Software Testing and Change Management

Introduction to
Software Testing

Btaze| Pietrzak
blaze|.pietrzak@cs.put.poznan.pl

Software Testing and Change Management

Organisation

v Teachers
- Maciej Gabor mgabor@bestcom.com.pl
- Grzegorz Jachimko grzegorz.jachimko@otp.pl
— Btazej Pietrzak blaze|.piefrzak@cs.put.poznan.pl

v’ Lectures
— Tuesdays, 8:00 AM, G-1
- Duty Hours: Mondays 3:15-4:45 PM confirmed by e-mail
- Method of Verification: Test (pol. kolokwium) ©

v Laboratory classes

— Mondays, 4:50 PM, 6:30 PM, 427

- Method of Verification: Grade Average of all given
excersises

Software Testing and Change Management

Lecture proposals

v Infroduction to Software Testing (1 lecture) ©

v Test models: Combinational Models (1 lecture)
v Test models: State Machines (2 lectures)

¢ A Tester's Guide to UML (1 lecture)

¢ Patterns (3 lectures)

¢ Test Driven Development (1 lecture)

¢ Buillding Maintainable Tests (1-2 lectures)

¢ Test process improvement TP, TMM (1 lecture)
¢ Reliability measures — [EEE 982-1 1988 (1 lecture)

Software Testing and Change Management

What is Software Testing?

Requirements,

Design,

Generic

Application Test models .)

. assed,
modelling ailod

Test
Test models Suite)
dependant on Test - Automation
application designing System
Test input
Ac’ruo&

results

Code,

Test

Faults
remaining System being
in version Tested

Soffware Testing from System Engineering point of view

Software Testing and Change Management

What is Software Testing? —

cont.

Test designing
2. Separate, model and analyze responsibilities of
the system being tested.

3. Design test cases that meet the above
perspective.

4. Add test cases araising from code analysis,
assumptions and heuristics.

5. For each fest case define expected results or
select the approach which makes possible to
evaluate if the test case passes or fails.

Software Testing and Change Management

What is Software Testing? —
cont.

Test execution:

2. Bring the tested implementation to minimal efficiency by
testing interfaces between its parts.

3. Execute test suite. Each test is evaluted: passed or
failed.

4. Use coverage tools to evaluate the coverage of tests.

5. When necessary, add more test cases to test the not
covered code

6. Stop testing, when coverage goal is met and all tests
passed.

Software Testing and Change Management

What is Software Testing? —
cont.

Software testing is designing,
executing and evaluating the test
Ccases.

Sofftware testing is running the code
for combinations of states and input
data in order to detect faults.

Software Testing and Change Management

The Limits of Testing

Exhaustive testing is usually impossible (infractable)!

for (int 1 = 0; 1 < n; i++) {
if (a.get (1) == b.get (1))
x[1] = x[1] + 100;
else
x[1] = x[1] / 2;
}
n |Path No.
1 |3
2 |5
10| 1025
60 | 1 152 921 504 606 847 200

Software Testing and Change Management

The Limits of Testing

Fault Sensitivity — the ability to hide faults from test suite

Coincidental Correctness — the code produces correct results
for some input data

short scale(short j) {
j =3 - 1; //should be 7 = 7 + 1
j =3 / 30000;
return 7j;

}

Friedman M. A., Voas J.M.: Software Assessment: reliability, safety, testability.
New York, John Wiley & Sons 1995

Only -30001, -30000, -1, 0, 29999, 30000 generate incorrect

results.
For 99,9908% of input values the code generates correct results.

Software Testing and Change Management

Fault Model

Why are these properties tested with this
technique?

Answer can be based on common sense,
experience, assumption, analysis or experiment.

Fault Model shows associations and components
of the system being tested that have highest
probability for faults to occur.

Bug hazard is a circumstance that increase the
chance of a bug.

Software Testing and Change Management

Fault Model

Generally there are two kinds of fault models:

e conformance — directed testing
— o prove conformance with requirements or specificafi

— Tests are representative enough for essential features of
the system being tested

— Every fault makes the system not conformant
(Nonspecific fault model)
e fault-directed testing
— To prove implementation faults

— Itis based on observation that conformance can be
proved for implementation containing bugs.

— Specific fault model

Software Testing and Change Management

Side effects of the Paradigm

Message

Sequence

and state
related bugs

Polymorphism Encapsulation

Inheritance

Software Testing and Change Management

Side effects of the Paradigm —

Encapsulation

class Person {

public String name;

}

Invalid

Do not create

iInvalid objects —< setName (name) ;

J
public String getName () {
EﬂCOpSU'OTe return name;

class Person {

private _String name:
=" public Person (String name) {

e

Field

NofT structure

}
\\\\\~Eziiiz‘?tring setName (String nam
is.name = name;

}
~ .

equivalent

_B;otected void walk() { ... } j:::)
1

Software Testing and Change Management

Side effects of the Paradigm —
Encapsulation cont.

v’ Fields can be accessed only via methods or by
inheriting classes

v Information hiding —fields and code can be
hidden (e.g. protected methods, private fields)

v Object contains also other methods than
getter/setter methods(is not structure equivalent)

v Do not create invalid objects (with invalid state)

Software Testing and Change Management

Side effects of the Paradigm —
Encapsulation

— Flelds can be accessed only via

methods

It is problematic for a test case to set or access
appropriate state of the class

Software Testing and Change Management

Side effects of the Paradigm —
Inheritance

— Inhertance weakens encapsulation

Inherited fields if not private can be modified by
the subclass which can lead to unexpected
results

— Coincidental inheritance
The base class was not prepared for inheritance.

Software Testing and Change Management

Side effects of the Paradigm —

Inheritance
Multiple inheritfance
* Repeated inherifance can A
lead i.e. to name clashes

Software Testing and Change Management

Side effects of the Paradigm —
Inheritance cont.

e Abstract classes
To test abstract class has to be
specialized

e Generic classes
,Generic classes may never be fully
tested” — Firesmith
Generic classes have 1o be realized
INn order to test them.

Software Testing and Change Management

Side effects of the Paradigm —

Polymorphism

Explicit Polymorphism
ability to accept the message by an
appropriate class known at run-time

ArrayList

jeelements : Object]]

dd(obj : Object) : vol
e =ty Object
“remove(index : int) : Object
fHclone() : Object

\
\

1

ArrayList list = new SortedArrayList(); SortedArrayList

list.add (new Object);

void add (Object obj) {
super.add (obj) ;
sort () ;

— @ ad(obj : Object) : vl

esort()Tvord

Software Testing and Change Management

Side effects of the Paradigm —
Polvmorphism cont.

class Adder {
public double add (double argl, double arg2) {
return argl + arg2?;

}
public int add(int argl, int arg2) {
return argl + argZ?;

}

}

Implicit polymorphism

Ability to accept the appropriate message known
at run-tfime.

Software Testing and Change Management

Side effects of the Paradigm —
Polymorphism

e The code can be difficult to understand
and thus error-prone

e Fven when the interface is correct
changes 1o the polymorphic server can
cause the client to fail

e Message can be associated with the
wrong server if the client did even though
minor mistake

e The Yo-Yo problem

Software Testing and Change Management

Side effects of the Paradigm —
Polymorphism

class Account {
protected Date lastTransaction;
protected Date today;

public int calculateQuarters () {
return 90 / getDays () ;

}
public int getDays () {

return today.getDay ()
- lastTransaction.getDay () + 1;

Software Testing and Change Management

Side effects of the Paradigm —
Polymorphism

class Deposit extends Account ({
public int getDays () {
return today.getDay ()

- lastTransaction.getDay () ;

Software Testing and Change Management

Side effects of the Paradigm —
Polymorphism

class Deposit extends Account ({
public int getDays () {
return today.getDay ()

- lastTransaction.getDay () ;

}
1 Incorrect - foday's transactions have 0 days
Division by zero!
public int calculateQuarters() {

return 90 / getDays();
}

Software Testing and Change Management

Side effects of the Paradigm —
Language-specific hazards

class BaseClass {

public: void doSth() {
~Base () ; BaseClass *temp = new SubClass;
delete temp;

class SubClass : public BaseClass {

public:
~SubClass () ;

Software Testing and Change Management

Lite

ratura

e Robert V. Binder: Testowanie systemow
obiektowych. Modele wzorce i narzedzia,

WNT 2003

e Friedman M. A., Voas J.M.: Software

Assessment: reliabi
New York, John Wi

e Green R.: Java go

Ity, safety, testability.
ey & Sons 1995

'chas. March 22, 1998;

hitp://oberon.ark.com/~roedy/gotchas.-

Nt

Software Testing and Change Management

Quality Assessment

Thank You for your attention ©

e What is your general
impression (1-6)

e Was it oo slow or too faste

e What important did you learn
during the lecture®?

e What to improve and howe

