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Abstract. XML classification finds many applications, ranging from
data integration to e-commerce. However, existing classification algo-
rithms are designed for static XML collections, while modern informa-
tion systems frequently deal with streaming data that needs to be pro-
cessed on-line using limited resources. Furthermore, data stream classi-
fiers have to be able to react to concept drifts, i.e., changes of the streams
underlying data distribution. In this paper, we propose XStreamClass,
an XML classifier capable of processing streams of documents and re-
acting to concept drifts. The algorithm combines incremental frequent
tree mining with partial tree-edit distance and associative classification.
XStreamClass was experimentally compared with four state-of-the-art
data stream ensembles and provided best average classification accuracy
on real and synthetic datasets simulating different drift scenarios.
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1 Introduction

In the past few years, several data mining algorithms have been proposed to dis-
cover knowledge from XML data [1–4]. However, these algorithms were almost
exclusively analyzed in the context of static datasets, while in many new appli-
cations one faces the problem of processing massive data volumes in the form
of transient data streams. Example applications involving processing XML data
generated at very high rates include monitoring messages exchanged by web-
services, management of complex event streams, distributed ETL processes, and
publish/subscribe services for RSS feeds [4].

The processing of streaming data implies new requirements concerning lim-
ited amount of memory, short processing time, and single scan of incoming ex-
amples, none of which are sufficiently handled by traditional XML data mining
algorithms. Furthermore, due to the nonstationary nature of data streams, tar-
get concepts tend to change over time in an event called concept drift. Concept
drift occurs when the concept about which data is being collected shifts from
time to time after a minimum stability period [5]. Drifts can be reflected by class
assignment changes, attribute distribution changes, or an introduction of new
classes (concept evolution), all of which deteriorate the accuracy of algorithms.
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Although several general data stream classifiers have been proposed [5–8],
they do not take into account the semi-structural nature of XML, like e.g. the
XRules algorithm does for static data [1]. To the best of our knowledge, the
only available XML stream classification algorithm was proposed by Bifet and
Gavaldà [9]. However, this proposal focuses only on incorporating incremental
subtree mining to the learning process and, therefore, does not fully utilize the
structural similarities between XML documents. Furthermore, the classification
method proposed by Bifet and Gavaldà is only capable of dealing with sudden
concept drifts, but will not react to gradual drifts or concept evolution.

In this paper, we propose XStreamClass, a stream classification algorithm
which employs incremental subtree mining and partial tree-edit distance to clas-
sify XML documents online. By dynamically creating separate models for each
class, the proposed method is capable of dealing with concept evolution and
gradual drift. Moreover, XStreamClass can be easily extended to a cost sensi-
tive model, allowing it to handle skewed class distributions. We will show that
the resulting system performs favorably when compared with existing stream
classifiers, additionally being able to cope with different types of concept drift.

The remainder of the paper is organized as follows. Section 2 presents related
work. In Section 3, we introduce a new incremental XML classification algorithm,
which uses maximal frequent induced subtrees and partial tree-edit distance to
perform predictions. Furthermore, we analyze possible variations of the proposed
algorithm for different stream settings. The algorithm is later experimentally
evaluated on real and synthetic datasets in Section 4. Finally, in Section 5 we
draw conclusions and discuss lines of future research.

2 Related Work

As an increasingly important data mining technique, data stream classification
has been widely studied by different communities; a detailed survey can be found
in [5]. In our study, we focus on methods that adaptively learn from blocks of ex-
amples. One of the first of such block-based classifiers was the AccuracyWeighted
Ensemble algorithm (AWE) [10], which trained a new classifier with each incom-
ing block of examples to form a dynamically weighted and rebuilt classifier en-
semble. More recently proposed block-based methods include Learn++NSE [11]
which uses a sophisticated accuracy-based weighting mechanism and the Ac-
curacy Updated Ensemble (AUE) [8] which incrementally trains its component
classifiers after every processed block of examples.

However, all of the aforementioned algorithms are general classification meth-
ods, which are not designed to deal with semi-structural documents. On the other
hand, although there exists a number of XML classifiers for static data [1, 2],
none of them is capable of incrementally processing streams of documents. To
the best of our knowledge, the only streaming XML classifier is that proposed by
Bifet and Gavaldà [9]. In this approach, the authors propose to adaptively mine
closed frequent induced subtrees on batches of XML documents. The discovered
subtrees are later used in the learning process, where labeled documents are en-
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coded as tuples with attributes representing the occurrence/absence of frequent
trees in a given document. Such tuples are later fed to a bagging or boosting
ensemble of decision trees.

The proposed XStreamClass algorithm uses the AdaTreeNat [9] algorithm
to incrementally mine maximal frequent induced subtrees and Partial Tree-edit
Distance [12] to perform classification. Partial Tree-edit Distance (PTED) is an
approximate subtree matching algorithm, which measures how much one tree
needs to be modified to become a subtree of another tree. PTED is a combination
of subtree matching [13] and tree-edit distance algorithms [14], and was designed
specifically for XML classification.

3 The XStreamClass Algorithm

Existing data stream classification algorithms are not designed to process struc-
tural data. The algorithm of Bifet and Gavaldà [9] transforms XML documents
into vector representations in order to process them using standard classifica-
tion algorithms and, therefore, neglects the use of similarity measures designed
strictly for XML. Furthermore, the cited approach is capable of dealing with
sudden drifts, but not gradual changes or concept evolution. The aim of our
research is to put forward an XML stream classifier that will use structural sim-
ilarity measures and be capable of reacting to different types of drift. To achieve
this goal, we propose to combine associative classification with partial tree-edit
distance, in an algorithm called XStreamClass.
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Fig. 1. XStreamClass processing flow

The XStreamClass algorithm maintains a pool of maximal frequent induced
subtrees for each class and predicts the label of each incoming document by as-
sociating it with the class of the closest of all maximal frequent induced subtrees.
The functioning of the algorithm can be divided into two subprocesses: training
and learning. It is important to notice that, in accordance with the anytime pre-

diction requirement of data stream classification [5], the training and learning
processes can occur simultaneously and the algorithm is always capable of giv-
ing a prediction (Fig. 1). Algorithm 1 presents the details of the training, while
Algorithm 2 summarizes the classification process.
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Algorithm 1 XStreamClass: training

Input: D: stream of labeled XML documents, m: buffer size, minsup: minimal support
Output: P: set of patterns for each class

1: for all documents d ∈ D do

2: B ← B ∪ {d};
3: if |B| = m then

4: split documents into batches Bi (i = 1, 2, ..., k) according to class labels;
5: Pi ← AdaTreeNati(Pi, Bi,minsup);
6: P ← P1 ∪ P2 ∪ ... ∪ Pk;
7: B ← ∅

In the training process, labeled documents are collected into a buffer B. When
the buffer reaches a user-defined size m, documents are separated according to
class labels into batches Bi (i = 1, 2, ..., k), were k is the number of classes.
Each batch Bi is then incrementally mined for maximal frequent subtrees Pi

by separate instances of the AdaTreeNat algorithm [9]. Since AdaTreeNat can
mine trees incrementally, existing tree miners for each class are reused with
each new batch of documents. Furthermore, in case of concept-evolution, a new
tree miner can be created without modifying previous models. After the mining
phase, frequent subtrees are combined to form a set of patterns P, which is used
during classification.

It is worth noticing that the training procedure can be slightly altered to
achieve a more fluid update procedure. Instead of maintaining a single buffer B
and waiting for m documents to update the model, one could create independent
buffers for each class label. This would introduce the possibility of defining a
different batch size for each class and enable better control of the training process
for class-imbalanced streams. The influence of this fluid update strategy will be
discussed in Section 4.

Algorithm 2 XStreamClass: classification

Input: D: stream of unlabeled XML documents
Output: Y: stream of class predictions

1: for all documents d ∈ D do

2: calculate ∆(p, d) for each pattern p ∈ P using (1);
3: y ← class of p = argmin∆(p, d) (or p calculated according to (2));
4: Y ← Y ∪ {y};

Classification is performed incrementally for each document using the set of
current patterns P. To assign a class label to a given document d, the algorithm
calculates the partial tree-edit distance between d and each pattern p ∈ P. The
partial tree-edit distance is defined as follows [12]. Let s be a sequence of deletion
or relabeling operations on leaf nodes or on the root node of a tree. A partial

tree-edit sequence s between two trees p and d is a sequence which transforms p
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into any induced subtree of d. The cost c(s) of a partial tree-edit sequence s is
the total cost of all operations in s. Partial tree-edit distance ∆(p, d) between a
pattern tree p and a document tree d is the minimal cost of all possible partial
tree-edit sequences between p and d.

∆(p, d) = min {c(s) : s is a partial tree-edit sequence between p and d} (1)

After using (1) to calculate distances between d and each pattern p ∈ P,
XStreamClass assigns the class of the pattern closest to d. If there is more than
one closest pattern, we propose a weighted voting measure to decide on the most
appropriate class. In this scenario, each pattern is granted a weight based on its
normalized support and size, and uses this value to vote for its corresponding
class. The document is assigned the class c with the highest score, as presented
in (2).

c = argmax
ci,i=1,2,...,k

∑

{p:class(p)=ci}

(support(p)× size(p)) (2)

In contrast to general block-based stream classifiers like AWE [10], AUE [8],
or Learn++NSE [11], the proposed algorithm is designed to work strictly with
structural data. Compared to XML classification algorithms for static data, such
as XRules [1] or X-Class [2], we process documents incrementally, use PTED,
and do not use default rules or rule priority lists. In contrast to [9], XStream-
Class does not encode documents into tuples and calculates pattern-document
similarity instead of pattern-document inclusion. Moreover, since XStreamClass
mines for maximal frequent subtrees for each class separately, it can have dif-
ferent model refresh rates for each class. In case of class imbalance, independent
refresh rates allow the algorithm to mine for patterns of the minority class using
more documents than would be found in a single batch containing all classes.
Additionally, this feature helps to handle concept-evolution without the need
of rebuilding the entire classification model. Finally, because of its modular na-
ture, the proposed algorithm can be easily implemented in distributed stream
environments like Storm1, which would enable high-throughput processing.

4 Experimental evaluation

The aim of our experiments was to evaluate the XStreamClass algorithm on
static and drifting data and compare it against four streaming classifiers em-
ploying the methodology presented in [9]: Online Bagging (Bag) [7], Accuracy
Weighted Ensemble (AWE) [10], Learn++.NSE [11], and Accuracy Updated
Ensemble (AUE) [8]. Bagging was chosen as the algorithm used by Bifet and
Gavaldà to test their methodology and the remaining algorithms were chosen
as strong representatives of block-based stream classifiers. We tested two ver-
sions of XStreamClass: one that synchronously updates all class models using a
single batch (XSC) and one that updates each class model independently using
separate batches for each class (XSCF ).

1 http://storm-project.net/
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XStreamClass was implemented in C# 2, tree mining was performed using
a C++ implementation of AdaTreeNat [9], while the remaining classifiers were
implemented in Java as part of the MOA framework [15]. The experiments were
conducted on a machine equipped with a dual-core Intel i7-2640M CPU, 2.8Ghz
processor and 16 GB of RAM. To make the comparison more meaningful, we
set the same parameter values for all the algorithms. For ensemble methods we
set the number of component classifiers to 10: AUE, NSE, and Bag have ten
Hoeffding Trees, and since AWE uses static learners it has ten J48 trees. We
decided to use 10 component classifiers as this was the number suggested and
tested in [9]. The data block size used for block-based classifiers (AWE, AUE,
NSE) was the same as the maximal frequent subtree mining batch size (see
Section 4.1). For ensemble components we used Hoeffding Trees enhanced with
Naive Bayes leaf predictions with a grace period nmin = 100, split confidence
δ = 0.01, and tie-threshold τ = 0.05 [6].

4.1 Data Sets

During our experiments we used 4 real and 8 synthetic datasets. The real datasets
were the CSLOG documents, which consist of web logs categorized into two classes,
as described in [1, 9]. The first four synthetic datasets were the DS XML doc-
uments generated and analyzed by Zaki and Aggarwal [1]. The additional four
synthetic datasets were generated using the tree generation program of Zaki, as
described in [9]. NoDrift contains no drift, Sudden contains 3 sudden drifts every
250k examples, Gradual gradually drifts from the 250k to 750k example, and
Evolution contains a sudden introduction of a new class after the 1M example2.
All of the used datasets are summarized in Table 1.

Table 1. Dataset characteristics

Dataset #Documents #Classes #Drifts Drift type Minsup Batch Window size

CSLOG12 7628 2 - unknown 5% 1000 -
CSLOG123 15037 2 - unknown 4% 1000 -
CSLOG23 15702 2 - unknown 6% 1000 -
CSLOG31 23111 2 - unknown 3% 1500 -
DS1 91288 2 - unknown 1% 5000 -
DS2 67893 2 - unknown 1% 5000 -
DS3 100000 2 - unknown 1% 5000 -
DS4 75037 2 - unknown 0% 5000 -
Evolution 2000000 3 1 mixed 1% 10000 -
Gradual 1000000 2 1 gradual 1% 1000 1000
NoDrift 1000000 2 0 none 1% 10000 -
Sudden 1000000 2 3 sudden 1% 1000 1000

2 Source code, test scripts, and datasets available at:
http://www.cs.put.poznan.pl/dbrzezinski/software.php
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As shown in Table 1, minimal support and batch size used for tree mining
varied depending on the dataset size and characteristics. For datasets without
drift or with concept evolution, we used incremental tree mining without any
forgetting mechanism; for datasets with drift, a sliding window equal to the batch
size [9]. All of the tested algorithms used the same patterns for classification.

4.2 Results

All of the analyzed algorithms were tested in terms of accuracy, classification
time, and memory usage. The results were obtained using the test-then-train
procedure [5], with pattern mining (model updates) occurring after each batch
of examples. Tables 2–4 present average memory usage, batch classification time,
and accuracy, obtained by the tested algorithms on all datasets, respectively.

In terms of memory usage, XStreamClass is the most efficient solution out
of all the tested algorithms. This is especially visible for larger datasets, were
general stream classifiers grow large classification models, while the proposed
algorithm only needs to maintain a list of current maximal frequent subtrees.

As Table 2 shows, low memory consumption is achieved at the cost of rel-
atively high classification time. XStreamClass needs to calculate the PTED
between a document and each pattern, which is computationally more expen-
sive than simple subtree matching. However, it is worth noticing that for larger
streams XStreamClass offers comparable and sometimes better prediction speed
due to its compact classification model.

Concerning accuracy, XStreamClass is the best algorithm on all but one
dataset. This is a direct result of using of a tree similarity measure, which, in
contrast to simple subtree matching, classifies a document even if it does not
contain any of the patterns in the model. Moreover, since the classification model
of XStreamClass depends strictly on the current set of frequent patterns, the
algorithm has a forgetting model steered directly by adaptive pattern mining.
This allows the proposed algorithm to react to changes as soon as they are visible
in the patterns, in contrast to the compared algorithms, which would require
a separate drift detection model. This was especially visible on the accuracy
plot of the Gradual dataset presented in Fig. 2. One can see that around the
250k example accuracy slightly drops as gradual drift starts, but with time
XStreamClass recovers from the drift.

It is also worth mentioning that independent batches for each class and, thus,
asynchronous pattern mining for each class, offers better accuracy on practically
all datasets. This is connected to the fact that in the XSCF processing scenario a
larger number of examples is used for pattern mining for each class, which often
allows to find better patterns. Furthermore, the CSLOG datasets are imbalanced
with the majority class occurring three times as often as the minority class. Since
XSCF waits for a larger sample of the minority class before pattern mining, it
can achieve higher accuracy even on datasets as small as CSLOG.

To verify if the results of the compared classifiers are significantly different,
we carried out statistical tests for comparing multiple classifiers over multiple
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Table 2. Average model memory usage [kB]

AUE AWE Bag NSE XSC XSCF

CSLOG12 179.45 2376.80 441.36 38.11 4.07 4.78
CSLOG123 564.45 5226.85 889.44 55.04 4.10 4.82
CSLOG23 418.03 3642.58 749.76 53.86 3.94 5.09
CSLOG31 255.77 3642.58 453.46 48.41 4.96 6.50
DS1 1375.00 17114.75 2531.67 232.95 2.48 2.47

DS2 1331.89 15411.12 2631.16 613.50 2.73 2.80
DS3 1801.53 17574.12 3152.19 174.08 2.45 2.39

DS4 1510.63 16273.34 2604.43 123.87 2.90 3.53
Evolution 466.25 40979.98 1446.82 1539.28 2.63 2.51

Gradual 318.00 4746.09 1230.47 14522.56 2.53 2.63
NoDrift 500.81 40287.60 951.82 798.65 2.54 2.63
Sudden 263.39 4746.09 1093.75 13048.44 2.69 2.67

Table 3. Average block/batch classification time [s]

AUE AWE Bag NSE XSC XSCF

CSLOG12 0.02 0.02 0.03 0.01 0.04 0.07
CSLOG123 0.06 0.05 0.07 0.05 0.14 0.15
CSLOG23 0.04 0.04 0.05 0.04 0.06 0.10
CSLOG31 0.02 0.01 0.03 0.01 0.03 0.04
DS1 0.35 0.31 0.43 0.30 1.22 0.31
DS2 0.33 0.30 0.41 0.30 1.39 0.35
DS3 0.41 0.36 0.47 0.35 1.08 0.35

DS4 0.57 0.54 0.63 0.50 2.06 0.62
Evolution 0.42 0.22 1.68 0.23 1.12 0.11

Gradual 0.03 0.01 0.12 0.02 0.07 0.12
NoDrift 0.44 0.25 1.03 0.27 0.83 0.08

Sudden 0.02 0.01 0.12 0.01 0.06 0.12

Table 4. Average classification accuracy [%]

AUE AWE Bag NSE XSC XSCF

CSLOG12 76.91 76.91 75.60 76.91 75.77 76.93

CSLOG123 73.50 76.00 73.50 74.68 76.44 78.80

CSLOG23 77.14 77.01 74.71 76.06 78.19 78.27

CSLOG31 76.52 76.52 75.78 75.50 76.03 76.50
DS1 58.02 58.14 57.64 58.30 63.22 64.95

DS2 75.29 75.65 74.67 75.05 75.08 79.78

DS3 53.75 54.21 53.96 52.00 55.54 59.51

DS4 58.90 59.11 58.84 53.28 59.68 61.31

Evolution 53.79 54.07 53.81 52.05 99.49 99.49

Gradual 52.91 53.05 52.46 52.68 94.44 97.65

NoDrift 53.78 54.02 53.68 50.94 99.50 99.99

Sudden 52.58 52.49 52.45 51.20 96.33 99.30
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Fig. 2. Accuracy on the Gradual dataset

datasets. We used the non-parametric Friedman test along with the Bonferroni-
Dunn post-hoc test [16] to verify whether the performance of XSC/XSCF is
statistically different from the remaining algorithms. The average ranks of the
analyzed algorithms are presented in Table 5 (the lower the rank the better).

Table 5. Average algorithm ranks used in Friedman tests

AUE AWE Bag NSE XSC XSCF

Accuracy 3.83 3.04 5.29 5.08 2.54 1.21

Memory 3.67 5.83 4.75 3.75 1.33 1.67
Testing time 3.33 1.75 4.92 1.83 5.17 4.00

By using the Friedman test [16] to verify the differences between accuracies,
we obtain FFAcc = 25.38. As the critical value for comparing 6 algorithms over
12 datasets for p = 0.05 is 2.38, the null hypothesis can be rejected and we can
state that algorithm accuracies significantly differ from each other. Additionally,
since the critical difference chosen by the Bonferroni-Dunn test is CD = 1.97, we
can state that XSCF is significantly more accurate than AUE, Bag, and NSE.
An additional one-tailed Wilcoxon test [16] shows that with p = 0.001 XSCF is
also on average more accurate than AWE. A similar analysis (FFMem = 71.01,
FFTime = 18.18) shows that XSC is the most memory efficient algorithm and
AWE and NSE are faster than XSC and XSCF .

5 Conclusions

In this paper, we presented XStreamClass, the first algorithm to use tree similar-
ity in classifying streams of XML documents. The algorithm combines incremen-
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tal tree mining with partial tree-edit distance and associative classification. Fur-
thermore, we investigated different processing strategies to address the problem
of class imbalance and concept evolution. Finally, we experimentally compared
the proposed algorithm with the only competitive XML stream classification
methodology. XStreamClass provided best classification accuracy and memory
usage in environments with different types of drift as well as in static environ-
ments. Future lines of research will include different classification schemes using
partial tree-edit distance and implementations for distributed environments.
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