
Software Testing and Change Management

Test models:
Combinational Models

Błażej Pietrzak
blazej.pietrzak@cs.put.poznan.pl

Software Testing and Change Management

Combinational model
representations

– Control list
– Decision table
– Decision tree
– Graphs
– Activity Diagram

Software Testing and Change Management

Software testing with
combinational models

1. Develop a model of capability or
implementation being tested with
decision table.

2. Validate decision table model.
3. Derive the logic function.
4. Choose a combinational test

strategy.
5. Generate tests.

Software Testing and Change Management

When to use decision tables
 One of several response is selected based on

distinct input variables
 Cases can be modeled as mutually exclusive

Boolean expressions (pol. wzajemnie
wykluczających się wyrażeń boolowskich) of
input variables

 Response does not depend on the order, in
which input variables are initiated or computed

 Response does not depend upon prior input or
output

Software Testing and Change Management

How to develop a decision
table

1. Identify decision variables and
conditions.

2. Identify resultant actions to be selected.
3. Identify the actions to be produced in

response to condition combinations.
4. Derive logic function to validate the

completeness and cohesion of the
model.

Software Testing and Change Management

An example

No
No
Yes
No
Yes
Yes
No

Send
warning

No
No
No
No
No
No
Yes

Cancel

0
1
1
0
2 - 4
2 - 4
5 or more

Claims no.

25 or less
26 or more
25 or less
26 or more
25 or less
26 or more
any

Insured
age

Premium
Increase
by (USD)

Variant

50
25

100
50

400
200

0

1
2
3
4
5
6
7

Action sectionCondition section

Weinberg V.: Structured Analysis. Englewood Cliffs, NJ, Prentice-Hall 1978

6 conditions

Software Testing and Change Management

Explicit and implicit variants

Decision table with n conditions can have
up to 2n variants
The example can have up to 64 variants

Explicit variant – a case that is modeled in
decision table or truth table
The example have 7 explicit variants

Implicit variant – a case absent in the
decision table or truth table, but can be
deduced.

Software Testing and Change Management

Decision tree

• Powiedzieć, że drzewa decyzyjne
mogą być łatwiej zrozumiałe

• Mają tendencję do ukrywania
wariantów

• Tabele decyzyjne są lepszym
wyborem

Software Testing and Change Management

Truth table
Variant

F
F
F
T
DC
DC

F
F
T
F
F
T

F
F
T
F
T
F

F
T
F
F
F
T

F
T
F
F
T
F

T
F
F
F
F
T

T
F
F
F
P
F

0
1
2 – 4
5 or more
25 or less
26 or more

Claims no.

Insured age

Condition
section

T
F
F
F
F
F
F
T

7

F
F
F
F
T
F
T
F

6

F
F
F
F
F
T
T
F

5

F
F
T
F
F
F
F
F

4

F
F
F
T
F
F
T
F

3

F
T
F
F
F
F
F
F

2Condition

Premium Increase by 0
Premium Increase by 25
Premium Increase by 50
Premium Increase by 100
Premium Increase by 200
Premium Increase by 400
Send warning
Cancel

Decision
variable

F
F
T
F
F
F
F
F

Action
section

1

T – true; F – false; DC – don’t care

Software Testing and Change Management

Don’t care condition

• May be either true or false without
changing the action

• Simplifies the decision table

Software Testing and Change Management

Spot a don’t care condition

if ((w > x) || (w > (y / z)))

Which can be don’t care conditions?

Software Testing and Change Management

Spot a don’t care condition

if ((w > x) || (w > (y / z)))

If w > x then y and z can be don’t care
conditions.

Software Testing and Change Management

Type-safe exclusion

Type- safe exclusion - conditions defined for
nonbinary decision variable, which fulfills each
one of them with only one value.

Claims cannot be simultaneously 0 and 3.

int claims;
...
if (claims == 0) { ... }
else if (claims == 1) { ... }
else if ((claims >= 2) && (claims <= 4)) { ... }
else if (claims >= 5) { ... }

Software Testing and Change Management

Don’t know conditions

• Reflects incomplete model
• Example:

Decision table does not define an
action for Insured age = 300.
It is unknown what will happen.

Software Testing and Change Management

Can’t happen conditions

• Some inputs are mutually exclusive
• Some inputs cannot be produced

by the environment
• Implementation is structured so as to

prevent evaluation

Software Testing and Change Management

Can’t happen conditions –
cont.

if (isZeroClaims) { ... }
if (isOneClaim) { ... }
if (isTwoToFourClaims) { ... }
if (isFiveOrMoreClaims) { ... }

Number of claims can be simultaneously
0, 1, 2, 3, 4, 5 or more

Software Testing and Change Management

Decision tables in OO
development

• Testing
• Requirements engineering
• Conditional statements (if .. else .., switch etc.)
• Class

responsibilities
class Policy {
 public Policy(Date birth);
 public void makeClaim();
 public void annualRenewal();
 public Money getPremiumRate();
 public boolean isCanceled();
 public boolean isActive();
}

Software Testing and Change Management

Decision table vs. Truth table

• Often taken to mean the same
thing, they are not interchangeable.

• A truth table is a special case of
decision table – all cells in a decision
table must be resolvable to true or
false

Software Testing and Change Management

Deriving the logic function

• Boolean expressions
• Karnaugh-Veitch matrix
• Other

Software Testing and Change Management

Decision table validation

Decision table to be used must be:
• Testable
• Complete
• Consistent
• Error free

Software Testing and Change Management

Decision table validation –
cont.

Content checklist

 Logic function checking
– Manually transcribing truth tables is easy to

make errors (e.g. spreadsheet)
– Spreadsheet

Reasonability view
– Scrutinized for omissions and inconsistencies

Software Testing and Change Management

Fault Model
Why are these properties tested with this

technique?
Answer can be based on common sense,

experience, assumption, analysis or experiment.
Fault Model shows associations and components

of the system being tested that have highest
probability for faults to occur.

Bug hazard is a circumstance that increase the
chance of a bug.

Software Testing and Change Management

Fault Model
Generally there are two kinds of fault models:
• conformance – directed testing

– to prove conformance with requirements or specificati
– Tests are representative enough for essential features of

the system being tested
– Every fault makes the system not conformant

(Nonspecific fault model)
• fault-directed testing

– To prove implementation faults
– It is based on observation that conformance can be

proved for implementation containing bugs.
– Specific fault model

Software Testing and Change Management

Fault Model
Combinational Models

• Incorrect or missing
– Assignment to a decision variable
– Operator or variable in a predicate
– Structure in a predicate
– Default case
– Action(s)
– Class or method in composition

• Extra action(s)
• Structural error in decision table

implementation
• General errors (e.g. ambiguous reqs.)

Software Testing and Change Management

Test generation strategies

Strategies:
– All explicit variants
– All variants, All true, All false, All primes
– Each condition/All conditions
– Binary Decision Diagram Determinants
– Variable negation
– Nonbinary Variable Domain Analysis
– Additional Heuristics

Software Testing and Change Management

Test generation strategies

• All explicit variants
– Test each explicit variant at least once
– All true strategy for binary decision variable
– Appropriate to non-binary variable
– If implicit variant results from type-safe

exclusion it can generate acceptable
coverage

– Very inefficient when can’t happen
conditions or undefined domain boundaries
result in implicit variants

Software Testing and Change Management

Test generation strategies –
cont.

All variants
– Test each variant once
– Feasible for small tables (7, 8 variables)
– Number of tests = 2n

Software Testing and Change Management

Test generation strategies –
cont.

All true
– Test each variant, which produces true

All false
– Test each variant, which produces false

All primes
– Each prime implicate of the function is

tested at least once

Software Testing and Change Management

Test generation strategies –
cont.

Each condition/All conditions
– Based on heuristic to reduce # of tests
– Each variable is made true once with all other

variables false
– All variables true (and heuristic)
– All variables false (or heuristic)
– Assumes independence of condition

evaluation and absence of faults that would
mask an error

– Doesn’ t test don’t know conditions
– Number of tests = n + 1

Software Testing and Change Management

Test generation strategies –
cont.

S = P + Q + R (or heuristic)

True
True
True
False

S
False
True
False
False

Q
True
False
False
False

False
False
True
False

RP

Software Testing and Change Management

Test generation strategies –
cont.

S = PQR (and heuristic)

False
False
False
True

S
False
True
False
True

Q
True
False
False
True

False
False
True
True

RP

Software Testing and Change Management
Test generation strategies

Each condition/All conditions

Z = ABC + AD?

Test cases for ABC
Test cases for AD

Software Testing and Change Management

Binary Decision Diagram
Determinants

Z = A(B + C)
2. Create BDD diagram upon truth table

a) Create decision tree upon truth table
• Nodes represent Boolean variables
• Left branch is always false
• Right branch is always true
• Each leaf represents resultant value for conditions on

the path from root to leaf
b) Bring the decision tree to BDD diagram

• from left to right replace leafs with equivalent constants
or variables and prune branches (reduce the tree)

Software Testing and Change Management

Binary Decision Diagram
Determinants – cont.

A

B

C

B

0 0

C

0 0

C

0 1

C

1 1

Software Testing and Change Management

Binary Decision Diagram
Determinants – cont.

A

B0

C

0 1

C

1 1

Software Testing and Change Management

Binary Decision Diagram
Determinants – cont.

A

B0

C

1 1

C

Software Testing and Change Management

Binary Decision Diagram
Determinants – cont.

A

B0

C 1

(Variant 1)

(Variant 2) (Variant 3)

Software Testing and Change Management

Binary Decision Diagram
Determinants – cont.

1. Map BDD diagram into BDD
determinants table.
BDD determinant

path from root to leaf in BDD diagram

0
C
1

x
C
x

x
0
1

0
1
1

1
2
3

ZCBABDD
Variant

Software Testing and Change Management

Binary Decision Diagram
Determinants – cont.

1. Generate BDD test suite

What about don’t care variables?

0
0
1
1

x
0
1
x

x
0
0
1

0
1
1
1

1
2
2
3

ZCBABDD
Variant

Software Testing and Change Management

Variable negation

• BDD determinant strategy doesn’t check
don’t care variables

• Variable negation detects faults in don’t
care variables implementation

• Wymaga postaci boolowskiej sumy
iloczynów

• Very effective – 97% of accuracy
• Very small – 6% of all possible

combinations

Software Testing and Change Management

Variable negation – cont.

• Variable negation generates sets of test
candidates:

1. One test case for each product term
(pol. składnik iloczynowy). Only one product
term in the test case is true, other are false.

2. One test case for each element, which is
created by negation of every literal in each
product term in a way that Z = 0 (false)

Software Testing and Change Management

Variable negation – cont.

Z = A(B + C) = AB + AC
2. AB = true; AC = false

{ A = 1; B = 1; C = 0; }
AB = false; AC = true
{ A = 1; B = 0; C = 1; }

Software Testing and Change Management

Variable negation – cont.

Z = A(B + C) = AB + AC
2. AB

~AB { A = 0; B = 1; C = 1; }
A~B { A = 1; B = 0; C = 0; }
AC
~AC { A = 0; B = 0; C = 1; }
A~C { A = 1; B = 0; C = 0; }

Software Testing and Change Management

Variable negation – cont.

• Test suite must contain at least
one test case from each set of
candidates

• Candidates can be chosen at
random or by intuition of tester

Software Testing and Change Management

Nonbinary Variable Domain
Analysis

• Equivalence classes
• Boundary values

Software Testing and Change Management

Equivalence class

• A set of inputs that a tester believes will
be treated similarly by reasonable
algorithms

• Input is divided into classes
• For each class the result of the test for any

value within this class is representative for
every value from this class

• Correct equivalence classes
• Incorrect equivalence classes

Software Testing and Change Management

Defining test cases

• From each equivalence class
choose one value

• Correct test case covers possibly
many uncovered equivalence
classes

• Incorrect test case covers only one
incorrect equivalence class

Software Testing and Change Management

Boundary Conditions

• Test cases that use values on boundaries
of equivalence classes are more effective

• Instead of choosing any value within
equivalence class choose values on
class’s boundaries

• Overflows (e.g. Integer Overflow)
• Number of tests = 2b x 2 x n = 4n

b is a number of constraints

Software Testing and Change Management

An Example

• Claims = -1, Insured age 0 - 15
• Claims = 0, Insured age 16 – 25
• Claims = 0, Insured age 26 – 85
• Claims = 1, Insured age 16 – 25
• Claims = 1, Insured age 26 – 85
• Claims = 2 - 4, Insured age 16 – 25
• Claims = 2 - 4, Insured age 26 – 85
• Claims = 5 - 10, Insured age 16 – 85
• Claims = 11 and more, Insured age 86

and more

Software Testing and Change Management

Additional heuristics

• Change the order in input data
Correct implementation of decision
table should be „order
independent”

• Change the order in which tests are
run

• Add tests with implicit variants

Software Testing and Change Management

Choosing a combinational test
strategy

• Small function <0; 6> variables
– All explicit variants when nonbinary
– All variants
– Each condition/All conditions

• Medium function < 7;11> variables
– All variants
– Each condition/All conditions
– BDD diagrams

• Big function <12; infinity>
– Each condition/All conditions
– Variable negation

Software Testing and Change Management

Literature

• Robert V. Binder: Testowanie
systemów obiektowych. Modele
wzorce i narzędzia, WNT 2003

Software Testing and Change Management

Quality Assessment

Thank You for your attention
• What is your general

impression (1-6)
• Was it too slow or too fast?
• What important did you learn

during the lecture?
• What to improve and how?

Software Testing and Change Management

ZDCBA

1
1
0
1

0
1
0
1

0
0
1
1

1
1
1
1

1
1
1
1

12
13
14
15

0
1
0
1

0
1
0
1

0
0
1
1

0
0
0
0

1
1
1
1

8
9
10
11

0
0
0
0

0
1
0
1

0
0
1
1

1
1
1
1

0
0
0
0

4
5
6
7

0
0
0
0

0
1
0
1

0
0
1
1

0
0
0
0

0
0
0
0

0
1
2
3

Ignition
Enable

Manual
Mode

Damper
Shut

Call For
Heat

Normal
Pressure

Input
Vector
No.

