
Software Testing and Change Management

Introduction to
Software Testing

Błażej Pietrzak
blazej.pietrzak@cs.put.poznan.pl

Software Testing and Change Management

Organisation
 Teachers
– Maciej Gabor mgabor@bestcom.com.pl
– Grzegorz Jachimko grzegorz.jachimko@otp.pl
– Błażej Pietrzak blazej.pietrzak@cs.put.poznan.pl

 Lectures
– Tuesdays, 8:00 AM, G-1
– Duty Hours: Mondays 3:15-4:45 PM confirmed by e-mail
– Method of Verification: Test (pol. kolokwium)

 Laboratory classes
– Mondays, 4:50 PM, 6:30 PM, 427
– Method of Verification: Grade Average of all given

excersises

Software Testing and Change Management

Lecture proposals
 Introduction to Software Testing (1 lecture)
 Test models: Combinational Models (1 lecture)
 Test models: State Machines (2 lectures)
? A Tester’s Guide to UML (1 lecture)
? Patterns (3 lectures)
? Test Driven Development (1 lecture)
? Building Maintainable Tests (1-2 lectures)
? Test process improvement TPI, TMM (1 lecture)
? Reliability measures – IEEE 982-1 1988 (1 lecture)

Software Testing and Change Management

What is Software Testing?

Software Testing from System Engineering point of view

Application
modelling

Requirements,
Design,
Code,

Test models
dependant on
application

Generic
Test models

Test
designing

Test
Automation

System

System being
Tested

Test
Suite

Passed,
Failed

Test input
Actual
resultsFaults

remaining
in version

Software Testing and Change Management

What is Software Testing? –
cont.

Test designing
2. Separate, model and analyze responsibilities of

the system being tested.
3. Design test cases that meet the above

perspective.
4. Add test cases araising from code analysis,

assumptions and heuristics.
5. For each test case define expected results or

select the approach which makes possible to
evaluate if the test case passes or fails.

Software Testing and Change Management

What is Software Testing? –
cont.

Test execution:
2. Bring the tested implementation to minimal efficiency by

testing interfaces between its parts.
3. Execute test suite. Each test is evaluted: passed or

failed.
4. Use coverage tools to evaluate the coverage of tests.
5. When necessary, add more test cases to test the not

covered code
6. Stop testing, when coverage goal is met and all tests

passed.

Software Testing and Change Management

What is Software Testing? –
cont.

Software testing is designing,
executing and evaluating the test
cases.

Software testing is running the code
for combinations of states and input
data in order to detect faults.

Software Testing and Change Management

The Limits of Testing
Exhaustive testing is usually impossible (intractable)!
for (int i = 0; i < n; i++) {
 if (a.get(i) == b.get(i))
 x[i] = x[i] + 100;
 else
 x[i] = x[i] / 2;
}

3
5
1025
1 152 921 504 606 847 200

1
2
10
60

Path No.n

Software Testing and Change Management

The Limits of Testing
Fault Sensitivity – the ability to hide faults from test suite

Coincidental Correctness – the code produces correct results
for some input data

Friedman M. A., Voas J.M.: Software Assessment: reliability, safety, testability.
New York, John Wiley & Sons 1995

short scale(short j) {
 j = j - 1; //should be j = j + 1
 j = j / 30000;
 return j;
}

Only -30001, -30000, -1, 0, 29999, 30000 generate incorrect
results.
For 99,9908% of input values the code generates correct results.

Software Testing and Change Management

Fault Model
Why are these properties tested with this

technique?
Answer can be based on common sense,

experience, assumption, analysis or experiment.
Fault Model shows associations and components

of the system being tested that have highest
probability for faults to occur.

Bug hazard is a circumstance that increase the
chance of a bug.

Software Testing and Change Management

Fault Model
Generally there are two kinds of fault models:
• conformance – directed testing

– to prove conformance with requirements or specificati
– Tests are representative enough for essential features of

the system being tested
– Every fault makes the system not conformant

(Nonspecific fault model)
• fault-directed testing

– To prove implementation faults
– It is based on observation that conformance can be

proved for implementation containing bugs.
– Specific fault model

Software Testing and Change Management

Side effects of the Paradigm

Encapsulation

Message
Sequence
and state

related bugs

Inheritance

Polymorphism

Software Testing and Change Management

Side effects of the Paradigm –
Encapsulation

class Person {
 public String name;
}

class Person {
 private String name;
 public Person(String name) {
 setName(name);
 }
 public String getName() {
 return name;
 }
 public String setName(String name) {
 this.name = name;
 }
 protected void walk() { ... }
}

Invalid

Encapsulate
Field

Do not create
invalid objects

Not structure
equivalent

Software Testing and Change Management

Side effects of the Paradigm –
Encapsulation cont.

 Fields can be accessed only via methods or by
inheriting classes

 Information hiding –fields and code can be
hidden (e.g. protected methods, private fields)

 Object contains also other methods than
getter/setter methods(is not structure equivalent)

 Do not create invalid objects (with invalid state)

Software Testing and Change Management

Side effects of the Paradigm –
Encapsulation

– Fields can be accessed only via
methods
It is problematic for a test case to set or access
appropriate state of the class

Software Testing and Change Management

Side effects of the Paradigm –
Inheritance

– Inheritance weakens encapsulation
Inherited fields if not private can be modified by
the subclass which can lead to unexpected
results

– Coincidental inheritance
The base class was not prepared for inheritance.

Software Testing and Change Management

Side effects of the Paradigm –
Inheritance

Multiple inheritance
• Repeated inheritance can

lead i.e. to name clashes
A

B C

D

Software Testing and Change Management

Side effects of the Paradigm –
Inheritance cont.

• Abstract classes
To test abstract class has to be
specialized

• Generic classes
„Generic classes may never be fully
tested” – Firesmith
Generic classes have to be realized
in order to test them.

Software Testing and Change Management

ArrayList list = new SortedArrayList();
list.add(new Object); SortedArrayList

add(obj : Object) : void
sort() : void

ArrayList
elements : Object[]

add(obj : Object) : void
get(index : int) : Object
remove(index : int) : Object
clone() : Object

void add(Object obj) {
 super.add(obj);
 sort();
}

Side effects of the Paradigm –
Polymorphism

Explicit Polymorphism
ability to accept the message by an
appropriate class known at run-time

Software Testing and Change Management

Side effects of the Paradigm –
Polymorphism cont.

Implicit polymorphism
Ability to accept the appropriate message known

at run-time.

class Adder {
 public double add(double arg1, double arg2) {
 return arg1 + arg2;
 }
 public int add(int arg1, int arg2) {
 return arg1 + arg2;
 }
}

Software Testing and Change Management

Side effects of the Paradigm –
Polymorphism

• The code can be difficult to understand
and thus error-prone

• Even when the interface is correct
changes to the polymorphic server can
cause the client to fail

• Message can be associated with the
wrong server if the client did even though
minor mistake

• The Yo-Yo problem

Software Testing and Change Management

Side effects of the Paradigm –
Polymorphism

class Account {
 protected Date lastTransaction;
 protected Date today;

 public int calculateQuarters() {
 return 90 / getDays();
 }
 public int getDays() {
 return today.getDay()
 - lastTransaction.getDay() + 1;
 }
}

Software Testing and Change Management

Side effects of the Paradigm –
Polymorphism

class Deposit extends Account {
 public int getDays() {
 return today.getDay()
 - lastTransaction.getDay();
 }
}

Software Testing and Change Management

Side effects of the Paradigm –
Polymorphism

class Deposit extends Account {
 public int getDays() {
 return today.getDay()
 - lastTransaction.getDay();
 }
} Incorrect - today's transactions have 0 days

Division by zero!
public int calculateQuarters() {
 return 90 / getDays();
}

Software Testing and Change Management

Side effects of the Paradigm –
Language-specific hazards
class BaseClass {
public:
~Base();
...
}

class SubClass : public BaseClass {
public:
 ~SubClass();
 ...
}

void doSth() {
BaseClass *temp = new SubClass;
delete temp;

}

Software Testing and Change Management

Literatura

• Robert V. Binder: Testowanie systemów
obiektowych. Modele wzorce i narzędzia,
WNT 2003

• Friedman M. A., Voas J.M.: Software
Assessment: reliability, safety, testability.
New York, John Wiley & Sons 1995

• Green R.: Java gotchas. March 22, 1998;
http://oberon.ark.com/~roedy/gotchas.-
html

Software Testing and Change Management

Quality Assessment

Thank You for your attention
• What is your general

impression (1-6)
• Was it too slow or too fast?
• What important did you learn

during the lecture?
• What to improve and how?

