
Software Testing and Change Management

Test Design Patterns
Method scope

Błażej Pietrzak
blazej.pietrzak@cs.put.poznan.pl

Software Testing and Change Management

Binder’s Patterns
• Class (12)

– Method Scope (4)
– Class Scope (4)
– Class Integration Scope (2)
– Flattened Class Scope (2)

• Reusable Component (4)
• Subsystem (4)
• Integration (9)
• Application Scope (3)
• Regression Test (5)
• Assertions (1)

•Test Harness Design (16)
–Test Case (3)
–Test Control (2)
–Driver (8)
–Execution (3)

Software Testing and Change Management

• Many bugs only found at class scope
• Cannot fully excersise a class through its

clients
• Fix bugs close to creation

– The longer you wait the more expensive it is
– Debugging during system test sucks

• Reduces schedule risk
• Improves productivity
• Don’t delegate testing to your clients

Why Test at Class Scope?

Software Testing and Change Management

1. Make a preliminary estimate of class under test
– Plan budget for testing

2. Design and code a test driver
– For non trivial classes begin with alpha-omega

skeleton
– After the alpha-omega tests pass, add additional

tests
3. Select a class scope test pattern
4. Select test design patterns for each method
5. Arrange method test cases

– According to sequence called for by the class scope
pattern

6. Build the test package
– When all tests pass, evaluate coverage
– If coverage is insufficient, develop more tests

Test Design Approach

Software Testing and Change Management

Class Scope Integration

Goal
– Demonstrate that class under test is

ready to test
Two approaches
– Small pop
– Alpha-Omega cycle

Software Testing and Change Management

Small pop

• A Big Bang integration at class level
• Excersise all untrusted components

simultaneously
• Effective when

– CUT is small and simple
– Servers of the class are stable
– Inherited features are stable
– Few intraclass dependencies exist

Software Testing and Change Management

Small pop – cont.

• Process
– Develop entire class
– Write a test driver using any

appropriate test pattern
– Run the test suite
– Debug as needed

Software Testing and Change Management

Alpha-Omega Cycle

• Alpha-Omega States:
– Alpha State: object before it is constructed
– Omega State: object after it has been

deleted
• Alpha-Omega Cycle: Take an object

from alpha to omega
– Send a message to every method at least

once
– Shows that class is ready for more extensive

testing
– No attempt is made to achieve any

coverage

Software Testing and Change Management

Alpha-Omega states

• Order of calling methods:
– Constructor method
– Accessor (get) method
– Boolean (predicate/is) method
– Modifier (set) method
– Iterator method
– Destructor method
– Order within steps: private, protected, public

Software Testing and Change Management

Method Scope Pattern:
Combinational Function Test

• Intent
– Design test suite for behaviors selected

according to combinations of state
and/or message values

• Context

Software Testing and Change Management

Method Scope Pattern:
Combinational Function Test

• Fault Model
– Incorrect or missing

• Assignment to a decision variable
• Operator or variable in predicate
• Structure in a predicate („dangling else”,

misplaced semicolon etc.)
• Default case
• Action(s)

Software Testing and Change Management

Method Scope Pattern:
Combinational Function Test

• Fault Model – cont.
– Extra action(s)
– Structural errors in decision table

implementation (e.g. ommited or misplaced
break in switch)

– Bad type or incorrect value in object
representing condition or action that can
cause a binding that produces bad action
(e.g. bad type in polymorphic method)

– General errors (e.g. ambiguous requirements)

Software Testing and Change Management

Method Scope Pattern:
Combinational Function Test

• Strategy
– Decision table with Conditions/Actions
– At least one test for each action
– Excersise boundaries of non-boolean

variables
• Entry Criteria

– Small pop. Minimal feasibility assures
branch coverage within method

Software Testing and Change Management

Method Scope Pattern:
Combinational Function Test

• Exit Criteria
– Produce every action at least once
– Force each exception at least once
– Exercise at least every branch
– If polymorphic binding is used, select

each binding at least once (branch
coverage is not reliable for
polymorphic binding)

Software Testing and Change Management

Method Scope Pattern:
Combinational Function Test

• Consequences
– Detects faults that are incorrect

response actions to test messages
– Faults resulting from the order of

messages to other methods or faults
corrupting object variables hidden by
the MUT interface may not be shown

Software Testing and Change Management

Method Scope Pattern:
Polymorphic Message Test

• Intent
– Design a test suite for a client of a

polymorphic server that exercise all
client bindings to the server

• Context
– Would you have confidence in code

for which only a fraction of statements
or branches were executed?

Software Testing and Change Management

Method Scope Pattern:
Polymorphic Message Test

• Fault model
– Client fails to meet all preconditions for all

possible bindings
– Unanticipated binding occurs – possibly

because of an incorrect construction of a
pointer (i.e. Incorrect indexing into an array)

– Superclass is changed – subclasses are
rendered inconsistent because of the change

Software Testing and Change Management

Precondition Failure

account.debit(2.0);
Account

listTransactions() : void
debit(value : double) : void

SavingsAccount

listTransactions() : void
debit(value : double) : void

GICAccount

listTransactions() : void
debit(value : double) : void

Precondition: debit > 500

Software Testing and Change Management

Unanticipated binding
Customer.report() {
 Account[] list = new Account(MAX);
 int index = savingsIndex();
 list[index] = getSavingsAccount();
 ...
 index = gicIndex();
 list[index] = getGICAccount();
 ...
 System.out.println("Savings");
 index = getGICAccount(); // wrong function!
 list[index].listTransactions();
}

Software Testing and Change Management

Superclass change

Modify debit so that it takes
a negative number as
parameter

Account

listTransactions() : void
debit(value : double) : void

SavingsAccount

listTransactions() : void
debit(value : double) : void

GICAccount

listTransact ions() : void
debit (value : double) : void

account.debit(-2.0);

Software Testing and Change Management

Method Scope Pattern:
Polymorphic Message Test

• Strategy
1. Determine the number of bindings for

each message sent to a polymorphic
server object

2. Test for all possible bindings
3. Test for run-time binding error

Software Testing and Change Management

Method Scope Pattern:
Polymorphic Message Test

• Entry Criteria
– Small pop. Minimal feasibility is assured

by branch coverage within method
– Server class should be stable

• Exit Criteria
– Each binding with polymorphic server

should be tried at least once (achieve
branch coverage of extended
message flow graph)

Software Testing and Change Management

Domain Testing Model

• Purpose: find test values
– Subset of all possible values
– Partition the input value set
– Find best test values

• Proposed Methods
– Equivalence Partitioning (classes of values

causing same result)
– Boundary Value Analysis (special class

domain boundary)

Software Testing and Change Management

Domain Testing Model – cont.

• Improved approach: domain testing
model
– Based on fault model
– Select values based on value types

and type domains
– Solution for complex types (objects)

Software Testing and Change Management

Boundary Values: Points

On, Off and Out Points
• On point (pol. Punkt brzegowy) lies on a

boundary
• In point (pol. Punkt wewnętrzny) is within

boundary and not on boundary
• Off point (pol. Punkt pozabrzegowy) lies not on a

boundary
• Out point is outside boundary

Software Testing and Change Management

Boundary Values: Points
Example

Precision 0.000000

3276732676Closed, false!Stack.isFull()

7.0000017.000000Closed, falsey <= 14.0 - x

10Open, truex > 0

10.0000110.000000Closed, falsey <= 10.0

1110Closed, falsex <= 10

0.9999991.000000Closed, falsey >= 1.0

Off pointOn pointOff point ruleCondition

Software Testing and Change Management

Boundary Values with 2 or
more variables

• Solve equation
• constraints must be fulfilled
• Check central points of independent variable first
x > 0, x <= 10
y >= 1.0, y <= 10.0
y = 14.0 - x
so x must be x >= 4 and x <= 10
central point is x = 7
in point is y = 7.0 for x = 7
off point is y = 7.000001 for x = 7

Software Testing and Change Management

Boundary Values: Points –
cont.

• What about complex types (classes)?
– Use state and state invariant
– State on point

• Smallest possible variable change produces state
change

– State off point
• Valid state that is not boundary state and differs

minimally
– State in point

• Any valid state that is not a state on point

Software Testing and Change Management

1x1 Domain Testing Strategy
• One on point and one off point for each domain

boundary
– For each relational condition
– For each nonscalar type
– For each nonlinear boundaries

• Special case Equality condition
– One on point and two off points for each equality

condition
– X == 10: on point is 10, off points are 9 and 11

• State invariant
– One on point and at least one off point for each state

invariant
– Condition for invariant is once true, once false

Software Testing and Change Management

Domain Test Matrix
• Add expected results and in points for other

values
– Each test case only has one off or on point
– Select in points for all other values in the test case
– Avoid to repeat in points (increase chance of finding

bugs)
• Result

– Minimal test cases
– Input variables to excersise boundary conditions
– For any type of variable types
– Including abstract complex types (objects)

Software Testing and Change Management

Method Scope Pattern:
Category-Partition

• Intent
– Design method scope test suites based on

input/output values
• Context

– How can we develop a test suite to exercise
the functions implemented by a single
method?

• Fault model
– Combinations of message parameters and

instance variables and these faults with result
in missing or incorrect method output

Software Testing and Change Management

Method Scope Pattern:
Category-Partition

• Strategy
1. Identify all functions of the method

– Method may implement several functions
– Other functions may be side-effects of the primary function i.e.

The current position of List object may be incremented as side-
effect of returning the next element

2. Identify all input and output parameters of
each function

3. Identify categories for each input parameter
4. Partition each category into choices
5. Identify constraints on choices
6. Generate test cases by enumerating all

choice combinations

Software Testing and Change Management

Method Scope Pattern:
Category-Partition

• Entry Criteria
– Small pop

• Exit Criteria
– Every combination is tested once
– Achieve branch coverage in the MUT

Software Testing and Change Management

Method Scope Pattern:
Category-Partition

• Consequences
– Identification of categories and choices is

subjective - some bugs may not be revealed
– Many test cases for even moderately

complex methods
– The Invariant Boundaries pattern may be used

to produced smaller test suite
– With proper attention to interface details, a

superclass Category-Partition method test
suite may be reused to test an overriding
subclass method i.e. getNextElement test suite
could be repeated for List subclasses such as
PersonList etc.

Software Testing and Change Management

Category Partition Example

Object getNextElement();
• Functions

– Return next element
– Keep track of last position and wrap

from last to first
– Throw NoPosition and EmptyList

exceptions if appropriate

Software Testing and Change Management

Category Partition Example

• Inputs
– Position of last referenced element
– List state

• Outputs
– Element returned
– Incremented position pointer

Software Testing and Change Management

Category Partition Example

• Categories and Choices
– Position of last element

• Category nth element
– Min, in-between, max

• Category Special Cases
– Undefined, First, Last

– State of the list
• Category m-elements

– Min, in-between
• Category Special Cases

– Empty, single entry, full (max)

Software Testing and Change Management

Literature and Links

• Robert V. Binder: „Testowanie systemów
obiektowych. Modele wzorce i
narzędzia.” WNT 2003

• Code coverage tools for Java:
– Clover (commercial)

http://www.thecortex.net/clover/
– JCoverage (commercial, but also GPL

license) http://www.jcoverage.com/
– GroboUtils (MIT license)

http://groboutils.sourceforge.net/
– Hansel (BSD license)

http://hansel.sourceforge.net/

Software Testing and Change Management

Quality Assessment

Thank You for your attention 
• What is your general

impression (1-6)
• Was it too slow or too fast?
• What important did you learn

during the lecture?
• What to improve and how?

