
Ada-95 dla programistów C/C++

Dariusz Wawrzyniak
(na podst. oprac. Simona Johnstona)

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Część I

Ada Packages

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Outline

1 Introduction

2 Package data hiding

3 Hierarchical packages

4 Renaming identifiers

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

What a package looks like
Include a package in another

Outline

1 Introduction
What a package looks like
Include a package in another

2 Package data hiding

3 Hierarchical packages

4 Renaming identifiers

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

What a package looks like
Include a package in another

Ada packages

Ada package consists of two parts: the specification
(header) and body (code).
The specification contains an explicit list of the visible
components of a package.
The specification is a completely stand alone entity which
can be compiled on its own and so must include
specifications from other packages to do so.
An Ada package body at compile time must refer to its
package specification to ensure legal declarations.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

What a package looks like
Include a package in another

The skeleton of a package

--file example.ads, the package specification.
package example is

...
end example;

--file example.adb, the package body.
package body example is

...
end example;

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

What a package looks like
Include a package in another

Include a package in another

A C file includes a header by simply inserting the text of
the header into the current compilation stream with
#include "example.h".
Ada package specification has a two stage process:

compilation,
inclusion.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

What a package looks like
Include a package in another

Include a package — example

-- Specification for package example
with Project_Specs;
package example is
type My_Type is new Project_Spec.Their_Type;

end example;

-- Body for package example
with My_Specs;
package body example is
type New_Type_1 is new My_Specs.Type_1;
type New_Type_2 is new Project_Specs.Type_1;

end example;

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

What a package looks like
Include a package in another

Basic visibility rules

If the inclusion of Project_Specs appears in the
specification of Example, all the items declared in
Project_Specs are available in the specification of
Example, its body (implemenation) and all packages that
include Example.
If the inclusion of Project_Specs appears in the body of
Example, the items declared in Project_Specs are
available only in the body.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

What a package looks like
Include a package in another

Naming rules

To avoid using packege names in naming items defined in the
packege use can be applied:

with My_Specs; use My_Specs;
package body example is

...
end example;

It is usual in Ada to put the with and the use on the same line,
for clarity.
There is a special form of the use statement which can simply
include an element (types only) from a package, consider:

use type Ada.Calendar.Time;

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Outline

1 Introduction
What a package looks like
Include a package in another

2 Package data hiding

3 Hierarchical packages

4 Renaming identifiers

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Data encapsulation

Data encapsulation requires, for any level of safe reuse, a
level of hiding.
The declaration of some data is deferred to a future point
so that any client cannot depend on the structure of the
data.
This allows the provider to change that structure if the
need arises.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Data encapsulation in C

In C this is done by presenting the ’private type’ as a void*
which means that you cannot know anything about it, but
implies that no one can do any form of type checking on it.

typedef void* list;
list create(void);

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Data encapsulation C++

In C++ we can forward declare classes and so provide an
anonymous class type.

class Our_List {
public:
Our_List(void);

private:
class List_Rep;
List_Rep* Representation;

};

The implementation of Our_List and its internal
representation List_Rep gives all the advantages of type
checking, but hides the details of structuring the list.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Private part of a package

In Ada the concept of data hiding is formalised into the ’private
part’ of a package. This private part is used to define items
which are forward declared as private.

package Our_List is
type List_Rep is private;
function Create return List_Rep;

private
type List_Rep is
record

-- some data
end record;

end Our_List;

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Private and limited private data types

Private type
the only operations that the client may use are :=, = and
/=,
all other operations must be provided by functions and
procedures in the package.

Limited private type
no predefined operators available,
all operations must be provided by functions and
procedures in the package.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Items of a private type

You may not in the public part of the package specification
declare variables of the private type as the representation is not
yet known, we can declare constants of the type, but you must
declare them in both places, forward reference them in the
public part with no value, and then again in the private part to
provide a value:

package Example is
type A is private;
B : constant A;

private
type A is new Integer;
B : constant A := 0;

end Example;

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Outline

1 Introduction
What a package looks like
Include a package in another

2 Package data hiding

3 Hierarchical packages

4 Renaming identifiers

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Nested packages in Ada-83

Ada allows the nesting of packages within each other, this can
be useful for a number of reasons. With Ada-83 this was
possible by nesting package specs and bodies physically, thus:

package Outer is
package Inner_1 is
end Inner_1;

package Inner_2 is
end Inner_2;

private
end Outer;

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Nested packages in Ada-95

Ada-95 has added to this the possibility to define child
packages outside the physical scope of a package, thus:

package Outer is
package Inner_1 is
end Inner_1;

end Outer;

package Outer.Inner_2 is
end Outer.Inner_2;

As you can see Inner_2 is still a child of outer but can be
created at some later date, by a different team.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Outline

1 Introduction
What a package looks like
Include a package in another

2 Package data hiding

3 Hierarchical packages

4 Renaming identifiers

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Renaming (1)

Renaming is not a package specific topic, and it is only
introduced here as the using of packages is the most common
place to find a renames clause.
Renaming allows to save a lot of (re)typing.

with Outer;
with Outer.Inner_1;
package New_Package is
OI_1 renames Outer.Inner_1;

type New_type is new OI_1.A_Type;
end New_Package;

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Renaming (2)

Renaming helps to remove ambiguity.

with Package1;
function Function1 return Integer

renames Package1.Function;
with Package2;
function Function2 return Integer

renames Package2.Function;

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Introduction
Package data hiding

Hierarchical packages
Renaming identifiers

Temporal renaming

for device in Device_Map loop
Device_Map(device).Device_Handler.Request_Device;
Device_Map(device).Device_Handler.Process_Function

(Process_This_Request);
Device_Map(device).Device_Handler.Relinquish_Device;

end loop;

for device in Device_Map loop
declare
Device_Handler : Device_Type renames

Device_Map(device).Device_Handler;
begin
Device_Handler.Request_Device;
Device_Handler.Process_Function(Process_This_Request);
Device_Handler.Relinquish_Device;

end;
end loop;

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

Część II

Ada-95 Object Oriented Programming

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

Outline

5 Basic concepts

6 The tagged type

7 Class members

8 Inheritance

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

OOP in C++
OOP in Ada-95

Outline

5 Basic concepts
OOP in C++
OOP in Ada-95

6 The tagged type

7 Class members
Class member attributes
Class member functions
Virtual member functions
Static members
Constructors/Destructors for Ada

8 Inheritance

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

OOP in C++
OOP in Ada-95

The concept of class in C++

C++ extends C with the concept of a class.
A class is an extension of the existing struct construct.
The difference with a class is that a class not only contains
data (member attributes) but code as well (member
functions).

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

OOP in C++
OOP in Ada-95

An example of class

class A_Device {
public:
A_Device(char*, int, int);

char* Name(void);
int Major(void);
int Minor(void);

protected:
char* name;
int major;
int minor;

};

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

OOP in C++
OOP in Ada-95

Object creation

The code introduces a constructor, a function with the same
name as the class which is called whenever the class is
created. In C++ these may be overloaded and are called either
by the new operator, or in local variable declarations as below.

A_Device lp1("lp1", 10, 1);

A_Device* lp1;
lp1 = new A_Device("lp1", 10, 1);

Creates a new device object called lp1 and sets up the name
and major/minor numbers.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

OOP in C++
OOP in Ada-95

Ada-95 extensions towards OOP

Ada has also extended its equivalent of a struct, the record
but does not directly attach the member functions to it.

package Devices is
type Device is tagged private;
type Device_Type is access Device;
function Create(Name: String; Major: Integer;

Minor: Integer) return Device_Type;
function Name(this: Device_Type)

return String;
function Major(this: Device_Type)

return Integer;
function Minor(this: Device_Type)

return Integer;

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

OOP in C++
OOP in Ada-95

Ada-95 extensions towards OOP (cont.)

private
type Device is tagged
record

Name : String(1 .. 20);
Major : Integer;
Minor : Integer;

end record;
end Devices;

The equivalent declaration of an object would be:

lp1 : Devices.Device_Type :=
Devices.Create("lp1", 10, 1);

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

Outline

5 Basic concepts
OOP in C++
OOP in Ada-95

6 The tagged type

7 Class members
Class member attributes
Class member functions
Virtual member functions
Static members
Constructors/Destructors for Ada

8 Inheritance

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

The tagged type

The addition of the keyword tagged to the definition of the
type Device makes it a class in C++ terms.
The tagged type is simply an extension of the Ada-83
record type.
It includes a ’tag’ which can identify not only its own type
but its place in the type hierarchy.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

The ’Tag attribute

The tag can be accessed by the attribute ’Tag but should only
be used for comparison, i.e.

with Ada.Tags;
dev1, dev2 : Device’Class := ... ;

-- initialization is required

if dev1’Tag = dev2’Tag then

this can identify the isa relationship between two objects.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

The ’Class attribute

Another important attribute ’Class exists which is used in type
declarations to denote the class-wide type, the inheritance tree
rooted at that type, i.e.

type Device_Class is Device’Class;
-- or more normally
type Device_Class is access Device’Class;

The second type denotes a pointer to objects of type Device
and any objects whose type has been inherited from Device.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

Class member attributes
Class member functions
Virtual member functions
Static members
Constructors/Destructors for Ada

Outline

5 Basic concepts
OOP in C++
OOP in Ada-95

6 The tagged type

7 Class members
Class member attributes
Class member functions
Virtual member functions
Static members
Constructors/Destructors for Ada

8 Inheritance

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

Class member attributes
Class member functions
Virtual member functions
Static members
Constructors/Destructors for Ada

Class member attributes

Member attributes in C++ directly map onto data members of
the tagged type. So the char* name directly maps into
Name : String.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

Class member attributes
Class member functions
Virtual member functions
Static members
Constructors/Destructors for Ada

Class member functions

Non-virtual, non-const, non-static member functions map
onto subprograms, within the same package as the tagged
type.
The first parameter is of that tagged type or an access to
the tagged type, or who returns such a type.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

Class member attributes
Class member functions
Virtual member functions
Static members
Constructors/Destructors for Ada

Virtual member functions

Virtual member functions map onto subprograms, within
the same package as the tagged type.
The first formal parameter is of the tagged (not class-wide)
type, or an anonymous access type to the tagged (not
class-wide) type, or the return value is of such a type.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

Class member attributes
Class member functions
Virtual member functions
Static members
Constructors/Destructors for Ada

Pure virtual functions

A pure virtual function maps onto a virtual member function
with the keywords is abstract before the semicolon.
When any pure virtual member functions exist the tagged
type they refer to must also be identified as abstract.
If an abstract tagged type has been introduced which has
no data, then the following shorthand can be used:

type Root_Type is abstract tagged
null record;

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

Class member attributes
Class member functions
Virtual member functions
Static members
Constructors/Destructors for Ada

Static members

Static members map onto subprograms within the same
package as the tagged type. These are no different from
normal Ada-83 subprograms, it is up to the programmer when
applying coding rules to identify only member functions or static
functions in a package which includes a tagged type.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

Class member attributes
Class member functions
Virtual member functions
Static members
Constructors/Destructors for Ada

Constructors/Destructors for Ada

There is no constructors and destructors in Ada.
In the examples the constructor has been synthesised with
the Create function which creates a new object and
returns it.
If you intend to use this method then the most important
thing to remember is to use the same name throughout,
Create Copy Destroy etc are all useful conventions.
Ada does provide a library package Ada.Finalization
which can provide constructor/destructor like facilities for
tagged types.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

Outline

5 Basic concepts
OOP in C++
OOP in Ada-95

6 The tagged type

7 Class members
Class member attributes
Class member functions
Virtual member functions
Static members
Constructors/Destructors for Ada

8 Inheritance

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

Inheritance

The most common attribute sited as the mark of a true
object oriented language is support for inheritance.
Ada-95 adds inheritance as tagged type extension.
Ada does not directly support multiple inheritance.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

Inheritance in C++

class A_Tape : public A_Device {
public:

A_Tape(char*, int, int);
int Block_Size(void);

protected:
int block_size;

};

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

Inheritance in Ada-95

package Devices.Tapes is
type Tape is new Device with private;
type Tape_Type is access Tape;
function Create(Name: String; Major: Integer;

Minor : Integer) return Tape_Type;
function Block_Size(this: Tape_Type)

return Integer;
private
type Tape is new Device with
record

Block_Size : Integer;
end record;

end Devices.Tapes;

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++



Basic concepts
The tagged type
Class members

Inheritance

public/protected/private

In the example at the top of this section we provided the
Device comparison. In this example the C++ class provided a
public interface and a protected one, the Ada equivalent then
provided an interface in the public part and the tagged type
declaration in the private part. Because of the rules for child
packages a child of the Devices package can see the private
part and so can use the definition of the Device tagged type.

Dariusz Wawrzyniak (na podst. oprac. Simona Johnstona) Ada-95 dla programistów C/C++


	Ada Packages
	Introduction
	What a package looks like
	Include a package in another

	Package data hiding
	Hierarchical packages
	Renaming identifiers

	Ada-95 Object Oriented Programming
	Basic concepts
	OOP in C++
	OOP in Ada-95

	The tagged type
	Class members
	Class member attributes
	Class member functions
	Virtual member functions
	Static members
	Constructors/Destructors for Ada

	Inheritance


