
Software Testing and Change Management

Test Design Patterns
Class scope

Błażej Pietrzak
blazej.pietrzak@cs.put.poznan.pl

Software Testing and Change Management

Design by Contract

• Precondition
– Conditions that must hold before a method can

execute
– Client class must fulfill precondition

• Postcondition
– Specify conditions that must hold after a method

completes
– Server class must fulfill postcondition

• Class invariant
– Specifies a condition that must hold anytime a client

class could invoke an object’s method
– Must be true on entry and exit of public methods

Software Testing and Change Management

Design by Contract Structure

• Constructor
– Before: check class precondition
– After: check class invariant, check constructor

postcondition

• Destructor
– Before: check class invariant, check destructor

precondition
– After: check destructor postcondition

• Method
– Before: check class invariant, check method

precondition
– After: check method postcondition, check class

invariant

Software Testing and Change Management

Design by Contract
Subcontracting

(Contracts and Inheritance)
• Contracts are inherited
• Subclass must fulfill its superclass’s public

type contract
• „Require no more ensure no less!”
• Inheritance rules

– Subclass may keep or strengthen the class
invariant

– Subclass may keep or weaken the
precondition

– Subclass may keep or strengthen the
postcondition

Software Testing and Change Management

Alpha-Omega Cycle

• Alpha-Omega States:
– Alpha State: object before it is constructed
– Omega State: object after it has been

deleted
• Alpha-Omega Cycle: Take an object

from alpha to omega
– Send a message to every method at least

once
– Shows that class is ready for more extensive

testing
– No attempt is made to achieve any

coverage

Software Testing and Change Management

Alpha-Omega states

• Order of calling methods:
– Constructor method
– Accessor (get) method
– Boolean (predicate/is) method
– Modifier (set) method
– Iterator method
– Destructor method
– Order within steps: private, protected, public

Software Testing and Change Management

Invariant Boundaries

• Intent
– Select test-efficient test value combinations for classes,

interfaces, and components composed of complex
and primitive data types

• Context
– The valid and invalid combinations of instance variable

values may be specified by the class invariant
– The class invariant typically refers to instance variables

that are instances of primitive and complex data type
– The Invariant Boundaries pattern does not consider

input/output relationship or message sequence

Software Testing and Change Management

Invariant Boundaries – cont.

• Fault Model
– Bugs in implementation of constraints needed to

define and enforce a domain formed by several
complex boundaries

– Subclass invariants are often implicit or accidental,
leading to misinterpretation and misuse

• Strategy
1. Develop the class invariant
2. Develop on points and off points for each condition in

the invariant using 1x1
3. Develop in points for variables not referenced in a

condition
4. Represent the results in a domain matrix

Software Testing and Change Management

Invariant Boundaries – cont.

• Entry Criteria
– The class invariant exists or can be

created
– test suite’s entry criteria designed with

another pattern must be fulfilled
• Exit Criteria

– A complete set of domain tests has
been developed

Software Testing and Change Management

Invariant Boundaries – cont.

• Consequences
– The class invariant development is

difficult and time consuming
– After the class invariant is developed

test suite creation is fast
– The number of test cases grows linearly

with the number of conditions in the
invariant

Software Testing and Change Management

Invariant Boundaries Example
class ClientProfile {
 Account account = new Account();
 Money creditLimit = new Money();
 short trCounter;
...
}

Account abstract states: Opened, Closed, Idle, Locked, Debit
creditLimit is in range ±999 999 999 999.99
creditLimit >= trCounter * 100 + 100
trCounter must be >= 0 and <= 5000

Software Testing and Change Management

Invariant Boundaries Example

• Define Class Invariant
assert (trCounter >= 0) && (trCounter <= 5000)
 && (creditLimit>= trCounter * 100 + 100)
 && !account.isClosed());

• Develop on points and off points

-1
5001
250100.01
Closed

0
5000
100
Opened

trCounter >= 0
trCounter <= 5000
creditLimit >= trCounter * 100 + 100
!account.isClosed()

Off pointOn pointCondition

Software Testing and Change Management

Invariant Boundaries Example
– cont.

• Develop on points and off points –
cont.

creditLimitmin = (0 * 100) + 100 = 100.00
creditLimitmax = (5000 * 100) + 100 = 500 100.00
trCountercentral = (0 + 5000) / 2 = 2500
creditLimitcentral = (2500 * 100) + 100 = 250 100.00
creditLimitoff = creditLimitcentral + 0.01 = 250 100.01

Software Testing and Change Management

Invariant Boundaries Example
– cont.

• Represent the results in a domain matrix

closedOff
openOn!isClosed()Account

openidleLockddebitopenopenInTypical

8327.62

0
1

Test case

9999,99

-1

2

104.0

5000

3

732.86

5001

4

100
3500

5

2..1

8

6

783.0

99

7

700.15

1037

8

On>= trCounter
* 100 + 100 Off

On
Off
On>= 0

Off
<= 5000

InTypical

creditLimit
InTypical

trCounter
PointConditionVariable

Constraint

Software Testing and Change Management

Invariant Boundaries Example
– cont.

• Represent the results in a domain matrix – cont.
– Each test case has only one on or off-point
– Select in-points for all other values in the test case
– Avoid to repeat in points (increase chance of finding

bugs)

Software Testing and Change Management

Class Modalities
 Nonmodal

• „Accept any message in any state”
• No domain state constraint
• No message sequence constraint
• Classes that implement basic data

types are often nonmodal i.e. Time

Software Testing and Change Management

Class Modalities
Nonmodal class example

• Only one abstract state (any possible time) and many
concrete states (e.g. 23:00:01, 12:15:49 etc.)

• Any possible message can accur after any possible
message with exception for constructor and destructor

class Time {
 private int hh24, mm, ss;
 public Time(int hh24, int mm, int ss) { ... }
 public void setHour(int value) { ... }
 ...
 public void getSecond() { ... }
 public boolean equals(Time t) { ... }
 public Time subtract(Time t) { ... }
}

Software Testing and Change Management

Class Modalities
 Unimodal

• No domain state constraint
• Message sequence constraint
• Classes that are application controllers

are usually unimodal
• Example: traffic lights

turnOnRedLight can only be accepted
after turnOnYellowLight
turnOnGreenLight – only after turnOnRed,
turnOnYellowLight

Software Testing and Change Management

Class Modalities
 Quasi-modal

• Imposes sequential constraints on message acceptance
that change with the contents of the object

• Many container and collection classes are quasi-modal
i.e. Stack

• Behaves like modal class, but message sequence
constraints are implicitly connected with the contents of
the object i.e. stack - size determines whether stack is full,
empty, or loaded. It doesn’t matter what are the contents
of the stack or in what order.

• Test model is focused on parameters describing the
contents i.e. stack size

• In modal class the contents control the behavior directly

Software Testing and Change Management

Class Modalities
 Modal

• Domain state constraint
• Message sequence constraint
• Example Account

Software Testing and Change Management

Class Modalities
 Modal example

• If [saldo == 0] then close()
• If isClosed it cannot accept close()

class Account {
 private Money saldo;
 private int accountNumber;
 private Date lastOperation;
 public void open() { ... }
 public Money getSaldo() { ... }
 public void credit(Money creditAmount) { ... }
 public void debit(Money debitAmount) { ... }
 public void lock() { ... }
 public void unlock() { ... }
 public void regulate() { ... }
 public void close() { ... }
}

Software Testing and Change Management

Nonmodal Class Test

• Intent
– Develop a class scope test suite for a class

that does not constrain message sequences
• Context

– Nonmodal class imposes few constraints on
message sequence but usually has a complex
state space and a complex interface

– Few or no message sequences are illegal;
most message sequences are legal

Software Testing and Change Management

Nonmodal Class Test – cont.
• Fault Model

– Sequential constraints on messages are not imposed so the
state control model is trivial

– State-based testing (see Modal Class Test) is inappropriate
– Allowed sequence is rejected
– Allowed sequence produces bad value
– Methods reporting about abstract state are inconsistent
– Allowed modifier sequence is rejected
– Not allowed modifier’s argument is accepted resulting in

corrupted state
– Accessor method has incorrect side effect, which changes or

corrupts object state
– Not allowed calculation violates class invariant
– Some modifier or accessor methods cause inconsistent

abstract state view

Software Testing and Change Management

Nonmodal Class Test – cont.

• Strategy
1. Develop a set of test cases using Invariant Boundaries

pattern
2. Select a message sequence strategy: define-use

(setters and getters), random (setters and getters in
random order), or suspect (only suspected
combinations of setters and getters)

3. Set the Object Under Test to a test case from the
domain matrix

4. Send all the accessor (get) messages
5. Verify that the returned and resulting values are

consistent
6. Repeat until all sequences have been exercised

Software Testing and Change Management

Nonmodal Class Test – cont.

• Basic test strategy
1. To set the Object Under Test to a test

vector value with a modifier (set,
constructor)

2. Verify that modifier has produced a
correct state

3. Try each accessor (get) to see that it
reports the state correctly without
buggy side effect

Software Testing and Change Management

Nonmodal Class Test – cont.

• Entry Criteria
– Alpha – omega cycle

• Exit Criteria
– Object Under Test has taken values of

each test case at least once
– Achieve at least branch coverage on

each method in the Class Under Test

Software Testing and Change Management

Nonmodal Class Test – cont.

• Consequences
– The number of tests is mn+1 where m is

the number of methods in CUT, n is a
number of modifier – accessor pairs –
typically n = 2

Software Testing and Change Management

Nonmodal Class Test
Example

public void testTime1() {
 Time temp = new Time(0, 4, 9);
 assertTrue(0, temp.getHour());
 assertTrue(4, temp.getMinute());
 assertTrue(9, temp.getSecond());
}
public void testTime2() {
 time.setMinute(4);
 time.setHour(0);
 time.setSecond(9);
 assertTrue(0, temp.getHour());
 assertTrue(9, temp.getSecond());
 assertTrue(4, temp.getMinute());
}

public void testTime3() {
 try {
 Time temp = new Time(-1, 6, 8);
 fail();
 } catch (SomeException ex) { }
}
...

Software Testing and Change Management

Quasi-modal Class Test

• Intent
– Develop a class scope test suite for a class

whose constraints on message sequence
change with the state of the class

• Context
– A quasi-modal class has sequential constraints that

reflect the organization of information used by the class
– Container and collection classes are often quasi-

modal
– Effective testing must distinguish between content that

determines behavior and content that does not affect
behavior

Software Testing and Change Management

Quasi-modal Class Test –
cont.

• Fault Model
– Quasi modal class failures occur

• When invariants related to all members of a
collection are not observed

• Strategy
1. Create N+ state model test suite

— Use N+ test strategy
— Model constraint parameters as states
— Develop test data using invariant boundaries

2. Run class specific operation-pairs

Software Testing and Change Management

Quasi-modal Class Test –
cont.

• Strategy detailed
2. Develop FREE state model. Characterize state with

constraint params not content. Treat each constraint
param as state variable.

3. Generate transition tree. There is no need to indicate
loops (*).

4. Tabulate events and actions along each path.
5. Develop test data for each path using Invariant

Boundaries pattern for events, messages and actions.
6. Execute conformance test suite until all tests pass.
7. Develop sneak path test suite. Add all forbidden

transitions in all states and define exception to be
thrown.

8. Execute sneak path test suite until all tests pass.
9. Run class specific operation-pairs.

Software Testing and Change Management

Quasi-modal Class Test –
cont.

• Entry Criteria
– Alpha – omega cycle

• Exit Criteria
– Achieve at least branch coverage on each

method
– Provide N+ coverage
– Optionally develop a class flow graph

• Identify uncovered alpha-omega paths
• Excersise those paths

Software Testing and Change Management

Quasi-modal Class Test –
cont.

• Consequences
– Testable behavior model is available or

can be developed
– CUT is state observable – we have

trustworthy built-in tests or feasible
access to the CUT so we can
determine the resultant state of each
test run

Software Testing and Change Management

Quasi-modal Class Test –
Example

class MyList {
 protected int size;
 final public static int MAX = 1000;
 protected List list = new Vector();

 public void add(Object obj)
 throws DuplicateException { ... }

 public void remove(Object obj) { ... }
 public Object get(int idx) { ... }
}
Class Invariant (not content)
size >= 0 && size <= MAX

Software Testing and Change Management

Quasi-modal Class Test –
Example cont.

• State chart (not all transitions are shown)

add(x)[size == maxSize - 1]

alpha

Empty

Loaded

Full

new

remove(x)[size > 1]

remove(x)[size == 1]

remove(x)

get(x)

Software Testing and Change Management

Quasi-modal Class Test –
Example cont.

• Transition tree
alpha Emptynew Loaded

Empty

Loaded

remove(x)[size == 1]

add(x) remove(x)[sizeof > 1]

Loaded
get(x)

Loaded

add(x)[size < maxSize - 1]

Full

add(x)[size == maxSize - 1]
Loaded

remove(x)

Fullget(x)

Software Testing and Change Management

Quasi-modal Class Test –
Example cont.

• Invariant Boundaries for add

1create only one test case for this value instead of two

size >= 0
size < MAX – 1
size == MAX –1

Condition
-1
MAX1

MAX – 2, MAX1

0
MAX – 11

MAX – 11

Off pointOn point

Software Testing and Change Management

Quasi-modal Class Test –
Example cont.

Conformance test suite
public void testAdd1() {
 MyList myList = new MyList();
 myList.add(new Object());
 assertTrue(myList.isLoaded());
 assertFalse(myList.isEmpty());
 assertFalse(myList.isFull());
 assertEquals(1, myList.size());
}
public void testAdd2() {
 MyList myList = new MyList();
 // set size to MAX - 1
 myList.add(new Object());
 assertTrue(myList.isFull());
 assertFalse(myList.isEmpty());
 assertFalse(myList.isLoaded());
 assertEquals(MyList.MAX, myList.size());
}

public void testAdd3() {
 MyList myList = new MyList();
 // set size to MAX - 2
 myList.add(new Object());
 assertTrue(myList.isLoaded());
 assertEquals(myList.maxSize - 1,
myList.size());
 assertFalse(myList.isEmpty());
 assertFalse(myList.isFull());
}

Software Testing and Change Management

Quasi-modal Class Test –
Example cont.

• Response matrix for add

XXXXTrueTrue

4XTrueFalse

True
False
DC

add(x)

4XFalse
44XFalse

size == MAX - 1

Accepting state –
expected output

4XXDC
size < MAX - 1

FullLoadedEmptyα

Events and guards

DC – don’t care
X – excluded
- explicit transition
4 – Rejection - throw IllegalEventException

Software Testing and Change Management

Quasi-modal Class Test –
Example cont.

Sneak path test suite
public void testAdd4() {
 MyList myList = new MyList();
 // set size to MAX
 assertTrue(myList.isFull());
 try {
 myList.add(new Object());
 fail();
 } catch (IllegalEventException ex)
{ }
 assertTrue(myList.isFull());
 assertFalse(myList.isEmpty());
 assertFalse(myList.isLoaded());
 assertEquals(MAX, myList.size());
}

public void testAdd5() {
 MyList myList = new MyList();
 myList.add(new Object());
 assertTrue(myList.isLoaded());
 myList.size = MyList.MAX;
 try {
 myList.add(new Object());
 fail();
 } catch (IllegalEventException ex)
{ }

// check state analogically
}
...

Software Testing and Change Management

Quasi-modal Class Test –
Example cont.

public void testAddDuplicate() {
 assertEquals(x, y);
 myList.add(x);
 // ... check state
 try {
 myList.add(y);
 fail();
 } catch (DuplicateException ex)

{ }
 // ... check state
}

Run class specific operation-pairs
public void testAddRemove() {
 Object elem = new Object();
 myList.add(elem);
 // ... check state
 myList.remove(elem);
 assertEquals(0, myList.size());
 assertFalse(myList.contains(elem));
 // ... check state
}
...

Software Testing and Change Management

Modal Class Test

• Intent
– Develop a class scope test suite for a class

that has fixed constraints on message
sequence

• Context
– A modal class has both message and domain

constraints on the acceptable sequence of
messages

– Interactions between message sequences
and state are often subtle and complex,
therefore error prone

Software Testing and Change Management

Modal Class Test – cont.

• Fault Model
– Omited transition – message is rejected in

allowed state
– Incorrect action – bad response is chosen,

although the state and method used were
correctly accepted

– Resulting state is not allowed – method
develops a bad state in a transition

– Corrupt state is developed
– Sneak path allows to accept the message

although it should be rejected

Software Testing and Change Management

Modal Class Test – cont.

• Strategy
1. Create FREE state model
2. Generate transition tree
3. Equip the transition tree with full explication of

conditional transition cases
4. Tabulate events and actions along each path
5. Develop test data for paths – use Invariant Boundaries

for message events and actions
6. Develop Conformance tests until all tests pass
7. Develop Sneak path test suite until all tests pass

Software Testing and Change Management

Modal Class Test – cont.

• Entry Criteria
– Alpha – omega cycle
– If critical method/scope functions exist, they should be

tested before running the modal because lead-node
cannot be reached until all the predecessor tests have
passed

• Exit Criteria
– Achieve branch coverage on each method in the

Class Under Test
– A full modal class suite provides N+ coverage
– A higher level of confidence can be obtained by

developing a class flow graph to identify and any
uncovered alpha-omega paths

Software Testing and Change Management

Modal Class Test – cont.

• Consequences
– A testable behavior model is available

or can be developed
– The Class Under Test is state-observable

Software Testing and Change Management

Literature and Links
• Robert V. Binder: „Testowanie systemów obiektowych.

Modele wzorce i narzędzia.” WNT 2003
• Jtest - Automatic test generator (commercial)

http://www.parasoft.com/jsp/products/home.jsp?product=Jtest&itemId=12
• Jcontract – Design by Contract in Java (commercial)

http://www.parasoft.com/jsp/products/home.jsp?product=Jcontract&itemId=28
• Icontract – Design by Contract in Java

http://www.reliable-systems.com/tools/iContract/iContract.
htm

• Assertion Definition Language
http://adl.opengroup.org/

• JML Specs
http://www.jmlspecs.org/

Software Testing and Change Management

Quality Assessment

Thank You for your attention
• What is your general

impression (1-6)
• Was it too slow or too fast?
• What important did you learn

during the lecture?
• What to improve and how?

