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e Data streams

e Concept drift

e Accuracy Updated Ensemble
e Experimental evaluation

e MOA

e Future work
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e The ”Digital Universe” in 2007 was estimated to be
281 exabytes large

e The amount of data created exceeds available
storage

e |ncoming tuples processed as a stream of data

New challenges for data mining algorithms!
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Data stream contraints

e Limited time
— examples arrive rapidly
— each example can be processed only once

e Limited memory

— streams are too large to be processed as a whole

e Concept drift

— data streams can evolve over time

— changes that are unpredictable (not seasonal) are called
Concept drift
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Stream data mining algorithms

H Trigger A [ Traning Instance Instance
® D r I ft d e t e Ct O rS based windows selection weighting
e Forgetting Change
detection
h H based
mechanisms I
When Dynamjc Adaptive
integration decision
trees and
forests
Adaptive ensembles
Evolving
Training set How Model manipulation,
formation parameftrization

Single classifiers: DDM, EDDM, VFDT, FISH, FLORA, ADWIN
Ensemble classifiers: SEA, AWE, HOT, Online Bagging, ASHT
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Accuracy Weighted Ensemble

»Mining concept-drifting data streams using ensemble classifiers 7, H. Wang et al.; KDD 2003

Idea:

Weight classifiers according to the current data
distribution

e Formal proof that classifiers weighted this way are
equally or more accurate than classifiers built upon all

examples without weights

e Weights approximated by computing classification
error on the most recent data chunk
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e Accuracy is highly dependent on chunk size

e Poorer accuracy for data streams with slow gradual
concept drift

e Sudden concept drifts can sometimes mute all base
classifiers
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Accuracy Updated Ensemble

Idea:

Incrementally update base classifiers according
to the current distribution while keeping them

diversified.

Inspired by AWE’s weighting mechanism
Chunk size independent

More accurate

Reacts better to concept drift
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Accuracy Updated Ensemble

e AWE inspired:

— using mean square error on the most recent data chunk to
weight component classifiers

e New elements:
— Hoeffding Trees as base classifiers
— updating component classifiers according to their weight
— diversifying components .

B : . : W —
preventing classifier muting (W, I\/ISEi+g)

Accuracy Updated Ensemble for Data Streams with Concept Drift 10



4 algorithms: HT+Win, HOT, AWE, AUE

3 real and 4 artificial data sets

From 2.5 thousand do 10 million examples
Gradual and sudden concept drift

Classifiers were evaluated using chunks of data:
— Test and train time

— Memory usage

— Accuracy
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Table: Results for Donation data set

Chunk Training | Chunk Testing | Accuracy | Memory
HOT 5,17 S 0,015S 85,07% | 18,49 MB
AWE 0,04 S 0,015S 70,38% 0,17 MB
HT+Win 0,02'S 0,015S 79,08% 0,18 MB
AUE 0,24 S 0,05 s 84,72% 0,86 MB
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Figure: Memory usage on the Donation data set




e Sliding window, AWE:
— |east accurate
— least resource consuming

e HOT:

— time and memory requirements grew linearly with each
data chunk

e AUE:
— as accurate as HOT
— constant time and memory
— much more accurate than AWE
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{Mlassive {O}nline {A}nalysis

Framework for online learning from data streams
Closely related to WEKA

Contains:

— classifiers

— clustering algorithms
— stream generators

Easy to extend

AWE, AUE, and Data Chunk Evaluation are included in

the latest release
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e A comparison of chunk ensemble methods

e AUE a new classifier:
— constant time and memory
— reacts to concept drift
— as accurate as more expensive methods

e Three algorithms contributed to MOA
e Plans to add more diversity and a pruning mechanism
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Thank you!
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