
Software Testing and Change Management

Test models:
State machines

Błażej Pietrzak
blazej.pietrzak@cs.put.poznan.pl

Software Testing and Change Management

Basic State Machine Model
 What is a State Machine?

A system model composed of events
(inputs), states and actions (outputs):
– Output is determined by both

current input and past inputs
– An information concerning past

inputs is represented by states
Robert V. Binder: Testing Object-Oriented Systems.
Models, Patterns and Tools, Addison-Wesley 2000

Software Testing and Change Management

Basic State Machine Model

State
The Information concerning past inputs
– Initial State – first event is accepted, not

need to be entered by a transition

– Final State – stop accepting events

Machine may be in only one state at a time

Software Testing and Change Management

Basic State Machine Model

Transition
An allowable two-state sequence

Accepting state Resulting state

Software Testing and Change Management

Basic State Machine Model

Event
An input or interval of time

Action
The result or output that follows an
event

Software Testing and Change Management

A Mealy machine

–A transition may have an output
action
–Any output action may be used in

more than one transition
–No output action is associated with

state, state is passive

Software Testing and Change Management

Properties of Finite State
Automata

– Incomplete Specification
– Equivalent (A minimal state machine)
– Reachability analysis
– Nonreachable states
– Dead state – no paths lead out of a dead

state
– Dead loop – no states outside of the loop may

be reached
– Magic state – has no inbound transition but

provides transitions to other states

Software Testing and Change Management

Guarded Transition

A guarded transition cannot fire unless
– The system is in accepting state for this transition
– The guarded event occurs
– The guarded predicate evaluates to true

A transition without an explicit guard: [TRUE]
An event not accepted in a certain state: [FALSE]

Event-name arg-list ‘[‘ guard-condition ‘]’ ‘/’
action-expression

Software Testing and Change Management

Limitations of the Basic Model

• Not specific for object oriented systems
– An OO interpretation of generic events,

actions and states is needed

• Limited scalability
– Up to 20 states on diagram is readable
– Basic state models do not scale well

No Partitioning, hierarchic abstraction

• Concurrency cannot be modeled
– The basic model cannot accomodate two

or more simultaneous transition concurrency

Software Testing and Change Management

State Machines and OO
Development

 If .. else, switch statements
Many design patterns in GOF collection:

State, Chain of Responsibility, Interpreter,
Mediator

Other patterns

Software Testing and Change Management

Testable model

• Complete and accurate reflection of
implementations to be tested

• Preserve details essential to fault
detection and conformance
demonstration

• Represents all events to the IUT must
respond

• Represents all actions
• Unambiguous and testable definition of

state in a way that checking the resulting
state can be automated

Software Testing and Change Management

The FREE State Model

• Flattened Regular Expression (FREE) state
model

– The class under test is flattened to represent
the behavior of inherited features

– Behavior using definitions of state, event,
and action that support the development of
effective test suites

• Can be expressed using the UML
• Object state at method activation and

deactivation is the focus of the FREE
state model

Software Testing and Change Management

FREE state model
State

• Object state - Current contents of an object
• State invariant reports the state
• Aggregate state – subset of combinational value set
• Abstract state – state is visible to clients by its

interface not implementation
class TwoBits {
 private boolean bit1;
 private boolean bit2;
 boolean isTrue() { return bit1 && bit2; }
}

How many states does TwoBits have?

Software Testing and Change Management

Checking the resultant state

State Reporter methods
Evaluates the state invariant and returns
a Boolean variable

boolean isGameStarted() { return ... }

public void testIsGameStarted() {
 app.startGame();
 assertTrue(app.isGameStarted());
}

Software Testing and Change Management

Checking the resultant state
Test Repetition

State Reported methods cannot be implemented.
Some corrupted states can be detected.
Save output action, repeat the test sequence
and compare the actions.
Bezier B.: Black box testing. Wiley & Sons, 1995

public void testPlay() {
 app.player1Hits();
 int firstWinner = app.getWinner();
 assertEquals(PLAYER_1, firstWinner);
 app.player2Hits();
 int secondWinner = app.getWinner();
 assertEquals(PLAYER_2, secondWinner);

 app.player1Hits();
 assertEquals(firstWinner, app.getWinner());
 app.player2Hits();
 assertEquals(secondWinner, app.getWinner());
}

Software Testing and Change Management

FREE state model – cont.

Hybrids are not welcome!
Use only one representation
(e.g. Mealy machine)

Software Testing and Change Management

FREE state model
Transitions

• Transition is a unique combination of
– State invariants
– An associated event
– Optional guard expressions

• Event is either
– A message sent to the class under test
– A response received from a server of the class

under test
– An interrupt or similar external control action

that must be accepted by the CUT

Software Testing and Change Management

FREE state model
Transitions – cont.

• Guard is
– A predicate expression associated with

an event
• Action is either

– A message sent to a server object
– The response provided by an object of

the class under test to its client

Software Testing and Change Management

FREE state model
Alpha and Omega states

• The α (alpha) state
– A null state representing the declaration for

an object before its construction
– Differs from an initial state
– An alpha transition

• The ω (omega) state
– It is reached after an object has been

destructed or deleted, or has gone out of
scope

– It may differ from an explicitly modeled final
state

– It is reached by explicit or implicit destructors

Software Testing and Change Management

FREE state model
Inheritance and Class Flattening

• To obtain the model for subclasses,
the class hierarchy is flattened

• Statecharts are well suited to
representing a flattened view of
behavior

Software Testing and Change Management

FREE state model
Inheritance and Class Flattening – cont.

The type substitutability principles
• A superclass state can be partitioned into

substates
• A subclass may define new states, but

these must be orthogonal to the
superclass states

• The effect of superclass private variables
on the superclass state space must be
additive

Software Testing and Change Management

FREE state model
Inheritance and Class Flattening – cont.

Substitutability Rule
• Orthogonal composition
• Concatenation
• State partitioning and substate

addition
• Transition retargeting
• Transition splitting

Software Testing and Change Management

FREE state model
Inheritance and Class Flattening – cont.

The flattened transition diagram shows the
complete behavior of the class under test.

Class flattening is not always necessary:
• When only test within subclass

boundaries without checking inherited
properties

• Not enough information about
superclass

• Lack of time

Software Testing and Change Management

Free state model
Unspecified Event/State pairs

• May mean that implicit transition is illegal,
ignored, or „impossible”

• May also be a specification omission
• An illegal event is an otherwise valid event

(message) that should not be accepted given
the current state of the UIT

• A sneak path is the bug that allows an illegal
transition or eludes a guard

• Complete behavior testing should exercise both
explicit and implicit behavior

Software Testing and Change Management

FREE state model
Response matrix

Software Testing and Change Management

FREE state model
Response matrix – cont.

x...22xFalse
6x...22xNI

x...22xTrue

66666constructor
62...xEvent 1

xx...xxTrue
xx...xxFalse

x = 0

Accepting state –
expected output

i <= 1000Event 3

62...xxDC
Event 2

ωC...BAα

Events and guards

Software Testing and Change Management

FREE state model
Response matrix – cont.

62...X2XDCDC
XX...1XXFalseFalse
XX...2XXTureFalse
XX...2XXFalseTrue
XX...XXTrueTrue

Accepting state –
expected output

k < maxi != xEvent 4

ωC...BAα

Events and guards

Software Testing and Change Management

FREE state model
Response matrix – cont.

X...XXXFalseFalseTrue
X...XXXTrueFalseTrue
X...XXXFalseTrueTrue
X...XXXTrueTrueTrue

6X...52XDCDCDC
X5...XXXFalseFalseFalse
X...XXXTrueFalseFalse
X...XXXFalseTrueFalse
X...XXXTrueTrueFalse

Accepting state –
expected output

isReset()k = maxi > 10Event 5

ωC...BAα

Events and guards

Software Testing and Change Management

FREE state model
Response matrix – cont.

2...Xdestructor

Accepting state –
expected output

ωC...BAα

Events and guards

DC – don’t care
X – excluded
- explicit transition

Software Testing and Change Management

FREE state model
Response matrix – cont.

Response codes for illegal states

Go to damage stopping
routine (e.g. Memory dump)
and stop the process

Damage
stopping

6
Turn off the source of eventSilence5
Throw IllegalEventExceptionRejection4
Return non-zero error codeMarker3
Do nothingIgnored2

Place illegal event in queue
for calculation and omitting

Queue1
Execute explicit transitionAcceptance0

ResponseNameResp. code

Software Testing and Change Management

Responses to Illegal Events

• An appropriate error message or
exception should be produced

• The abstract state of the object
should remain unchanged after
rejecting the illegal event

• Prefer defensive school – easier to
test

Software Testing and Change Management

Fault Model

• Control Faults
– Missing or incorrect transition (resulting

state is bad, but not corrupted)
– Missing or incorrect event (permitted

message is neglected)
– Missing or incorrect action (upon

transition bad things happen)
– Extra, missing, or corrupt state

(behavior is unpredictable)

Software Testing and Change Management

Fault Model – cont.

• Control Faults – cont.
– A sneak path (a message is accepted

when it should not)
– Illegal message failure (unexpected

message cause damage)
– Trap door (implementation accepts

undefined messages)

Software Testing and Change Management

Fault Model – cont.

• Incorrect composite behavior
– Missing or incorrect overriding method in

subclass
– Subclass state extension conflicts with

superclass state
– Subclass fails to retarget superclass transition
– Guard evaluation in subclass produces a new

side effect
– Guard parameters are bound to the wrong

subclass or superclass methods

Software Testing and Change Management

Developing a Test Model

1. Create a testable state model
(e.g. FREE state model)

2. Validate state model
• Structure
• State names
• Guarded transitions
• Well-formed subclass behavior
• Robustness

Software Testing and Change Management

Test generation strategies
Strategies:
– Exhaustive – preffered
– N+ strategy – preffered

– Number of tests about k2n / 2, where k is states no., n is
events no.

– All transitions – minimum
– at least once all states, all events, and all actions
– Although detects bad or omitted event-action pairs, it

cannot be proved that bad state occured.
– If state machine is incomplete cannot detect sneak

paths
– Number of tests = k x n, where k is states no., n is events

no.
– Piecewise (pol. sztukowanie) – not recommended

Software Testing and Change Management

N+ strategy

– Advanced state-based testing
– UML state models
– Testing considerations unique to OO

implementations
– It uses a flattened state model
– All implicit transitions are excersised to

reveal sneak paths
– The implementation must have a trusted

ability to report the resultant state

Software Testing and Change Management

Steps for N+ Test Suite

1. Develop a testable (e.g. FREE) model of
the implementation under test

• Validate the model using the checklists
• Expand the statechart
• Develop a response matrix

2. Generate the round-trip path test cases
3. Generate the sneak path test cases
4. Sensitize the transitions in each test case

Software Testing and Change Management

Steps for N+ Test Suite
An example

FREE model of the implementation
under test

• Flattened transition diagram
• Response matrix

Software Testing and Change Management

Steps for N+ Test Suite
An example

FREE state model -> Transition tree
• Initial state or alpha state (if exists) is a

root of the tree.
• Check the state of every not-final node

– leaf in the tree and every transition
going from that state. For each
transition create at least one edge.
Each new edge and node represent an
event and resulting state reached by
outgoing transition:

Software Testing and Change Management

Steps for N+ Test Suite
An example

1. ...
a) If not guarded condition create one new

branch.
b) If guard is a simple predicate or composed

of only AND operators create one new
branch.

c) If guard is composed predicate or with OR
operators then create new branch for each
combination of values that make guard =
true.

Software Testing and Change Management

Steps for N+ Test Suite
An example

1. ...
a) If guard defines dependency that is

reached after repetition of some event (e.g.
[counter >= 10]) then the test sequence
demands at least that number of repetitions.
The transition is marked with *

2. For each edge and node from step 2:
1. Note event, guard and action
2. If the state represented by new node is

already represented in another node
(anywhere on diagram) or is ending state
then mark this node as ending node – don’t
make new transitions from it.

Software Testing and Change Management

Steps for N+ Test Suite
An example

Transition tree -> Conformance test
suite

Response matrix -> Sneak path test
suite

Software Testing and Change Management

Literature

• Robert V. Binder: „Testowanie systemów
obiektowych. Modele wzorce i
narzędzia.” WNT 2003

• Bezier B.: „Black box testing.”
Wiley & Sons, 1995

• E. Gamma, R. Helm, R. Johnson, J.
Vlissides: „Design Patterns - Elements of
Reusable Object-Oriented Software”,
Addison-Wesley, 1995

Software Testing and Change Management

Quality Assessment

Thank You for your attention 
• What is your general

impression (1-6)
• Was it too slow or too fast?
• What important did you learn

during the lecture?
• What to improve and how?

