_Bcast(start, count, datatype, root, comm)
MPI_Reduce(start, result, count, datatype,

operation, root, comm)

48

Getting information about a message

MPI_Status status;
MPI_Recv(..., &status);
... status.MPI_TAG;
... status.MPI_SOURCE;
MPI_Get_count(&status, datatype, &count);

MPI_TAG and MPI_SOURCE primarily of use when
MPI_ANY_TAG and/or MPI_ANY_SOURCE in the receive.

MPI_Get_count may be used to determine how much
data of a particular type was received.

49

Simple Fortran example

program main
include 'mpif.h'

integer rank, size, to, from, tag, count, i, ierr
integer src, dest
integer st_source, st_tag, st_count
integer status(MPI_STATUS_SIZE)
double precision data(100)

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
print *, 'Process ', rank, ' of ', size, ' is alive'
dest = size - 1
src = 0

C
if (rank .eq. src) then

to = dest
count = 10
tag = 2001
do 10 i=1, 10

10 data(i) = i
call MPI_SEND(data, count, MPI_DOUBLE_PRECISION, to,

+ tag, MPI_COMM_WORLD, ierr)
else if (rank .eq. dest) then

tag = MPI_ANY_TAG
count = 10
from = MPI_ANY_SOURCE
call MPI_RECV(data, count, MPI_DOUBLE_PRECISION, from,

+ tag, MPI_COMM_WORLD, status, ierr)

50

Simple Fortran example (cont.)

call MPI_GET_COUNT(status, MPI_DOUBLE_PRECISION,
+ st_count, ierr)

st_source = status(MPI_SOURCE)
st_tag = status(MPI_TAG)

C
print *, 'Status info: source = ', st_source,

+ ' tag = ', st_tag, ' count = ', st_count
print *, rank, ' received', (data(i),i=1,10)

endif

call MPI_FINALIZE(ierr)
end

51

Six Function MPI

MPI is very simple. These six functions allow

you to write many programs:

MPI Init

MPI Finalize

MPI Comm size

MPI Comm rank

MPI Send

MPI Recv

52

A taste of things to come

The following examples show a C and

Fortran version of the same program.

This program computes PI (with a very

simple method) but does not use MPI_Send

and MPI_Recv. Instead, it uses collective

operations to send data to and from all of

the running processes. This gives a di�erent

six-function MPI set:

MPI Init

MPI Finalize

MPI Comm size

MPI Comm rank

MPI Bcast

MPI Reduce

53

Broadcast and Reduction

The routine MPI_Bcast sends data from one

process to all others.

The routine MPI_Reduce combines data from

all processes (by adding them in this case),

and returning the result to a single process.

54

Fortran example: PI

program main

include "mpif.h"

double precision PI25DT
parameter (PI25DT = 3.141592653589793238462643d0)

double precision mypi, pi, h, sum, x, f, a
integer n, myid, numprocs, i, rc

c function to integrate
f(a) = 4.d0 / (1.d0 + a*a)

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

10 if (myid .eq. 0) then
write(6,98)

98 format('Enter the number of intervals: (0 quits)')
read(5,99) n

99 format(i10)
endif

call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

55

Fortran example (cont.)

c check for quit signal
if (n .le. 0) goto 30

c calculate the interval size
h = 1.0d0/n

sum = 0.0d0
do 20 i = myid+1, n, numprocs

x = h * (dble(i) - 0.5d0)
sum = sum + f(x)

20 continue
mypi = h * sum

c collect all the partial sums
call MPI_REDUCE(mypi,pi,1,MPI_DOUBLE_PRECISION,MPI_SUM,0,
$ MPI_COMM_WORLD,ierr)

c node 0 prints the answer.
if (myid .eq. 0) then

write(6, 97) pi, abs(pi - PI25DT)
97 format(' pi is approximately: ', F18.16,

+ ' Error is: ', F18.16)
endif

goto 10

30 call MPI_FINALIZE(rc)
stop
end

56

C example: PI

#include "mpi.h"
#include <math.h>

int main(argc,argv)
int argc;
char *argv[];
{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

57

C example (cont.)

while (!done)
{

if (myid == 0) {
printf("Enter the number of intervals: (0 quits) ");
scanf("%d",&n);

}
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
if (n == 0) break;

h = 1.0 / (double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);

}
mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);

if (myid == 0)
printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));
}
MPI_Finalize();

}

58

Exercise - PI

Objective: Experiment with send/receive

Run either program for PI. Write new

versions that replace the calls to MPI_Bcast

and MPI_Reduce with MPI_Send and MPI_Recv.

� The MPI broadcast and reduce operations

use at most log p send and receive operations

on each process where p is the size of

MPI COMM WORLD. How many operations do

your versions use?

59

Exercise - Ring

Objective: Experiment with send/receive

Write a program to send a message around a

ring of processors. That is, processor 0 sends

to processor 1, who sends to processor 2,

etc. The last processor returns the message

to processor 0.

� You can use the routine MPI Wtime to time

code in MPI. The statement

t = MPI Wtime();

returns the time as a double (DOUBLE

PRECISION in Fortran).

60

Topologies

MPI provides routines to provide structure to

collections of processes

This helps to answer the question:

Who are my neighbors?

61

Cartesian Topologies

A Cartesian topology is a mesh

Example of 3� 4 Cartesian mesh with arrows

pointing at the right neighbors:

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

62

De�ning a Cartesian Topology

The routine MPI_Cart_create creates a Cartesian
decomposition of the processes, with the number of
dimensions given by the ndim argument.

dims(1) = 4
dims(2) = 3
periods(1) = .false.
periods(2) = .false.
reorder = .true.
ndim = 2
call MPI_CART_CREATE(MPI_COMM_WORLD, ndim, dims,
$ periods, reorder, comm2d, ierr)

63

Finding neighbors

MPI_Cart_create creates a new communicator with the
same processes as the input communicator, but with
the speci�ed topology.

The question, Who are my neighbors, can now be
answered with MPI_Cart_shift:

call MPI_CART_SHIFT(comm2d, 0, 1,
nbrleft, nbrright, ierr)

call MPI_CART_SHIFT(comm2d, 1, 1,
nbrbottom, nbrtop, ierr)

The values returned are the ranks, in the

communicator comm2d, of the neighbors shifted by �1

in the two dimensions.

64

Who am I?

Can be answered with

integer coords(2)
call MPI_COMM_RANK(comm1d, myrank, ierr)
call MPI_CART_COORDS(comm1d, myrank, 2,
$ coords, ierr)

Returns the Cartesian coordinates of the calling

process in coords.

65

Partitioning

When creating a Cartesian topology, one question is
\What is a good choice for the decomposition of the
processors?"

This question can be answered with MPI_Dims_create:

integer dims(2)
dims(1) = 0
dims(2) = 0
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
call MPI_DIMS_CREATE(size, 2, dims, ierr)

66

Other Topology Routines

MPI contains routines to translate between

Cartesian coordinates and ranks in a

communicator, and to access the properties

of a Cartesian topology.

The routine MPI_Graph_create allows the

creation of a general graph topology.

67

Why are these routines in MPI?

In many parallel computer interconnects,

some processors are closer to than

others. These routines allow the MPI

implementation to provide an ordering of

processes in a topology that makes logical

neighbors close in the physical interconnect.

� Some parallel programmers may remember

hypercubes and the e�ort that went into

assigning nodes in a mesh to processors

in a hypercube through the use of Grey

codes. Many new systems have di�erent

interconnects; ones with multiple paths

may have notions of near neighbors that

changes with time. These routines free

the programmer from many of these

considerations. The reorder argument is

used to request the best ordering.

68

The periods argument

Who are my neighbors if I am at the edge of

a Cartesian Mesh?

?

69

Periodic Grids

Specify this in MPI_Cart_create with

dims(1) = 4
dims(2) = 3
periods(1) = .TRUE.
periods(2) = .TRUE.
reorder = .true.
ndim = 2
call MPI_CART_CREATE(MPI_COMM_WORLD, ndim, dims,
$ periods, reorder, comm2d, ierr)

70

Nonperiodic Grids

In the nonperiodic case, a neighbor may

not exist. This is indicated by a rank of

MPI_PROC_NULL.

This rank may be used in send and receive

calls in MPI. The action in both cases is as if

the call was not made.

71

Collective Communications in MPI

� Communication is coordinated among a group of
processes.

� Groups can be constructed \by hand" with MPI
group-manipulation routines or by using MPI
topology-de�nition routines.

� Message tags are not used. Di�erent
communicators are used instead.

� No non-blocking collective operations.

� Three classes of collective operations:

{ synchronization

{ data movement

{ collective computation

72

Synchronization

� MPI_Barrier(comm)

� Function blocks untill all processes in

comm call it.

73

Available Collective Patterns

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

A A

A

A

A

A B C D A

B

C

D

A

B

C

D

A B C D

A B C D

A B C D

A B C D

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

All to All

All gather

Scatter

Gather

Broadcast

Schematic representation of collective data

movement in MPI

74

Available Collective Computation Patterns

ABC

ABCD

AB

A

ABCD

Reduce

Scan

P3

P3

P0

P1

P2

P0

P1

P2

A

B

C

DP3

A

B

C

DP3

P0

P1

P2

P0

P1

P2

Schematic representation of collective data

movement in MPI

75

MPI Collective Routines

� Many routines:

Allgather Allgatherv Allreduce
Alltoall Alltoallv Bcast
Gather Gatherv Reduce
ReduceScatter Scan Scatter
Scatterv

� All versions deliver results to all participating
processes.

� V versions allow the chunks to have di�erent sizes.

� Allreduce, Reduce, ReduceScatter, and Scan take
both built-in and user-de�ned combination
functions.

76

Built-in Collective Computation Operations

MPI Name Operation
MPI MAX Maximum
MPI MIN Minimum
MPI PROD Product
MPI SUM Sum
MPI LAND Logical and
MPI LOR Logical or
MPI LXOR Logical exclusive or (xor)
MPI BAND Bitwise and
MPI BOR Bitwise or
MPI BXOR Bitwise xor
MPI MAXLOC Maximum value and location
MPI MINLOC Minimum value and location

77

De�ning Your Own Collective Operations

MPI_Op_create(user_function, commute, op)
MPI_Op_free(op)

user_function(invec, inoutvec, len, datatype)

The user function should perform

inoutvec[i] = invec[i] op inoutvec[i];

for i from 0 to len-1.

user_function can be non-commutative (e.g., matrix

multiply).

78

Sample user function

For example, to create an operation that has the
same e�ect as MPI_SUM on Fortran double precision
values, use

subroutine myfunc(invec, inoutvec, len, datatype)
integer len, datatype
double precision invec(len), inoutvec(len)
integer i
do 10 i=1,len

10 inoutvec(i) = invec(i) + inoutvec(i)
return
end

To use, just

integer myop
call MPI_Op_create(myfunc, .true., myop, ierr)
call MPI_Reduce(a, b, 1, MPI_DOUBLE_PRECISON, myop, ...)

The routine MPI_Op_free destroys user-functions when

they are no longer needed.

79

De�ning groups

All MPI communication is relative to a

communicator which contains a context

and a group. The group is just a set of

processes.

80

Subdividing a communicator

The easiest way to create communicators with new
groups is with MPI_COMM_SPLIT.

For example, to form groups of rows of processes

1

2

0

0 1 2 3 4
Column

Row

use

MPI_Comm_split(oldcomm, row, 0, &newcomm);

To maintain the order by rank, use

MPI_Comm_rank(oldcomm, &rank);
MPI_Comm_split(oldcomm, row, rank, &newcomm);

81

Subdividing (con't)

Similarly, to form groups of columns,

1

2

0

0 1 2 3 4
Column

Row

use

MPI_Comm_split(oldcomm, column, 0, &newcomm2);

To maintain the order by rank, use

MPI_Comm_rank(oldcomm, &rank);
MPI_Comm_split(oldcomm, column, rank, &newcomm2);

82

Manipulating Groups

Another way to create a communicator with speci�c
members is to use MPI_Comm_create.

MPI_Comm_create(oldcomm, group, &newcomm);

The group can be created in many ways:

83

Creating Groups

All group creation routines create a group by
specifying the members to take from an existing
group.

� MPI_Group_incl speci�es speci�c members

� MPI_Group_excl excludes speci�c members

� MPI_Group_range_incl and MPI_Group_range_excl
use ranges of members

� MPI_Group_union and MPI_Group_intersection
creates a new group from two existing groups.

To get an existing group, use

MPI_Comm_group(oldcomm, &group);

Free a group with

MPI_Group_free(&group);

84

Bu�ering issues

Where does data go when you send it? One

possibility is:

Local Buffer

Local Buffer

A:

B:

Process 1 Process 2

The Network

85

Better bu�ering

This is not very e�cient. There are three

copies in addition to the exchange of data

between processes. We prefer

B:

A:

Process 1 Process 2

But this requires that either that MPI_Send

not return until the data has been delivered

or that we allow a send operation to return

before completing the transfer. In this case,

we need to test for completion later.

86

Blocking and Non-Blocking communication

� So far we have used blocking communication:

{ MPI Send does not complete until bu�er is empty
(available for reuse).

{ MPI Recv does not complete until bu�er is full
(available for use).

� Simple, but can be \unsafe":

Process 0 Process 1
Send(1) Send(0)
Recv(1) Recv(0)

Completion depends in general on size of message
and amount of system bu�ering.

� Send works for small enough messages but fails

when messages get too large. Too large ranges from

zero bytes to 100's of Megabytes.

87

Some Solutions to the \Unsafe" Problem

� Order the operations more carefully:

Process 0 Process 1
Send(1) Recv(0)
Recv(1) Send(0)

� Supply receive bu�er at same time as send, with
MPI Sendrecv:

Process 0 Process 1
Sendrecv(1) Sendrecv(0)

� Use non-blocking operations:

Process 0 Process 1
Isend(1) Isend(0)
Irecv(1) Irecv(0)
Waitall Waitall

� Use MPI_Bsend

88

MPI's Non-Blocking Operations

Non-blocking operations return (immediately)
\request handles" that can be waited on and queried:

� MPI Isend(start, count, datatype, dest, tag, comm,
request)

� MPI Irecv(start, count, datatype, dest, tag, comm,
request)

� MPI Wait(request, status)

One can also test without waiting: MPI_Test(request,

flag, status)

89

Multiple completions

It is often desirable to wait on multiple requests. An
example is a master/slave program, where the master
waits for one or more slaves to send it a message.

� MPI Waitall(count, array of requests,
array of statuses)

� MPI Waitany(count, array of requests, index,
status)

� MPI Waitsome(incount, array of requests, outcount,
array of indices, array of statuses)

There are corresponding versions of test for each of
these.

� The MPI WAITSOME and MPI TESTSOME may be used to

implement master/slave algorithms that provide fair

access to the master by the slaves.

90

Fairness

What happens with this program:

#include "mpi.h"
#include <stdio.h>
int main(argc, argv)
int argc;
char **argv;
{
int rank, size, i, buf[1];
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (rank == 0) {

for (i=0; i<100*(size-1); i++) {
MPI_Recv(buf, 1, MPI_INT, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);
printf("Msg from %d with tag %d\n",

status.MPI_SOURCE, status.MPI_TAG);
}

}
else {

for (i=0; i<100; i++)
MPI_Send(buf, 1, MPI_INT, 0, i, MPI_COMM_WORLD);

}
MPI_Finalize();
return 0;
}

91

Fairness in message-passing

An parallel algorithm is fair if no process

is e�ectively ignored. In the preceeding

program, processes with low rank (like

process zero) may be the only one whose

messages are received.

MPI makes no guarentees about fairness.

However, MPI makes it possible to write

e�cient, fair programs.

92

Providing Fairness

One alternative is

#define large 128
MPI_Request requests[large];
MPI_Status statuses[large];
int indices[large];
int buf[large];
for (i=1; i<size; i++)

MPI_Irecv(buf+i, 1, MPI_INT, i,
MPI_ANY_TAG, MPI_COMM_WORLD, &requests[i-1]);

while(not done) {
MPI_Waitsome(size-1, requests, &ndone, indices, statuses);
for (i=0; i<ndone; i++) {

j = indices[i];
printf("Msg from %d with tag %d\n",

statuses[i].MPI_SOURCE,
statuses[i].MPI_TAG);

MPI_Irecv(buf+j, 1, MPI_INT, j,
MPI_ANY_TAG, MPI_COMM_WORLD, &requests[j]);

}
}

93

Providing Fairness (Fortran)

One alternative is

parameter(large = 128)
integer requests(large);
integer statuses(MPI_STATUS_SIZE,large);
integer indices(large);
integer buf(large);
logical done
do 10 i = 1,size-1

10 call MPI_Irecv(buf(i), 1, MPI_INTEGER, i,
* MPI_ANY_TAG, MPI_COMM_WORLD, requests(i), ierr)

20 if (.not. done) then
call MPI_Waitsome(size-1, requests, ndone,

indices, statuses, ierr)
do 30 i=1, ndone

j = indices(i)
print *, 'Msg from ', statuses(MPI_SOURCE,i), ' with tag',

* statuses(MPI_TAG,i)
call MPI_Irecv(buf(j), 1, MPI_INTEGER, j,

MPI_ANY_TAG, MPI_COMM_WORLD, requests(j), ierr)
done = ...

30 continue
goto 20
endif

94

Exercise - Fairness

Objective: Use nonblocking communications

Complete the program fragment on

\providing fairness". Make sure that you

leave no uncompleted requests. How would

you test your program?

95

More on nonblocking communication

In applications where the time to send data between
processes is large, it is often helpful to cause
communication and computation to overlap. This can
easily be done with MPI's non-blocking routines.

For example, in a 2-D �nite di�erence mesh, moving
data needed for the boundaries can be done at the
same time as computation on the interior.

MPI_Irecv(... each ghost edge ...);
MPI_Isend(... data for each ghost edge ...);
... compute on interior
while (still some uncompleted requests) {

MPI_Waitany(... requests ...)
if (request is a receive)

... compute on that edge ...
}

Note that we call MPI_Waitany several times. This

exploits the fact that after a request is satis�ed, it

is set to MPI_REQUEST_NULL, and that this is a valid

request object to the wait and test routines.

96

Communication Modes

MPI provides mulitple modes for sending messages:

� Synchronous mode (MPI Ssend): the send does not
complete until a matching receive has begun.
(Unsafe programs become incorrect and usually
deadlock within an MPI_Ssend.)

� Bu�ered mode (MPI Bsend): the user supplies the
bu�er to system for its use. (User supplies enough
memory to make unsafe program safe).

� Ready mode (MPI Rsend): user guarantees that
matching receive has been posted.

{ allows access to fast protocols

{ unde�ned behavior if the matching receive is not
posted

Non-blocking versions:
MPI Issend, MPI Irsend, MPI Ibsend

Note that an MPI_Recv may receive messages sent with
any send mode.

97

Bu�ered Send

MPI provides a send routine that may be used when
MPI_Isend is awkward to use (e.g., lots of small
messages).

MPI_Bsend makes use of a user-provided bu�er to save
any messages that can not be immediately sent.

int bufsize;
char *buf = malloc(bufsize);
MPI_Buffer_attach(buf, bufsize);
...
MPI_Bsend(... same as MPI_Send ...);
...
MPI_Buffer_detach(&buf, &bufsize);

The MPI_Buffer_detach call does not complete until all
messages are sent.

� The performance of MPI Bsend depends on the

implementation of MPI and may also depend on

the size of the message. For example, making a

message one byte longer may cause a signi�cant drop

in performance.

98

Reusing the same bu�er

Consider a loop

MPI_Buffer_attach(buf, bufsize);
while (!done) {

...
MPI_Bsend(...);
}

where the buf is large enough to hold the message in
the MPI_Bsend. This code may fail because the

{
void *buf; int bufsize;
MPI_Buffer_detach(&buf, &bufsize);
MPI_Buffer_attach(buf, bufsize);
}

99

Other Point-to-Point Features

� MPI_SENDRECV, MPI_SENDRECV_REPLACE

� MPI_CANCEL

� Persistent communication requests

100

Datatypes and Heterogenity

MPI datatypes have two main purposes

� Heterogenity | parallel programs

between di�erent processors

� Noncontiguous data | structures,

vectors with non-unit stride, etc.

Basic datatype, corresponding to the

underlying language, are prede�ned.

The user can construct new datatypes at run

time; these are called derived datatypes.

101

Datatypes in MPI

Elementary: Language-de�ned types (e.g.,

MPI_INT or MPI_DOUBLE_PRECISION)

Vector: Separated by constant \stride"

Contiguous: Vector with stride of one

Hvector: Vector, with stride in bytes

Indexed: Array of indices (for

scatter/gather)

Hindexed: Indexed, with indices in bytes

Struct: General mixed types (for C structs

etc.)

102

Basic Datatypes (Fortran)

MPI datatype Fortran datatype

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE

MPI_PACKED

103

Basic Datatypes (C)

MPI datatype C datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED

104

Vectors

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

To specify this row (in C order), we can use

MPI_Type_vector(count, blocklen, stride, oldtype,
&newtype);

MPI_Type_commit(&newtype);

The exact code for this is

MPI_Type_vector(5, 1, 7, MPI_DOUBLE, &newtype);
MPI_Type_commit(&newtype);

105

Structures

Structures are described by arrays of

� number of elements (array_of_len)

� displacement or location (array_of_displs)

� datatype (array_of_types)

MPI_Type_structure(count, array_of_len,
array_of_displs,
array_of_types, &newtype);

106

Example: Structures

struct {
char display[50]; /* Name of display */
int maxiter; /* max # of iterations */
double xmin, ymin; /* lower left corner of rectangle */
double xmax, ymax; /* upper right corner */
int width; /* of display in pixels */
int height; /* of display in pixels */

} cmdline;

/* set up 4 blocks */
int blockcounts[4] = {50,1,4,2};
MPI_Datatype types[4];
MPI_Aint displs[4];
MPI_Datatype cmdtype;

/* initialize types and displs with addresses of items */
MPI_Address(&cmdline.display, &displs[0]);
MPI_Address(&cmdline.maxiter, &displs[1]);
MPI_Address(&cmdline.xmin, &displs[2]);
MPI_Address(&cmdline.width, &displs[3]);
types[0] = MPI_CHAR;
types[1] = MPI_INT;
types[2] = MPI_DOUBLE;
types[3] = MPI_INT;
for (i = 3; i >= 0; i--)

displs[i] -= displs[0];
MPI_Type_struct(4, blockcounts, displs, types, &cmdtype);
MPI_Type_commit(&cmdtype);

107

Strides

The extent of a datatype is (normally) the

distance between the �rst and last member.

LB UB

EXTENT

Memory locations specified by datatype

You can set an arti�cial extent by using

MPI_UB and MPI_LB in MPI_Type_struct.

108

Vectors revisited

This code creates a datatype for an arbitrary

number of element in a row of an array

stored in Fortran order (column �rst).

int blens[2], displs[2];
MPI_Datatype types[2], rowtype;
blens[0] = 1;
blens[1] = 1;
displs[0] = 0;
displs[1] = number_in_column * sizeof(double);
types[0] = MPI_DOUBLE;
types[1] = MPI_UB;
MPI_Type_struct(2, blens, displs, types, &rowtype);
MPI_Type_commit(&rowtype);

To send n elements, you can use

MPI_Send(buf, n, rowtype, ...);

109

Structures revisited

When sending an array of a structure, it is important
to ensure that MPI and the C compiler have the
same value for the size of each structure. The most
portable way to do this is to add an MPI_UB to the
structure de�nition for the end of the structure. In
the previous example, this is

/* initialize types and displs with addresses of items */
MPI_Address(&cmdline.display, &displs[0]);
MPI_Address(&cmdline.maxiter, &displs[1]);
MPI_Address(&cmdline.xmin, &displs[2]);
MPI_Address(&cmdline.width, &displs[3]);
MPI_Address(&cmdline+1, &displs[4]);
types[0] = MPI_CHAR;
types[1] = MPI_INT;
types[2] = MPI_DOUBLE;
types[3] = MPI_INT;
types[4] = MPI_UB;
for (i = 4; i >= 0; i--)

displs[i] -= displs[0];
MPI_Type_struct(5, blockcounts, displs, types, &cmdtype);
MPI_Type_commit(&cmdtype);

110

Interleaving data

By moving the UB inside the data, you can

interleave data.

Consider the matrix

0
1
2
3
4
5
6
7

8
9

10
11
12

14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

13

We wish to send 0-3,8-11,16-19, and 24-27

to process 0, 4-7,12-15,20-23, and 28-31 to

process 1, etc. How can we do this with

MPI_Scatterv?

111

An interleaved datatype

MPI_Type_vector(4, 4, 8, MPI_DOUBLE, &vec);

de�nes a block of this matrix.

blens[0] = 1; blens[1] = 1;
types[0] = vec; types[1] = MPI_UB;
displs[0] = 0; displs[1] = sizeof(double);
MPI_Type_struct(2, blens, displs, types, &block);

de�nes a block whose extent is just 1 entries.

112

Scattering a Matrix

We set the displacements for each block as the
location of the �rst element in the block. This works
because MPI_Scatterv uses the extents to determine
the start of each piece to send.

scdispls[0] = 0;
scdispls[1] = 4;
scdispls[2] = 32;
scdispls[3] = 36;
MPI_Scatterv(sendbuf, sendcounts, scdispls, block,

recvbuf, nx * ny, MPI_DOUBLE, 0,
MPI_COMM_WORLD);

� How would use use the topology routines to make

this more general?

113

Exercises - datatypes

Objective: Learn about datatypes

1. Write a program to send rows of a matrix (stored
in column-major form) to the other processors.

Let processor 0 have the entire matrix, which has
as many rows as processors.

Processor 0 sends row i to processor i.
Processor i reads that row into a local array that
holds only that row. That is, processor 0 has a
matrix A(N;M) while the other processors have a
row B(M).

(a) Write the program to handle the case where
the matrix is square.

(b) Write the program to handle a number of
columns read from the terminal.

C programmers may send columns of a matrix
stored in row-major form if they prefer.

If you have time, try one of the following. If you
don't have time, think about how you would
program these.

2. Write a program to transpose a matrix, where
each processor has a part of the matrix. Use
topologies to de�ne a 2-Dimensional partitioning

114

of the matrix across the processors, and assume
that all processors have the same size submatrix.

(a) Use MPI_Send and MPI_Recv to send the block,
the transpose the block.

(b) Use MPI_Sendrecv instead.

(c) Create a datatype that allows you to receive
the block already transposed.

3. Write a program to send the "ghostpoints" of a
2-Dimensional mesh to the neighboring
processors. Assume that each processor has the
same size subblock.

(a) Use topologies to �nd the neighbors

(b) De�ne a datatype for the \rows"

(c) Use MPI_Sendrecv or MPI_IRecv and MPI_Send
with MPI_Waitall.

(d) Use MPI_Isend and MPI_Irecv to start the
communication, do some computation on the
interior, and then use MPI_Waitany to process
the boundaries as they arrive

The same approach works for general
datastructures, such as unstructured meshes.

4. Do 3, but for 3-Dimensional meshes. You will
need MPI_Type_Hvector.

Tools for writing libraries

MPI is speci�cally designed to make it easier

to write message-passing libraries

� Communicators solve tag/source

wild-card problem

� Attributes provide a way to attach

information to a communicator

115

Private communicators

One of the �rst thing that a library should

normally do is create private communicator.

This allows the library to send and receive

messages that are known only to the library.

MPI_Comm_dup(old_comm, &new_comm);

116

Attributes

Attributes are data that can be attached to

one or more communicators.

Attributes are referenced by keyval. Keyvals

are created with MPI_KEYVAL_CREATE.

Attributes are attached to a communicator

with MPI_Attr_put and their values accessed

by MPI_Attr_get.

� Operations are de�ned for what happens

to an attribute when it is copied (by creating

one communicator from another) or deleted

(by deleting a communicator) when the

keyval is created.

117

What is an attribute?

In C, an attribute is a pointer of type void *.

You must allocate storage for the attribute

to point to (make sure that you don't use

the address of a local variable).

In Fortran, it is a single INTEGER.

118

Examples of using attributes

� Forcing sequential operation

� Managing tags

119

Sequential Sections

#include "mpi.h"
#include <stdlib.h>

static int MPE_Seq_keyval = MPI_KEYVAL_INVALID;

/*@
MPE_Seq_begin - Begins a sequential section of code.

Input Parameters:
. comm - Communicator to sequentialize.
. ng - Number in group. This many processes are allowed
to execute

at the same time. Usually one.

@*/
void MPE_Seq_begin(comm, ng)
MPI_Comm comm;
int ng;
{
int lidx, np;
int flag;
MPI_Comm local_comm;
MPI_Status status;

/* Get the private communicator for the sequential
operations */
if (MPE_Seq_keyval == MPI_KEYVAL_INVALID) {

MPI_Keyval_create(MPI_NULL_COPY_FN,
MPI_NULL_DELETE_FN,
&MPE_Seq_keyval, NULL);

}

120

Sequential Sections II

MPI_Attr_get(comm, MPE_Seq_keyval, (void *)&local_comm,
&flag);

if (!flag) {
/* This expects a communicator to be a pointer */
MPI_Comm_dup(comm, &local_comm);
MPI_Attr_put(comm, MPE_Seq_keyval,

(void *)local_comm);
}

MPI_Comm_rank(comm, &lidx);
MPI_Comm_size(comm, &np);
if (lidx != 0) {

MPI_Recv(NULL, 0, MPI_INT, lidx-1, 0, local_comm,
&status);

}
/* Send to the next process in the group unless we

are the last process in the processor set */
if ((lidx % ng) < ng - 1 && lidx != np - 1) {

MPI_Send(NULL, 0, MPI_INT, lidx + 1, 0, local_comm);
}

}

121

Sequential Sections III

/*@
MPE_Seq_end - Ends a sequential section of code.
Input Parameters:

. comm - Communicator to sequentialize.

. ng - Number in group.
@*/
void MPE_Seq_end(comm, ng)
MPI_Comm comm;
int ng;
{
int lidx, np, flag;
MPI_Status status;
MPI_Comm local_comm;

MPI_Comm_rank(comm, &lidx);
MPI_Comm_size(comm, &np);
MPI_Attr_get(comm, MPE_Seq_keyval, (void *)&local_comm,
&flag);
if (!flag)

MPI_Abort(comm, MPI_ERR_UNKNOWN);
/* Send to the first process in the next group OR to the
first process

in the processor set */
if ((lidx % ng) == ng - 1 || lidx == np - 1) {

MPI_Send(NULL, 0, MPI_INT, (lidx + 1) % np, 0,
local_comm);

}
if (lidx == 0) {

MPI_Recv(NULL, 0, MPI_INT, np-1, 0, local_comm,
&status);

}
}

122

Comments on sequential sections

� Note use of MPI_KEYVAL_INVALID to

determine to create a keyval

� Note use of ag on MPI_Attr_get to

discover that a communicator has no

attribute for the keyval

123

Example: Managing tags

Problem: A library contains many objects

that need to communicate in ways that are

not known until runtime.

Messages between objects are kept separate

by using di�erent message tags. How are

these tags chosen?

� Unsafe to use compile time values

� Must allocate tag values at runtime

Solution:

Use a private communicator and use an

attribute to keep track of available tags in

that communicator.

124

Caching tags on communicator

#include "mpi.h"

static int MPE_Tag_keyval = MPI_KEYVAL_INVALID;

/*
Private routine to delete internal storage when a

communicator is freed.
*/

int MPE_DelTag(comm, keyval, attr_val, extra_state)
MPI_Comm *comm;
int *keyval;
void *attr_val, *extra_state;
{
free(attr_val);
return MPI_SUCCESS;
}

125

Caching tags on communicator II

/*@
MPE_GetTags - Returns tags that can be used in

communication with a
communicator

Input Parameters:
. comm_in - Input communicator
. ntags - Number of tags

Output Parameters:
. comm_out - Output communicator. May be 'comm_in'.
. first_tag - First tag available
@*/
int MPE_GetTags(comm_in, ntags, comm_out, first_tag)
MPI_Comm comm_in, *comm_out;
int ntags, *first_tag;
{
int mpe_errno = MPI_SUCCESS;
int tagval, *tagvalp, *maxval, flag;

if (MPE_Tag_keyval == MPI_KEYVAL_INVALID) {
MPI_Keyval_create(MPI_NULL_COPY_FN, MPE_DelTag,

&MPE_Tag_keyval, (void *)0);
}

126

Caching tags on communicator III

if (mpe_errno = MPI_Attr_get(comm_in, MPE_Tag_keyval,
&tagvalp, &flag))

return mpe_errno;

if (!flag) {
/* This communicator is not yet known to this system,

so we
dup it and setup the first value */

MPI_Comm_dup(comm_in, comm_out);
comm_in = *comm_out;
MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &maxval,

&flag);
tagvalp = (int *)malloc(2 * sizeof(int));
printf("Mallocing address %x\n", tagvalp);
if (!tagvalp) return MPI_ERR_EXHAUSTED;
tagvalp = *maxval;
MPI_Attr_put(comm_in, MPE_Tag_keyval, tagvalp);
return MPI_SUCCESS;
}

127

Caching tags on communicator IV

*comm_out = comm_in;
if (*tagvalp < ntags) {

/* Error, out of tags. Another solution would be to do
an MPI_Comm_dup. */

return MPI_ERR_INTERN;
}

*first_tag = *tagvalp - ntags;
*tagvalp = *first_tag;

return MPI_SUCCESS;
}

128

Caching tags on communicator V

/*@
MPE_ReturnTags - Returns tags allocated with MPE_GetTags.

Input Parameters:
. comm - Communicator to return tags to
. first_tag - First of the tags to return
. ntags - Number of tags to return.
@*/
int MPE_ReturnTags(comm, first_tag, ntags)
MPI_Comm comm;
int first_tag, ntags;
{
int *tagvalp, flag, mpe_errno;

if (mpe_errno = MPI_Attr_get(comm, MPE_Tag_keyval,
&tagvalp, &flag))

return mpe_errno;

if (!flag) {
/* Error, attribute does not exist in this communicator

*/
return MPI_ERR_OTHER;
}

if (*tagvalp == first_tag)
*tagvalp = first_tag + ntags;

return MPI_SUCCESS;
}

129

Caching tags on communicator VI

/*@
MPE_TagsEnd - Returns the private keyval.

@*/
int MPE_TagsEnd()
{
MPI_Keyval_free(&MPE_Tag_keyval);
MPE_Tag_keyval = MPI_KEYVAL_INVALID;
}

130

Commentary

� Use MPI_KEYVAL_INVALID to detect when

keyval must be created

� Use flag return from MPI_ATTR_GET to

detect when a communicator needs to be

initialized

131

Exercise - Writing libraries

Objective: Use private communicators and attributes

Write a routine to circulate data to the next process,
using a nonblocking send and receive operation.

void Init_pipe(comm)
void ISend_pipe(comm, bufin, len, datatype, bufout)
void Wait_pipe(comm)

A typical use is

Init_pipe(MPI_COMM_WORLD)
for (i=0; i<n; i++) {

ISend_pipe(comm, bufin, len, datatype, bufout);
Do_Work(bufin, len);
Wait_pipe(comm);
t = bufin; bufin = bufout; bufout = t;
}

What happens if Do_Work calls MPI routines?

� What do you need to do to clean up Init pipe?

� How can you use a user-de�ned topology to

determine the next process? (Hint: see MPI Topo test

and MPI Cartdim get.)

132

MPI Objects

� MPI has a variety of objects

(communicators, groups, datatypes, etc.)

that can be created and destroyed. This

section discusses the types of these data and

how MPI manages them.

� This entire chapter may be skipped by

beginners.

133

The MPI Objects

MPI Request Handle for nonblocking

communication, normally freed by MPI in

a test or wait

MPI Datatype MPI datatype. Free with

MPI_Type_free.

MPI Op User-de�ned operation. Free with

MPI_Op_free.

MPI Comm Communicator. Free with

MPI_Comm_free.

MPI Group Group of processes. Free with

MPI_Group_free.

MPI Errhandler MPI errorhandler. Free with

MPI_Errhandler_free.

134

When should objects be freed?

Consider this code

MPI_Type_vector(ly, 1, nx, MPI_DOUBLE, &newx1);
MPI_Type_hvector(lz, 1, nx*ny*sizeof(double), newx1,

&newx);
MPI_Type_commit(&newx);

(This creates a datatype for one face of a 3-D

decomposition.) When should newx1 be freed?

135

Reference counting

MPI keeps track of the use of an MPI object, and
only truely destroys it when no-one is using it. newx1
is being used by the user (the MPI_Type_vector that
created it) and by the MPI_Datatype newx that uses it.

If newx1 is not needed after newx is de�ned, it should
be freed:

MPI_Type_vector(ly, 1, nx, MPI_DOUBLE, &newx1);
MPI_Type_hvector(lz, 1, nx*ny*sizeof(double), newx1,

&newx);
MPI_Type_free(&newx1);
MPI_Type_commit(&newx);

136

Why reference counts

Why not just free the object?

Consider this library routine:

void MakeDatatype(nx, ny, ly, lz, MPI_Datatype *new)
{
MPI_Datatype newx1;
MPI_Type_vector(ly, 1, nx, MPI_DOUBLE, &newx1);
MPI_Type_hvector(lz, 1, nx*ny*sizeof(double), newx1,

new);
MPI_Type_free(&newx1);
MPI_Type_commit(new);
}

Without the MPI_Type_free(&newx1), it would be very
awkward to later free newx1 when new was freed.

137

Tools for evaluating programs

MPI provides some tools for evaluating the

performance of parallel programs.

These are

� Timer

� Pro�ling interface

138

The MPI Timer

The elapsed (wall-clock) time between two

points in an MPI program can be computed

using MPI_Wtime:

double t1, t2;

t1 = MPI_Wtime();

...

t2 = MPI_Wtime();

printf("Elapsed time is %f\n", t2 - t1);

The value returned by a single call to

MPI_Wtime has little value.

� The times are local; the attribute

MPI WTIME IS GLOBAL may be used to determine

if the times are also synchronized with each

other for all processes in MPI COMM WORLD.

139

Pro�ling

� All routines have two entry points: MPI ... and
PMPI

� This makes it easy to provide a single level of
low-overhead routines to intercept MPI calls
without any source code modi�cations.

� Used to provide \automatic" generation of trace
�les.

MPI_Send
PMPI_Send

MPI_Bcast

MPI_Send
PMPI_Send

MPI_Send

MPI_Bcast

User Program MPI LibraryProfile Library

static int nsend = 0;
int MPI_Send(start, count, datatype, dest, tag, comm)
{
nsend++;
return PMPI_Send(start, count, datatype, dest, tag, comm)
}

140

Writing pro�ling routines

The MPICH implementation contains a program for
writing wrappers.

This description will write out each MPI routine that
is called.:
#ifdef MPI_BUILD_PROFILING
#undef MPI_BUILD_PROFILING
#endif
#include <stdio.h>
#include "mpi.h"

{{fnall fn_name}}
{{vardecl int llrank}}
PMPI_Comm_rank(MPI_COMM_WORLD, &llrank);
printf("[%d] Starting {{fn_name}}...\n",

llrank); fflush(stdout);
{{callfn}}
printf("[%d] Ending {{fn_name}}\n", llrank);

fflush(stdout);
{{endfnall}}

The command

wrappergen -w trace.w -o trace.c

converts this to a C program. The complie the �le
`trace.c' and insert the resulting object �le into your
link line:

cc -o a.out a.o ... trace.o -lpmpi -lmpi

141

Another pro�ling example

This version counts all calls and the number of bytes sent with

MPI_Send, MPI_Bsend, or MPI_Isend.
#include "mpi.h"

{{foreachfn fn_name MPI_Send MPI_Bsend MPI_Isend}}
static long {{fn_name}}_nbytes_{{fileno}};{{endforeachfn}}

{{forallfn fn_name MPI_Init MPI_Finalize MPI_Wtime}}int
{{fn_name}}_ncalls_{{fileno}};
{{endforallfn}}

{{fnall this_fn_name MPI_Finalize}}
printf("{{this_fn_name}} is being called.\n");

{{callfn}}

{{this_fn_name}}_ncalls_{{fileno}}++;
{{endfnall}}

{{fn fn_name MPI_Send MPI_Bsend MPI_Isend}}
{{vardecl int typesize}}

{{callfn}}

MPI_Type_size({{datatype}}, (MPI_Aint *)&{{typesize}});
{{fn_name}}_nbytes_{{fileno}}+={{typesize}}*{{count}}
{{fn_name}}_ncalls_{{fileno}}++;

{{endfn}}

142

Another pro�ling example (con't)

{{fn fn_name MPI_Finalize}}
{{forallfn dis_fn}}

if ({{dis_fn}}_ncalls_{{fileno}}) {
printf("{{dis_fn}}: %d calls\n",

{{dis_fn}}_ncalls_{{fileno}});
}

{{endforallfn}}
if (MPI_Send_ncalls_{{fileno}}) {

printf("%d bytes sent in %d calls with MPI_Send\n",
MPI_Send_nbytes_{{fileno}},

MPI_Send_ncalls_{{fileno}});
}

{{callfn}}
{{endfn}}

143

Generating and viewing log �les

Log �les that contain a history of a

parallel computation can be very valuable

in understanding a parallel program. The

upshot and nupshot programs, provided in

the MPICH and MPI-F implementations,

may be used to view log �les

144

Generating a log �le

This is very easy with the MPICH

implementation of MPI. Simply replace -lmpi

with -llmpi -lpmpi -lm in the link line for

your program, and relink your program. You

do not need to recompile.

On some systems, you can get a real-time

animation by using the libraries -lampi -lmpe

-lm -lX11 -lpmpi.

Alternately, you can use the -mpilog or

-mpianim options to the mpicc or mpif77

commands.

145

Connecting several programs together

MPI provides support for connection separate

message-passing programs together through

the use of intercommunicators.

146

Sending messages between di�erent programs

Programs share MPI_COMM_WORLD.

Programs have separate and disjoint

communicators.

Comm1 Comm2

App1 App2

MPI_COMM_WORLD

Comm_intercomm

147

Exchanging data between programs

� Form intercommunicator

(MPI_INTERCOMM_CREATE)

� Send data

MPI_Send(..., 0, intercomm)

MPI_Recv(buf, ..., 0, intercomm);

MPI_Bcast(buf, ..., localcomm);

More complex point-to-point operations

can also be used

148

Collective operations

Use MPI_INTERCOMM_MERGE to create an

intercommunicator.

149

Final Comments

Additional features of MPI not covered in

this tutorial

� Persistent Communication

� Error handling

150

Sharable MPI Resources

� The Standard itself:

{ As a Technical report: U. of Tennessee.
report

{ As postscript for ftp: at info.mcs.anl.gov in
pub/mpi/mpi-report.ps.

{ As hypertext on the World Wide Web:
http://www.mcs.anl.gov/mpi

{ As a journal article: in the Fall issue of the
Journal of Supercomputing Applications

� MPI Forum discussions

{ The MPI Forum email discussions and both
current and earlier versions of the Standard
are available from netlib.

� Books:

{ Using MPI: Portable Parallel Programming
with the Message-Passing Interface, by
Gropp, Lusk, and Skjellum, MIT Press, 1994

{ MPI Annotated Reference Manual, by Otto,
et al., in preparation.

151

Sharable MPI Resources, continued

� Newsgroup:

{ comp.parallel.mpi

� Mailing lists:

{ mpi-comm@mcs.anl.gov: the MPI Forum
discussion list.

{ mpi-impl@mcs.anl.gov: the implementors'
discussion list.

� Implementations available by ftp:

{ MPICH is available by anonymous ftp from
info.mcs.anl.gov in the directory
pub/mpi/mpich, �le mpich.tar.Z.

{ LAM is available by anonymous ftp from
tbag.osc.edu in the directory pub/lam.

{ The CHIMP version of MPI is available by
anonymous ftp from ftp.epcc.ed.ac.uk in the
directory pub/chimp/release.

� Test code repository:

{ ftp://info.mcs.anl.gov/pub/mpi/mpi-test

152

MPI-2

� The MPI Forum (with old and new participants)
has begun a follow-on series of meetings.

� Goals

{ clarify existing draft

{ provide features users have requested

{ make extensions, not changes

� Major Topics being considered

{ dynamic process management

{ client/server

{ real-time extensions

{ \one-sided" communication (put/get, active
messages)

{ portable access to MPI system state (for
debuggers)

{ language bindings for C++ and Fortran-90

� Schedule

{ Dynamic processes, client/server by SC '95

{ MPI-2 complete by SC '96

153

Summary

� The parallel computing community has cooperated
to develop a full-featured standard message-passing
library interface.

� Implementations abound

� Applications beginning to be developed or ported

� MPI-2 process beginning

� Lots of MPI material available

154

