Lecture XXX

Jakarta Tomcat

Bartosz Walter
<Bartek.Walter@man.poznan.pl>

Architecture

Server
Service*
Engine
Host™
|Logger
Context”
Request Connector ~| Valva ® || Earviet® I
I ~
Request Connector Valve * JSP*
| |
Request Connectar Valve * .—E

Architecture

= Top-level components
= exist at the top of the configuration hierarchy

= Connectors
= connect the servlet container to the Web browser making
requests
= Container components
= contain a collection of other components

= receive the requests from the top-level components, deal with
the request process and return the response to the
component that sent it to them.

= Nested components

= can reside in containers, but cannot contain other
components

Top-level components

= Server

= single server resides within a single JVM
= usually not implemented by users

= Service
= groups an Engine component with its Connectors

= Engine
= contained within a single Service

= represents a request processing pipeline for a
specific Service; examines HTTP headers and
determines which host the request is designated for

= may be used for container clustering

Connector components

= Connector
= connects clients to webapps
= each connector is assigned a unique TCP port
= HTTP Connector and AJP Connector

Container components

= Host
= represents a virtual host within an engine

= Context
= the lowest-level container
= represents a single web application

Nested components

= Global resources
= can be only nested within a Server component

= configures JNDI resources available to all
components

= Loader
= can be only nested within a Context component
= specifies the webapp class loader

= [ogger
= reports on internal state of its parent container
= containers inherit their Loggers unless overridden

Nested components

= Realm
= manages A&A for an engine

= typical implementations include database, LDAP,
textfiles

= Resources
= specifies static resources used by a webapp

= Valve

= ntercepts requests and processes them before they
reach their destination

configuration
= pested within Host in server.xmi

= individual [contextname].xml file in
SCATALINA_HOME/conf/[enginename]/[hostname]/

= META-INF/context.xml within WAR file

web application representation
= WARfile
= corresponding directory containing unpacked content

servlet selection

= |ongest mapping in /WEB-INF/web.xml
unique context path
default context

Context example

<?xml version="1.0" encoding="utf-8'?>

<Context docBase="C:\myapp" path="/mycontext"
reloadable="true" >

<Logger className="org.apache.catalina.logger.FileLogger’
prefix="localhost_admin_log." suffix=".txt"
timestamp="true"/>

<Resource name="jdbc/mydb" type="javax.sql.DataSource"/>

<ResourceLink global="UserDatabase" name="users"
type="org.apache.catalina.UserDatabase"/>

</Context>

Web application layout

= *html, *.jsp, etc. - The HTML and JSP pages, along with other files
that must be visible to the client browser (such as JavaScript,
stylesheet files, and images) for your application.

= /WEB-INF/web.xml - This is an XML file describing the servlets and
other components that make up your application, along with any
Initialization parameters and container-managed security constraints
that you want the server to enforce for you.

= /WEB-INF/classes/ - This directory contains any Java class files (and
associated resources) required for your application, including both
servlet and non-servlet classes, that are not combined into JAR files.
If your classes are organized into Java packages, you must reflect this
in the directory hierarchy under /WEB-INF/classes/.

= /WEB-INF/lib/ - This directory contains JAR files that contain Java
class files (and associated resources) required for your application,
such as third party class libraries or JDBC drivers.

Webapp deployment

= |ocal
= [contextname].xml files and unpacked applications
= warfiles

= remote
= manager app http://localhost:8080/manager/html/
= admin app http://localhost:8080/admin

= Ant tasks

Tomcat classloaders

" common

= visible both to server and its webapps
= $CATALINA_HOME/common/{classes,endorsed,lib}

mserver

= visible only to the server internal classes

= $CATALINA_HOME/server/{classes,lib}
= shared

= visible to all webapps

= $CATALINA_HOME/shared/{classes,lib}
= context

= visible to a single webapp only
= $CONTEXT_ROOT/WEB-INF/{classes,lib}

Realm example

<Realm className="org.apache.catalina.realm.JDBCRealm"
debug="99"
driverName="oracle.jdbc.driver.OracleDriver"
connectionURL="jdbc:oracle:thin: @localhost:1521:orcl"
connectionName= "scott"
connectionPassword= "tiger"
userTable="users"
userNameCol="username"
userCredCol="password"
userRoleTable="user_roles"
roleNameCol="rolename" />

server.xml

Form-based authentication

" j_username
= |_password
= j_security_check

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/admin/main/login.htmi</form-login-page>
<form-error-page>/admin/main/login_failed.htmi</form-error-page>
</form-login-config>
</login-config>

http://www.onjava.com/pub/a/onjava/2002/06/12/form.html

Connectors

= Coyote

= default HTTP/1.1 connector
= jk2

= handles AJP v.1.3 protocol

= connects Tomcat to other HTTP servers (Apache, IIS,
iPlanet, Domino)

Configuring DataSource in Tomcat

<Resource name="jdbc/TestDB" auth="Container"
type="javax.sql.DataSource" />

<ResourceParams name="jdbc/TestDB">
<parameter>
<name>factory</name>
<value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
</parameter>
<parameter>
<name>url</name>
<value>jdbc:mysql://localhost:3306/javatest?autoReconnect=true</value>
</parameter>
</ResourceParams> server.xml

Configuring DataSource in Tomcat (cont.)

<resource-ref>
<description>DB Connection</description>
<res-ref-name>jdbc/TestDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

web.xml|

Configuring DataSource in Tomcat (cont.)

<resource-ref>
<description>DB Connection</description>
<res-ref-name>jdbc/TestDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

web.xml|

Configuring DataSource in Tomcat (cont.)

public void init() {

try {
Context ctx = new InitialContext();
if (ctx == null)

throw new Exception("Boom - No Context");
DataSource ds = (DataSource) ctx.lookup("java:comp/env/jdbc/TestDB");
if (ds != null) {
Connection conn = ds.getConnection();
if (conn != null) {
foo = "Got Connection " + conn.toString();

}

conn.close();

}

} catch (Exception e) { e.printStackTrace(); } .
} MyServlet.jave

