
HTTP Protocol

Bartosz Walter
<Bartek.Walter@man.poznan.pl>

Agenda
Basics
Methods
Headers
Response Codes
Cookies
Authentication
Advanced Features of HTTP 1.1
Internationalization

HTTP Basics
defined in 1996 (RFC 1945)
stateless client-server protocol for managing
remote resources
based on a request-response paradigm
usually transmitted over TCP connections
capable of carrying ANY data

GET Method
used to retrieve data identified by URI

GET /blah/index.html HTTP/1.0
Accept: text/html
User-Agent: Lynx/2.2 libwww/2.14
<CRLF>

POST Method
used to transfer data from the client to the

server
POST /cgi-bin/post-query HTTP/1.0
Accept: text/html
User-Agent: Lynx/2.2 libwww/2.14
Content-type: application/x-www-form-urlencoded
Content-length: 150

org=CyberWeb%20SoftWare
&users=10000
&browsers=lynx

HEAD Method
similar to GET, but retrieves headers only

HEAD /blah/index.html HTTP/1.0
Accept: text/html
User-Agent: Lynx/2.2 libwww/2.14
<CRLF>

PUT Method
requests that the object be stored under

the supplied URI - thus allowing a client
to write a file to a server

DELETE Method
Requests that the object be removed from

the supplied URI - thus allowing a client
to delete a file to a server.

Further the URI becomes invalid for
subsequent requests.

OPTIONS Method

a way for a client to learn about the
capabilities of a server without actually
requesting a resource

for example, a proxy can verify that the server
complies with a specific version of the protocol

Request

initial line
headers
empty line
body

GET /index.html HTTP/1.0
Host: www.wally.pl
User-Agent: MSIE/Mozilla
<CRLF>
<CRLF>
<data>

Response

initial line
headers
empty line
body

HTTP/1.0 200 OK
Date: Sunday,

25 November 2001
18:42:05 GMT

Content-Type: text/html
Content-Length: 109

<data>

Headers in General

16 defined in HTTP 1.0
46 defined in HTTP 1.1

Variety

not for names, allowed for
values

Case sensitivity

usually single line (with
exceptions)

Length span

name: valueGeneral form

Request Headers (cont.)

Accept-Language

authorization data required by
server

Authorization

previous URL requested by
the browser

Referer

client's browser identificationUser-Agent

data types accepted by clientAccept

Response Headers (cont.)

time when the document may
change

Expires

a new location the browser
should request for

Location

server request for
authentication

WWW-Authenticate

connection persistence
handling

Connection

cache policy required by
server

Cache-Control

Response Headers (cont.)

time when the document may
change

Expires

a new location the browser
should request for

Location

server request for
authentication

WWW-Authenticate

body length in bytesContent-length

MIME type of the responseContent-type

Status codes
Information 1xx
 100 – continue
 101 – switching protocols

Status codes (cont.)
Success 2xx
 200 – request fulfilled
 201 – created
 202 – accepted
 203 – partial information
 204 – no response
 205 – partial content

Status codes (cont.)
Redirection 3xx
 301 – moved permanently
 302 – found & moved temporarily
 303 – see other location
 304 – not modified
 305 – use proxy

Status codes (cont.)
Client-originated errors 4xx
 400 – bad request syntax
 401 – unauthorized
 402 – payment required
 403 – forbidden
 404 – not found
 405 – method not allowed

Status codes (cont.)
Server-originated errors 5xx
 500 – internal server error
 501 – facility not supported
 502 – service overload
 503 – service unavailable
 504 – gateway timeout

Cookies
short data exchanged by parties
 name=value format
 persistence control
 stored by client

Cookies over HTTP
Set-Cookie: NAME=VALUE; expires=DATE;
Cookie: NAME1=OPAQUE_STRING1;

Cookie's Attributes

name,
value,
expiration date of the cookie,
path the cookie is valid for,
domain the cookie is valid for,
need for a secure connection to exist to
use the cookie.

Operations on Cookies

reset a cookie
 either set its value to null
 or set the expiration date in the past

check whether cookies are accepted
 set a cookie (1st request)
 retrieve it (2nd request)

Example of a Cookie Transaction

Client Server

Set-Cookie: CUSTOMER=WILE_E_COYOTE; path=/;
expires=Wednesday, 09-Nov-99 23:12:40 GMT

GET /anything.html

GET /index2.html
Cookie: CUSTOMER=WILE_E_COYOT

Set-Cookie: SHIPPING=FEDEX; path=/foo

GET /foo/index2.html
Cookie: CUSTOMER=WILE_E_COYOTE;

SHIPPING=FEDEX

Basic Authentication
HTTP has a built-in authentication mechanism

 GET /index.html HTTP/1.0
 WWW-Authenticate realm:
 GET ... Authorization J987kl8SAl
 401 HTTP/1.0 Unauthorized
user:password  (Base64)  J987kl8SAl

New Features in HTTP/1.1
multiple transactions over single
persistent connection
cache support
multiple hosts over single IP
chunked encoding

Persistent Connections
Allows for sending multiple request & responses over single

connection

HTTP/1.1 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/plain
Content-Length: 10
Connection: keep-alive <or closed>

abcdefghij

Cache Control
Allows for sending multiple request & responses over single

connection

GET /index.html HTTP/1.1
Host: www.host1.poznan.pl
If-Modified-Since:Fri, 31 Dec 1999 23:59:59 GMT
<CRLF>
HTTP/1.1 304 Not Modified
Date: Fri, 31 Dec 1999 23:59:59 GMT
<CRLF>

Multiple Hosts over Single IP
Allows for sending multiple request & responses over single

connection

GET /index.html HTTP/1.1
Host: www.host1.poznan.pl
<CRLF>

GET /index.html HTTP/1.1
Host: www.host2.poznan.pl
<CRLF>

Chunked Transfer-Encoding
Allows for sending partitioned responses

HTTP/1.1 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/plain
Transfer-Encoding: chunked

1a; ignore-stuff-here
abcdefghijklmnopqrstuvwxyz
10
1234567890abcdef
0
some-footer: some-value
another-footer: another-value
<CRLF>

Internationalization in HTTP
Content-type header
content-type: text/html; charset=8859_2
content-type: text/html; charset=8859_1

Accept-language header
accept-language: pl-PL, en-US

Content-language header
content-language: pl-PL

Next week...

Common Gateway Interface

Thank you!

