HTTP Protocol

Bartosz Walter
<Bartek.Walter@man.poznan.pl>

Agenda

#Basics

#Methods

#Headers

#Response Codes

#Cookies

#Authentication

#Advanced Features of HTTP 1.1
#Internationalization

HTTP Basics

@ defined in 1996 (RFC 1945)

stateless client-server protocol for managing
remote resources

based on a request-response paradigm
usually transmitted over TCP connections
capable of carrying ANY data

GET Method
used to retrieve data identified by URI

POST Method

used to transfer data from the client to the
server

HEAD Method

similar to GET, but retrieves headers only

PUT Method

requests that the object be stored under
the supplied URI - thus allowing a client
to write a file to a server

DELETE Method

Requests that the object be removed from
the supplied URI - thus allowing a client
to delete a file to a server.

Further the URI becomes invalid for
subsequent requests.

OPTIONS Method

a way for a client to learn about the
capabilities of a server without actually
requesting a resource

for example, a proxy can verify that the server
complies with a specific version of the protocol

Request

il e T
/

headers

empty line
body _——

Response

initial line At
headers —
empty line

body Q‘

Headers in General

Length span usually single line (with
exceptions)

Variety 16 defined in HTTP 1.0
46 defined in HTTP 1.1

Request Headers (cont.)

User-Agent client's browser identification
Authorization authorization data required by
server

Response Headers (cont.)

Connection connection persistence
handling

Location a new location the browser
should request for

Response Headers (cont.)

Location a new location the browser
should request for

Status codes

®Information 1xx
= 100 — continue
= 101 — switching protocols

Status codes (cont.)

#Success 2xx
= 200 — request fulfilled
= 201 — created
= 202 — accepted
= 203 — partial information
» 204 — no response
= 205 — partial content

Status codes (cont.)

#Redirection 3xx
= 301 — moved permanently
= 302 — found & moved temporarily
= 303 — see other location
= 304 — not modified
» 305 — use proxy

Status codes (cont.)

#Client-originated errors 4xx
= 400 — bad request syntax
= 401 — unauthorized
= 402 — payment required
= 403 — forbidden
= 404 — not found
= 405 — method not allowed

Status codes (cont.)

#Server-originated errors 5xx
= 500 — internal server error
= 501 — facility not supported
= 502 — service overload
= 503 — service unavailable
= 504 — gateway timeout

Cookies

#short data exchanged by parties
= name=value format
= persistence control
= stored by client

#Cookies over HTTP

Set-Cookie: NAME=VALUE; expires=DATE;
Cookie: NAME1=OPAQUE_STRINGI1;

Cookie's Attributes

#name,

#value,

#-expiration date of the cookie,
#path the cookie is valid for,
#domain the cookie is valid for,

#need for a secure connection to exist to
use the cookie.

Operations on Cookies

#reset a cookie
= either set its value to null
= Or set the expiration date in the past
#check whether cookies are accepted
= set a cookie (1st request)
= retrieve it (2nd request)

'Example of a Cookie Transaction

GET /anything.html
»

»

Set-Cookie: CUSTOMER=WILE E COYOTE; path=/;
_expires=Wednesday, 09-Nov-99 23:12:40 GMT
<

GET /index2.html
Cookie: CUSTOMER=WILE_E_COYOT
»

_ Set—Cookie: SHIPPING=FEDEX; path=/foo
«

GET /foo/index2.html
Cookie: CUSTOMER=WILE E_COYOTE; SHIPPING=FEDEX

»
>

Client Server

Basic Authentication

HTTP has a built-in authentication mechanism

= GET /index.html HTTP/1.0

& WWW-Authenticate realm:

= GET ... Authorization J987k18SAl
& 401 HTTP/1.0 Unauthorized

user:password => (Base64) — J987k18SAl

New Features in HTTP/1.1

#multiple transactions over single persistent
connection

#cache support
#multiple hosts over single IP
#chunked encoding

Persistent Connections

Allows for sending multiple request & responses over single
connection

Cache Control

Allows for sending multiple request & responses over single
connection

Multiple Hosts over Single IP

Allows for sending multiple request & responses over single
connection

Chunked Transfer-Encoding

Allows for sending partitioned responses

Internationalization in HTTP

Content-type header
content-type: text/html; charset=8859_ 2
content-type: text/html; charset=8859 1

Accept-language header
accept-language: pl-PL, en-US

Content-language header
content-language: pl-PL

Charset encoding

A method (algorithm) for presenting characters in
digital form by mapping sequences of code
numbers of characters into sequences of octets.

‘a->-97

‘b’ > 98

>33

= US-ASCII: 7bit, 128 characters (octets 32-126)

= [SO-8859-n: 8bit, Latin alphabet (octets 160-255)

= Windows-1252: 8 bits (octets 128-159 & 160-255)

Charset encoding

= Quoted-printable: 7-bit (only ASCII)
= printable ASCII characters are not encoded
= Remaining ones represented by 3 octets

Nt

- Hexadecimal code of the character
= Example

=20

- ‘'’ (space) » ‘=20’

L= =3D

Charset encoding

e64
For representing binary data as ASCII characters

. Alphabet: A-Z, a-z, 0-9, "+", "/", "="

. every 3 bytes are represented by 4 octets, so each
octet takes 6 bits (resulting in 64 characters)

"=" is appended if there are less than 47 bytes to
encode

. Takes ca. 33% more space than unencoded data
. Example: ,Man" > TWFu

= Bas

“Unicode, UTF-8, UTF-16

= Unicode is an ISO 10646 standard defining character set

= Initially 16-bits, nowadays 0..10FFFFF

= UTF-16 is an encoding for Unicode, taking always 16
bits per character; exceeding characters are coded with
surrogate pairs

= UTF-8: ASCII characters are coded as is, the others take
2-6 octets of 128..255

= Unicode subsets: MES-1 and 2 (Multilingual European
Subsets), MS WGL4 (Windows Glyph List 4)

Multiparts

T Content-type: multipart/mixed; boundary="frontier"
MIME-version: 1.0

--frontier
Content-type: text/plain

This is the body of the message.

--frontier

Content-type: application/octet-stream

Content-transfer-encoding: base64
gajwO4+n2Fy4FV3V7zD9awd7uG8/TITP/vlocxXnnf/5mjgQjcipBUL1b3uyLwAVIBL
OP4nVLdIAhSzIZnyLAF8na0n7g60Seej7aqll3NIXCfxDsPsYBNQjSvV77j4hWEjIF/
aglS6ghfjuFgRr+0X8QZMI10mR4rUJUS7xgoknalqgj3HJvaOpeb3CFINIOVGZYz6H
62uQBOWZzNB8glwpC

-frontier--

Next week...

Common Gateway Interface

Thank you!

